Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):o1162. doi: 10.1107/S1600536811013638

1-(3,5-Dinitro­benzo­yl)-3,3-dipropyl­thio­urea

Sohail Saeed a,, Naghmana Rashid a, Muhammad Sher a, Seik Weng Ng b, Edward R T Tiekink b,*
PMCID: PMC3089134  PMID: 21754469

Abstract

The title thio­urea derivative, C14H18N4O5S, features two substantial twists between its component fragments: the dihedral angle between the SN2C (thio­urea) and ONC2 (amide) residues is 48.89 (7)° and that between the benzene ring and the amide residue is 30.27 (7)°. In the crystal, mol­ecules are linked by bifurcated N—H⋯(O,S) hydrogen bonds, generating [001] supra­molecular chains.

Related literature

For the biological activity of thio­urea derivatives, see: Venkatachalam et al., (2004); Saeed et al. (2011). For related thio­urea structures, see: Gunasekaran et al. (2010); Saeed et al. (2010); Dzulkifli et al. (2011).graphic file with name e-67-o1162-scheme1.jpg

Experimental

Crystal data

  • C14H18N4O5S

  • M r = 354.38

  • Monoclinic, Inline graphic

  • a = 7.9406 (4) Å

  • b = 21.2839 (10) Å

  • c = 9.5967 (4) Å

  • β = 94.379 (4)°

  • V = 1617.17 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.933, T max = 0.977

  • 8055 measured reflections

  • 3614 independent reflections

  • 2878 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.154

  • S = 1.02

  • 3614 reflections

  • 221 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013638/hb5845sup1.cif

e-67-o1162-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013638/hb5845Isup2.hkl

e-67-o1162-Isup2.hkl (177.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.87 (1) 2.53 (2) 3.264 (3) 142 (2)
N2—H2⋯S1i 0.87 (1) 2.69 (2) 3.436 (2) 144 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for the allocation of research and analytical laboratory facilities. The authors also thank the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The biological potential of thiourea derivatives (Venkatachalam et al., 2004; Saeed et al., 2011) motivates structural studies of these compounds (Gunasekaran et al. 2010; Saeed et al. 2010; Dzulkifli et al., 2011). Herein, the crystal and molecular structure of the title thiourea derivative, (I), is described.

The molecular structure of (I), Fig. 1, shows a significant twist around the central atoms as seen in the value of the dihedral angle formed between the least-squares planes through the S1,N1,N2,C7 (thiourea) and O1,N2,C8,C9 (amide) atoms of 48.89 (7) °. Further, the benzene ring is twisted out of the plane of the carbonyl residue as indicated by the O1—C8—C9—C10 torsion angle of 147.1 (2) °. With respect to the S1,N1,N2,C7 plane, the n-propyl groups lie to either side. Whereas the O2-nitro group is co-planar with the benzene ring to which it is bonded, the O2—N3—C11—C10 torsion angle = -4.2 (3) °, the O4-nitro group is slightly twisted out of the plane as seen in the value of the O4—N4—C13—C12 torsion angle of -9.3 (3) °.

The crystal packing is dominated by N—H···O,S hydrogen bonds as the N1—H H atoms is bifurcated, Table 1. These result in the formation of six-membered {···H···OCNCS} synthons and linear supramolecular chains along the c direction, Fig. 2.

Experimental

A solution of 3,5-dinitrobenzoyl chloride (0.01 mol) in anhydrous acetone (75 ml) and 3% tetrabutylammonium bromide (TBAB) as a phase-transfer catalyst (PTC) in anhydrous acetone was added drop-wise to a suspension of dry potassium thiocyanate (0.01 mol) in acetone (50 ml) and the reaction mixture was refluxed for 50 min. After cooling to room temperature, a solution of dipropyl amine (0.01 mol) in anhydrous acetone (25 ml) was added drop-wise and the resulting mixture refluxed for 3 h. Hydrochloric acid (0.1 N, 300 ml) was added and the solution was filtered. The solid product was washed with water and purified by re-crystallization from ethyl acetate to yield light-yellow prisms of (I). Yield: 1.29 g (82%); M.pt. 407–408 K. IR (KBr, cm-1): 3173 ν(NH), 1690 ν(C═O), 1536 ν(benzene ring), 1180 ν(C═S). Anal. Calcd. for C14H18N4O5S: C, 47.45; H, 5.12; N, 15.81; S, 9.05%. Found: C, 47.53; H, 5.17; N, 15.75; S, 9.03%.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.93–0.97 Å, Uiso(H) 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H 0.88±0.01 Å; the Uiso values were refined. The maximum and minimum residual electron density peaks of 1.04 and 0.46 e Å-3, respectively, were located 1.05 Å and 0.33 Å from the C2 and H2a atoms, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.

Fig. 2.

Fig. 2.

Supramolecular chain aligned along the c axis in (I) mediated by N—H···O, S hydrogen bonding shown as blue and orange dashed lines, respectively.

Crystal data

C14H18N4O5S F(000) = 744
Mr = 354.38 Dx = 1.456 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3443 reflections
a = 7.9406 (4) Å θ = 2.3–29.3°
b = 21.2839 (10) Å µ = 0.23 mm1
c = 9.5967 (4) Å T = 295 K
β = 94.379 (4)° Prism, light yellow
V = 1617.17 (13) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3614 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2878 reflections with I > 2σ(I)
Mirror Rint = 0.027
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.3°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −27→26
Tmin = 0.933, Tmax = 0.977 l = −12→10
8055 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0697P)2 + 1.1729P] where P = (Fo2 + 2Fc2)/3
3614 reflections (Δ/σ)max = 0.001
221 parameters Δρmax = 1.04 e Å3
1 restraint Δρmin = −0.46 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.37257 (8) 0.21276 (3) 0.24866 (6) 0.0405 (2)
O1 0.7561 (2) 0.24758 (9) 0.29218 (19) 0.0505 (5)
O2 0.5844 (3) 0.44242 (11) 0.7375 (2) 0.0621 (6)
O3 0.8149 (3) 0.49393 (11) 0.7748 (3) 0.0761 (7)
O4 1.2906 (3) 0.44304 (11) 0.5156 (3) 0.0711 (7)
O5 1.3052 (3) 0.35161 (11) 0.4221 (2) 0.0623 (6)
N1 0.4129 (2) 0.15013 (9) 0.4887 (2) 0.0334 (4)
N2 0.5882 (3) 0.23606 (9) 0.4730 (2) 0.0343 (4)
H2 0.581 (3) 0.2455 (12) 0.5607 (13) 0.044 (7)*
N3 0.7311 (3) 0.45149 (10) 0.7190 (2) 0.0451 (5)
N4 1.2306 (3) 0.39224 (11) 0.4807 (2) 0.0440 (5)
C1 0.2706 (3) 0.10939 (12) 0.4387 (3) 0.0433 (6)
H1A 0.2787 0.0701 0.4899 0.052*
H1B 0.2802 0.0999 0.3408 0.052*
C2 0.0973 (4) 0.1384 (2) 0.4550 (4) 0.0746 (10)
H2A 0.0819 0.1733 0.3903 0.089*
H2B 0.0117 0.1073 0.4280 0.089*
C3 0.0687 (5) 0.1608 (2) 0.5930 (5) 0.0882 (13)
H3A −0.0414 0.1795 0.5919 0.132*
H3B 0.1528 0.1915 0.6217 0.132*
H3C 0.0757 0.1262 0.6574 0.132*
C4 0.5096 (3) 0.12842 (12) 0.6168 (2) 0.0396 (6)
H4A 0.4329 0.1098 0.6791 0.047*
H4B 0.5640 0.1641 0.6642 0.047*
C5 0.6417 (4) 0.08077 (13) 0.5847 (3) 0.0510 (7)
H5A 0.7223 0.1002 0.5270 0.061*
H5B 0.5880 0.0464 0.5318 0.061*
C6 0.7351 (4) 0.05486 (15) 0.7163 (4) 0.0659 (9)
H6A 0.8211 0.0262 0.6912 0.099*
H6B 0.6569 0.0332 0.7708 0.099*
H6C 0.7862 0.0888 0.7701 0.099*
C7 0.4603 (3) 0.19711 (10) 0.4084 (2) 0.0313 (5)
C8 0.7150 (3) 0.26338 (11) 0.4063 (2) 0.0339 (5)
C9 0.8066 (3) 0.31654 (10) 0.4830 (2) 0.0320 (5)
C10 0.7262 (3) 0.35735 (11) 0.5703 (2) 0.0337 (5)
H10 0.6152 0.3502 0.5908 0.040*
C11 0.8147 (3) 0.40847 (11) 0.6256 (2) 0.0350 (5)
C12 0.9793 (3) 0.42129 (11) 0.5982 (2) 0.0367 (5)
H12 1.0361 0.4564 0.6352 0.044*
C13 1.0552 (3) 0.37937 (11) 0.5132 (2) 0.0353 (5)
C14 0.9729 (3) 0.32754 (11) 0.4549 (2) 0.0338 (5)
H14 1.0280 0.3004 0.3976 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0449 (4) 0.0445 (4) 0.0315 (3) −0.0042 (3) −0.0021 (2) 0.0030 (2)
O1 0.0508 (11) 0.0646 (12) 0.0378 (10) −0.0172 (9) 0.0146 (8) −0.0188 (9)
O2 0.0525 (12) 0.0665 (14) 0.0695 (14) 0.0005 (10) 0.0182 (10) −0.0207 (11)
O3 0.0734 (15) 0.0652 (14) 0.0909 (17) −0.0130 (12) 0.0146 (13) −0.0475 (13)
O4 0.0519 (12) 0.0681 (15) 0.0941 (18) −0.0262 (11) 0.0118 (12) −0.0156 (13)
O5 0.0438 (11) 0.0814 (15) 0.0636 (13) −0.0046 (10) 0.0156 (10) −0.0176 (12)
N1 0.0346 (10) 0.0325 (10) 0.0331 (10) −0.0015 (8) 0.0025 (8) −0.0001 (8)
N2 0.0410 (11) 0.0364 (10) 0.0259 (9) −0.0079 (8) 0.0048 (8) −0.0052 (8)
N3 0.0514 (14) 0.0432 (12) 0.0409 (12) 0.0023 (10) 0.0037 (10) −0.0077 (10)
N4 0.0355 (11) 0.0570 (14) 0.0393 (11) −0.0067 (10) 0.0005 (9) 0.0007 (10)
C1 0.0423 (14) 0.0389 (13) 0.0486 (14) −0.0094 (11) 0.0036 (11) −0.0017 (11)
C2 0.0510 (18) 0.097 (3) 0.076 (2) −0.0187 (18) 0.0090 (16) −0.015 (2)
C3 0.059 (2) 0.102 (3) 0.107 (3) −0.015 (2) 0.022 (2) −0.040 (3)
C4 0.0476 (14) 0.0394 (13) 0.0317 (12) −0.0022 (11) 0.0031 (10) 0.0047 (10)
C5 0.0528 (16) 0.0482 (15) 0.0500 (16) 0.0068 (13) −0.0093 (13) −0.0058 (12)
C6 0.072 (2) 0.0484 (17) 0.072 (2) 0.0038 (15) −0.0257 (17) 0.0032 (15)
C7 0.0323 (11) 0.0305 (11) 0.0315 (11) 0.0008 (9) 0.0055 (9) −0.0042 (9)
C8 0.0363 (12) 0.0348 (12) 0.0308 (11) −0.0036 (9) 0.0035 (9) −0.0035 (9)
C9 0.0362 (12) 0.0337 (11) 0.0259 (10) −0.0029 (9) 0.0015 (9) 0.0012 (9)
C10 0.0353 (12) 0.0372 (12) 0.0285 (11) −0.0025 (10) 0.0019 (9) 0.0023 (9)
C11 0.0398 (13) 0.0344 (12) 0.0304 (11) 0.0023 (10) 0.0006 (9) −0.0022 (9)
C12 0.0424 (13) 0.0351 (12) 0.0318 (11) −0.0063 (10) −0.0024 (10) −0.0029 (9)
C13 0.0341 (12) 0.0416 (13) 0.0299 (11) −0.0042 (10) 0.0002 (9) 0.0037 (9)
C14 0.0364 (12) 0.0363 (12) 0.0290 (11) 0.0003 (10) 0.0040 (9) −0.0005 (9)

Geometric parameters (Å, °)

S1—C7 1.668 (2) C3—H3B 0.9600
O1—C8 1.214 (3) C3—H3C 0.9600
O2—N3 1.207 (3) C4—C5 1.508 (4)
O3—N3 1.221 (3) C4—H4A 0.9700
O4—N4 1.218 (3) C4—H4B 0.9700
O5—N4 1.211 (3) C5—C6 1.519 (4)
N1—C7 1.334 (3) C5—H5A 0.9700
N1—C4 1.473 (3) C5—H5B 0.9700
N1—C1 1.475 (3) C6—H6A 0.9600
N2—C8 1.364 (3) C6—H6B 0.9600
N2—C7 1.417 (3) C6—H6C 0.9600
N2—H2 0.871 (10) C8—C9 1.507 (3)
N3—C11 1.474 (3) C9—C14 1.388 (3)
N4—C13 1.476 (3) C9—C10 1.394 (3)
C1—C2 1.527 (4) C10—C11 1.379 (3)
C1—H1A 0.9700 C10—H10 0.9300
C1—H1B 0.9700 C11—C12 1.380 (3)
C2—C3 1.441 (5) C12—C13 1.378 (3)
C2—H2A 0.9700 C12—H12 0.9300
C2—H2B 0.9700 C13—C14 1.379 (3)
C3—H3A 0.9600 C14—H14 0.9300
C7—N1—C4 124.44 (19) C4—C5—C6 112.2 (2)
C7—N1—C1 119.7 (2) C4—C5—H5A 109.2
C4—N1—C1 115.12 (19) C6—C5—H5A 109.2
C8—N2—C7 125.03 (19) C4—C5—H5B 109.2
C8—N2—H2 117.3 (18) C6—C5—H5B 109.2
C7—N2—H2 117.5 (18) H5A—C5—H5B 107.9
O2—N3—O3 123.6 (2) C5—C6—H6A 109.5
O2—N3—C11 118.3 (2) C5—C6—H6B 109.5
O3—N3—C11 118.1 (2) H6A—C6—H6B 109.5
O5—N4—O4 124.5 (2) C5—C6—H6C 109.5
O5—N4—C13 117.9 (2) H6A—C6—H6C 109.5
O4—N4—C13 117.5 (2) H6B—C6—H6C 109.5
N1—C1—C2 113.7 (2) N1—C7—N2 114.2 (2)
N1—C1—H1A 108.8 N1—C7—S1 124.35 (18)
C2—C1—H1A 108.8 N2—C7—S1 121.38 (17)
N1—C1—H1B 108.8 O1—C8—N2 124.3 (2)
C2—C1—H1B 108.8 O1—C8—C9 119.7 (2)
H1A—C1—H1B 107.7 N2—C8—C9 115.93 (19)
C3—C2—C1 115.8 (3) C14—C9—C10 119.9 (2)
C3—C2—H2A 108.3 C14—C9—C8 117.6 (2)
C1—C2—H2A 108.3 C10—C9—C8 122.3 (2)
C3—C2—H2B 108.3 C11—C10—C9 118.6 (2)
C1—C2—H2B 108.3 C11—C10—H10 120.7
H2A—C2—H2B 107.4 C9—C10—H10 120.7
C2—C3—H3A 109.5 C10—C11—C12 123.0 (2)
C2—C3—H3B 109.5 C10—C11—N3 118.9 (2)
H3A—C3—H3B 109.5 C12—C11—N3 118.1 (2)
C2—C3—H3C 109.5 C13—C12—C11 116.6 (2)
H3A—C3—H3C 109.5 C13—C12—H12 121.7
H3B—C3—H3C 109.5 C11—C12—H12 121.7
N1—C4—C5 111.5 (2) C12—C13—C14 122.9 (2)
N1—C4—H4A 109.3 C12—C13—N4 117.9 (2)
C5—C4—H4A 109.3 C14—C13—N4 119.2 (2)
N1—C4—H4B 109.3 C13—C14—C9 119.0 (2)
C5—C4—H4B 109.3 C13—C14—H14 120.5
H4A—C4—H4B 108.0 C9—C14—H14 120.5
C7—N1—C1—C2 −79.3 (3) C8—C9—C10—C11 −173.6 (2)
C4—N1—C1—C2 110.2 (3) C9—C10—C11—C12 0.2 (3)
N1—C1—C2—C3 −52.9 (4) C9—C10—C11—N3 −179.4 (2)
C7—N1—C4—C5 −86.1 (3) O2—N3—C11—C10 −4.2 (3)
C1—N1—C4—C5 83.9 (3) O3—N3—C11—C10 174.9 (2)
N1—C4—C5—C6 −176.4 (2) O2—N3—C11—C12 176.2 (2)
C4—N1—C7—N2 −15.8 (3) O3—N3—C11—C12 −4.8 (4)
C1—N1—C7—N2 174.7 (2) C10—C11—C12—C13 −1.2 (3)
C4—N1—C7—S1 167.53 (18) N3—C11—C12—C13 178.5 (2)
C1—N1—C7—S1 −2.0 (3) C11—C12—C13—C14 1.2 (3)
C8—N2—C7—N1 144.3 (2) C11—C12—C13—N4 179.3 (2)
C8—N2—C7—S1 −38.9 (3) O5—N4—C13—C12 170.3 (2)
C7—N2—C8—O1 −16.5 (4) O4—N4—C13—C12 −9.3 (3)
C7—N2—C8—C9 163.4 (2) O5—N4—C13—C14 −11.5 (3)
O1—C8—C9—C14 −27.4 (3) O4—N4—C13—C14 168.9 (2)
N2—C8—C9—C14 152.7 (2) C12—C13—C14—C9 −0.3 (3)
O1—C8—C9—C10 147.1 (2) N4—C13—C14—C9 −178.4 (2)
N2—C8—C9—C10 −32.8 (3) C10—C9—C14—C13 −0.7 (3)
C14—C9—C10—C11 0.7 (3) C8—C9—C14—C13 173.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1i 0.87 (1) 2.53 (2) 3.264 (3) 142 (2)
N2—H2···S1i 0.87 (1) 2.69 (2) 3.436 (2) 144 (2)

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5845).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Dzulkifli, N. N., Farina, Y., Yamin, B. M., Baba, I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o872. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Gunasekaran, N., Karvembu, R., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2601. [DOI] [PMC free article] [PubMed]
  6. Saeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74–84.
  7. Saeed, S., Rashid, N. & Wong, W.-T. (2010). Acta Cryst. E66, o980. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Venkatachalam, T. K., Mao, C. & Uckun, F. M. (2004). Bioorg. Med. Chem. 12, 4275–4284. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013638/hb5845sup1.cif

e-67-o1162-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013638/hb5845Isup2.hkl

e-67-o1162-Isup2.hkl (177.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES