Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):o1163. doi: 10.1107/S1600536811013717

(2E)-2-(2-Phenyl­hydrazin-1-yl­idene)propanoic acid

Md Abu Affan a,, M A Salam a, Eleazar Veronica Siew a, Seik Weng Ng b, Edward R T Tiekink b,*
PMCID: PMC3089133  PMID: 21754470

Abstract

The 13 non-H atoms comprising the title compound, C9H10N2O2, are close to planar (r.m.s. deviation = 0.140 Å), with maximum deviations of 0.292 (1) and 0.210 (1) Å to either side of the least-squares plane exhibited by the hy­droxy and carbonyl O atoms, respectively. The observed conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond. The conformation about the N=C double bond [1.2909 (16) Å] is E. The hy­droxy OH group also forms an inter­molecular hydrogen bond to a carbonyl O atom, and the amine H atom similarly forms an N—H⋯O hydrogen bond to a second carbonyl O atom. The result is the formation of a double layer with a flat topology. Layers stack along the a-axis direction connected by C—H⋯π inter­actions.

Related literature

For background and recent studies on the biological activity of tin/organotin compounds, see: Gielen & Tiekink (2005); Affan et al. (2009).graphic file with name e-67-o1163-scheme1.jpg

Experimental

Crystal data

  • C9H10N2O2

  • M r = 178.19

  • Monoclinic, Inline graphic

  • a = 7.3239 (3) Å

  • b = 12.0837 (7) Å

  • c = 9.6836 (4) Å

  • β = 99.119 (4)°

  • V = 846.17 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Agilent Supernova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.734, T max = 1.000

  • 7879 measured reflections

  • 1920 independent reflections

  • 1544 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.114

  • S = 1.03

  • 1920 reflections

  • 127 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013717/hg5024sup1.cif

e-67-o1163-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013717/hg5024Isup2.hkl

e-67-o1163-Isup2.hkl (94.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.86 (2) 2.12 (2) 2.6169 (16) 115.9 (16)
O1—H1⋯O2i 0.86 (2) 2.18 (2) 2.9039 (14) 141.5 (19)
N2—H2⋯O2ii 0.916 (18) 2.199 (19) 3.0579 (15) 155.9 (15)
C3—H3c⋯Cg1iii 0.98 2.92 3.5830 (16) 126

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was financially supported by the Ministry of Science Technology and Innovation (MOSTI) under a research grant (No. 06–01-09-SF0046). The authors would like to thank Universiti Malaysia Sarawak (UNIMAS) for the facilities to carry out the research work. The authors also thank the University of Malaya for support of the crystallographic facility.

supplementary crystallographic information

Comment

The title compound, (I), was prepared as a potential ligand for tin (Affan et al., 2009), motivated by the wide range of biological activities displayed by organotin compounds (Gielen & Tiekink, 2005). The r.m.s. for the 13 non-hydrogen atoms comprising (I), Fig. 1, is 0.140 Å. The maximum deviations are found for the carboxylic acid-O atoms with the O1 atom being 0.292 (1) Å out of the least-squares plane and the O2 lying 0.210 (1) Å to the other side. The planarity in the molecule is readily explained in terms of an intramolecular O—H···N hydrogen bond as the hydroxy H is directed toward the centre of the molecule, Table 1. The conformation about the N1═ C2 double bond [1.2909 (16) Å] is E. In the crystal packing, the carbonyl-O2 atom accepts hydrogen bonds from both the hydroxy-O1—H and amine-H atoms, derived from different molecules, Table 1. The result is a supramolecular double layer as illustrated in Fig. 2. Layers stack along the a direction and are connected by C—H···π interactions, Fig. 3 and Table 1.

Experimental

Pyruvic acid (0.440 g, 5 mmol) was dissolved in 10 ml absolute ethanol with constant stirring. An ethanolic solution of phenylhydrazine (0.540 g, 5 mmol) was then added to the solution drop-wise. The resulting reaction mixture was refluxed for 5 h. On cooling the solution to room temperature, a light-orange powder separated, which was filtered and washed with ethanol. The powder was recrystallized from ethanol and dried in vacuo over silica gel. (M.pt. 460–462 K. Yield 0.724 g (73.8%). Anal. Calc. for C9H10N2O2: C, 60.66; H, 5.65; N, 15.72%. Found: C, 60.61; H, 5.59; N, 15.68%. FT—IR (KBr, cm-1) νmax: 3333 (m, OH), 3285 (s, NH), 1709 (m, C=O), 1595 (w, C=N), 991 (m, N—N).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C–H = 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O—H and N—H hydrogen atoms were freely refined; see Table 1 for bond distances.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view in projection down the a axis of the supramolecular double layer in (I). The O—H···O and N—H···O hydrogen bonds are shown as orange and blue dashed lines, respectively.

Fig. 3.

Fig. 3.

A view in projection down the b axis of the crystal packing in (I) showing the connection between layers via C—H···π interactions. The O—H···O and N—H···S hydrogen bonds are shown as orange and blue dashed lines, respectively, and the C—H···π contacts are shown as purple dashed lines.

Crystal data

C9H10N2O2 F(000) = 376
Mr = 178.19 Dx = 1.399 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2940 reflections
a = 7.3239 (3) Å θ = 2.7–29.2°
b = 12.0837 (7) Å µ = 0.10 mm1
c = 9.6836 (4) Å T = 100 K
β = 99.119 (4)° Block, yellow
V = 846.17 (7) Å3 0.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Agilent Supernova Dual diffractometer with an Atlas detector 1920 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 1544 reflections with I > 2σ(I)
Mirror Rint = 0.042
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.7°
ω scans h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −11→15
Tmin = 0.734, Tmax = 1.000 l = −12→12
7879 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.2722P] where P = (Fo2 + 2Fc2)/3
1920 reflections (Δ/σ)max < 0.001
127 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.64494 (15) 0.79085 (9) 0.40334 (10) 0.0218 (3)
O2 0.56711 (14) 0.78175 (8) 0.17390 (10) 0.0207 (3)
N2 0.69829 (16) 0.46664 (10) 0.44283 (12) 0.0175 (3)
N1 0.68674 (15) 0.57591 (10) 0.41916 (11) 0.0158 (3)
C1 0.60689 (18) 0.73282 (12) 0.28486 (13) 0.0168 (3)
C2 0.61419 (18) 0.61094 (12) 0.29678 (13) 0.0164 (3)
C3 0.5429 (2) 0.54090 (12) 0.17314 (14) 0.0196 (3)
H3A 0.6342 0.4838 0.1615 0.029*
H3B 0.5208 0.5872 0.0891 0.029*
H3C 0.4269 0.5057 0.1876 0.029*
C4 0.78824 (18) 0.42878 (12) 0.57266 (14) 0.0163 (3)
C5 0.7901 (2) 0.31539 (12) 0.59907 (15) 0.0205 (3)
H5 0.7321 0.2656 0.5297 0.025*
C6 0.87695 (19) 0.27559 (13) 0.72715 (16) 0.0242 (4)
H6 0.8773 0.1984 0.7455 0.029*
C7 0.9634 (2) 0.34750 (14) 0.82876 (15) 0.0248 (4)
H7 1.0229 0.3200 0.9163 0.030*
C8 0.96165 (19) 0.45980 (13) 0.80084 (15) 0.0228 (3)
H8 1.0207 0.5094 0.8700 0.027*
C9 0.87518 (19) 0.50122 (13) 0.67369 (15) 0.0193 (3)
H9 0.8753 0.5785 0.6557 0.023*
H1 0.656 (3) 0.7447 (18) 0.472 (2) 0.044 (6)*
H2 0.628 (2) 0.4184 (16) 0.3834 (19) 0.032 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0340 (6) 0.0160 (6) 0.0142 (5) 0.0001 (4) −0.0003 (4) −0.0001 (4)
O2 0.0272 (5) 0.0187 (6) 0.0157 (5) 0.0014 (4) 0.0018 (4) 0.0027 (4)
N2 0.0218 (6) 0.0138 (6) 0.0157 (6) 0.0001 (5) −0.0007 (5) 0.0008 (5)
N1 0.0166 (6) 0.0149 (6) 0.0158 (6) 0.0009 (4) 0.0026 (4) 0.0007 (4)
C1 0.0175 (7) 0.0172 (8) 0.0153 (6) −0.0006 (5) 0.0014 (5) −0.0006 (5)
C2 0.0159 (6) 0.0180 (8) 0.0153 (6) −0.0003 (5) 0.0027 (5) 0.0006 (5)
C3 0.0240 (7) 0.0175 (8) 0.0162 (6) −0.0013 (6) 0.0002 (6) −0.0008 (5)
C4 0.0146 (6) 0.0195 (8) 0.0153 (6) 0.0022 (5) 0.0043 (5) 0.0032 (5)
C5 0.0209 (7) 0.0181 (8) 0.0223 (7) 0.0016 (6) 0.0024 (6) 0.0010 (6)
C6 0.0226 (7) 0.0211 (8) 0.0288 (8) 0.0042 (6) 0.0034 (6) 0.0088 (6)
C7 0.0195 (7) 0.0345 (9) 0.0194 (7) 0.0039 (6) 0.0005 (6) 0.0093 (6)
C8 0.0189 (7) 0.0302 (9) 0.0182 (7) −0.0008 (6) −0.0003 (6) 0.0014 (6)
C9 0.0188 (7) 0.0195 (8) 0.0196 (7) −0.0013 (5) 0.0025 (6) 0.0010 (6)

Geometric parameters (Å, °)

O1—C1 1.3358 (16) C4—C9 1.390 (2)
O1—H1 0.86 (2) C4—C5 1.393 (2)
O2—C1 1.2205 (16) C5—C6 1.3871 (19)
N2—N1 1.3405 (16) C5—H5 0.9500
N2—C4 1.4005 (17) C6—C7 1.388 (2)
N2—H2 0.916 (18) C6—H6 0.9500
N1—C2 1.2909 (16) C7—C8 1.383 (2)
C1—C2 1.478 (2) C7—H7 0.9500
C2—C3 1.4913 (18) C8—C9 1.3858 (19)
C3—H3A 0.9800 C8—H8 0.9500
C3—H3B 0.9800 C9—H9 0.9500
C3—H3C 0.9800
C1—O1—H1 107.9 (14) C9—C4—N2 121.60 (13)
N1—N2—C4 118.90 (11) C5—C4—N2 118.39 (12)
N1—N2—H2 120.4 (11) C6—C5—C4 119.65 (14)
C4—N2—H2 119.5 (11) C6—C5—H5 120.2
C2—N1—N2 119.05 (12) C4—C5—H5 120.2
O2—C1—O1 119.34 (13) C5—C6—C7 120.65 (14)
O2—C1—C2 123.52 (12) C5—C6—H6 119.7
O1—C1—C2 117.13 (11) C7—C6—H6 119.7
N1—C2—C1 113.77 (12) C8—C7—C6 119.11 (13)
N1—C2—C3 126.28 (13) C8—C7—H7 120.4
C1—C2—C3 119.95 (11) C6—C7—H7 120.4
C2—C3—H3A 109.5 C7—C8—C9 121.11 (14)
C2—C3—H3B 109.5 C7—C8—H8 119.4
H3A—C3—H3B 109.5 C9—C8—H8 119.4
C2—C3—H3C 109.5 C8—C9—C4 119.46 (14)
H3A—C3—H3C 109.5 C8—C9—H9 120.3
H3B—C3—H3C 109.5 C4—C9—H9 120.3
C9—C4—C5 120.01 (13)
C4—N2—N1—C2 175.73 (12) C9—C4—C5—C6 0.8 (2)
N2—N1—C2—C1 179.08 (12) N2—C4—C5—C6 −179.52 (13)
N2—N1—C2—C3 −1.5 (2) C4—C5—C6—C7 −0.6 (2)
O2—C1—C2—N1 169.64 (13) C5—C6—C7—C8 0.1 (2)
O1—C1—C2—N1 −10.90 (18) C6—C7—C8—C9 0.1 (2)
O2—C1—C2—C3 −9.8 (2) C7—C8—C9—C4 0.2 (2)
O1—C1—C2—C3 169.66 (12) C5—C4—C9—C8 −0.6 (2)
N1—N2—C4—C9 −4.0 (2) N2—C4—C9—C8 179.71 (13)
N1—N2—C4—C5 176.34 (12)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 ring.
D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.86 (2) 2.12 (2) 2.6169 (16) 115.9 (16)
O1—H1···O2i 0.86 (2) 2.18 (2) 2.9039 (14) 141.5 (19)
N2—H2···O2ii 0.916 (18) 2.199 (19) 3.0579 (15) 155.9 (15)
C3—H3c···Cg1iii 0.98 2.92 3.5830 (16) 126

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5024).

References

  1. Affan, M. A., Wan Foo, S., Jusoh, I., Hanapi, S. & Tiekink, E. R. T. (2009). Inorg. Chim. Acta, 362, 5031–5037.
  2. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gielen, M. & Tiekink, E. R. T. (2005). Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine, edited by M. Gielen & E. R. T. Tiekink, pp. 421–439. Chichester: John Wiley & Sons.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013717/hg5024sup1.cif

e-67-o1163-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013717/hg5024Isup2.hkl

e-67-o1163-Isup2.hkl (94.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES