Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1250. doi: 10.1107/S160053681101508X

(5-Benzoyl-3,6-dimeth­oxy­naphthalen-2-yl)(phen­yl)methanone

Yuichi Kato a, Atsushi Nagasawa a, Kosuke Sasagawa a, Akiko Okamoto a,*, Noriyuki Yonezawa a
PMCID: PMC3089136  PMID: 21754541

Abstract

The asymmetric unit of the title compound, C26H20O4, contains two independent conformers. The aromatic rings of the aroyl groups are twisted with respect to the naphthalene ring systems to form dihedral angles of 66.58 (6) and 66.45 (6)° in one conformer, and 75.00 (7) and 81.17 (6)° in the other conformer. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen bonds and by C—H⋯π inter­actions.

Related literature

For information on the electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Kataoka et al. (2010); Kato et al. (2010, 2011); Nakaema et al. (2008); Nishijima et al. (2010); Watanabe et al. (2010).graphic file with name e-67-o1250-scheme1.jpg

Experimental

Crystal data

  • C26H20O4

  • M r = 396.42

  • Triclinic, Inline graphic

  • a = 8.42828 (15) Å

  • b = 12.5953 (2) Å

  • c = 20.0578 (4) Å

  • α = 96.222 (1)°

  • β = 99.688 (1)°

  • γ = 102.727 (1)°

  • V = 2023.76 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.677, T max = 0.933

  • 32431 measured reflections

  • 7263 independent reflections

  • 5957 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.115

  • S = 1.08

  • 7263 reflections

  • 546 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: IL MILIONE (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681101508X/rz2585sup1.cif

e-67-o1250-sup1.cif (33.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101508X/rz2585Isup2.hkl

e-67-o1250-Isup2.hkl (348.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681101508X/rz2585Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C19–C24 and C4–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O3i 0.95 2.57 3.5191 (19) 176
C25—H25C⋯O4ii 0.98 2.56 3.348 (2) 138
C51—H51C⋯O8iii 0.98 2.47 3.371 (2) 152
C3—H3⋯Cg1iv 0.95 2.59 3.416 (11) 145
C14—H14⋯Cg2v 0.95 2.86 3.578 (9) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for technical advice. This work was partially supported by the Mukai Science and Technology Foundation.

supplementary crystallographic information

Comment

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-bis(4-aminobenzoyl)-2,7-dimethoxynaphthalene (Nishijima et al., 2010) and 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected in an almost perpendicular fashion. In this course, the crystal structures of 1-monoaroylated naphthalene compounds and the β-isomers of 3-monoaroylated compounds have been also clarified such as 1-benzoyl-2,7-dimethoxynaphthalene (Kato, et al., 2010), 1-(3-nitrobenzoyl)-2,7-dimethoxynaphthalene (Kataoka et al., 2010), 3-benzoyl-2,7-dimethoxynaphthalene (Kato et al., 2011), and (3,6-dimethoxy-2-naphthyl)(4-fluorophenyl)methanone (Watanabe et al., 2010). 1-Aroylated naphthalene compounds have been revealed to have essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes. 3-Substituted aroylnaphthalene compounds are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, with the aroyl groups connected to the naphthalene rings in a moderately twisted fashion. As a part of our continuous study on the molecular structures of this kind of homologous molecules, the crystal structure of title compound, a 1,6-dibenzoylated naphthalene derivative, is discussed in this paper.

There are two independent conformers in the asymmetric unit of the title compound. The conformers, labeled (I) and (II), are shown in Fig. 1. Each conformer has essentially the same non-coplanar structure, the main difference consisting in the dihedral angles formed by the benzene rings with the naphthalene ring systems. Conformer (II) shows a larger dihedral angle for the benzene ring of the aroyl group at 6-position than that of the benzene ring of the aroyl group at 1-potision [81.17 (6) and 75.00 (7)°], whereas very similar dihedral angles are observed for conformer (I) [66.45 (6) and 66.58 (6)°]. These angles could be compared with those reported for related 1- and 3-monoaroylated naphthalenes, e. g. (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (75.34 (7), 86.47 (7) and 76.55 (6)°; Kato et al., 2010) and (3,6-dimethoxynaphthalen-2-yl)(phenyl)methanone (68.32 (5)°; Kato et al., 2011). The torsion angles between the carbonyl groups and the naphthalene ring of conformer (I) are 116.90 (14) (C1—C10—C11—O3) and 48.7 (2)° (C5—C6—C18—O4), those of conformer (II) are 106.70 (17) (C27—C36—C37—O7) and 73.7 (2)° (C31—C32—C44—O8). In the crystal structure, the molecular packing is stabilized mainly by weak two intermolecular C—H···O hydrogen bonds in conformer (I) (Table 1, Fig. 2). Moreover, a C—H···O hydrogen bond between the hydrogen atom of a 2-methoxy group and the oxygen atom of a carbonyl group is observed in conformer (II) (Table 1, Fig. 3). The crystal structure is further stabilized by C—H···π interactions (Table 1). In the crystal structure, conformer (I) and (II) are alternately piled up along a axis as shown in Fig. 4.

Experimental

To a 50 ml flask, benzoyl chloride (3.2 mmol, 350 mg), aluminium chloride (3.4 mmo1, 450 mg) and methylene chloride (2.5 ml) were added and stirred at 273 K. To the reaction mixture thus obtained, was then added 3-benzoyl-2,7-dimethoxynaphthalene (1.0 mmol, 294 mg). After the reaction mixture was stirred at 273 K for 72 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake (quant.). The crude product was purified by recrystallization from ethanol (34% yield). Colourless platelet single crystals suitable for X-ray diffraction analysis were obtained by repeated crystallization from a hexane/chloroform (1:1 v/v) solution. 1H NMR δ (400 MHz, CDCl3, p.p.m.); 3.60(3H, s), 3.82(3H, s), 6.88(1H, s), 7.23(1H, d, J = 8.4 Hz), 7.41–7.48(4H, m), 7.54–7.62(2H, m), 7.82–7.87(4H, m), 7.89(1H, d, J = 1.6 Hz), 7.92(1H, d, J = 9.2 Hz). 13C NMR δ (75 MHz, CDCl3, p.p.m.): 55.45, 56.31, 102.36, 110.99, 121.64, 123.35, 128.24, 128.63, 128.94, 129.51, 129.87, 130.26, 132.00, 133.04, 133.54, 134.06, 137.75, 137.94, 156.08, 156.39, 195.77, 197.72. IR (KBr); 1668(C═O), 1624, 1578, 1497(Ar, naphthalene) cm-1. HRMS (m/z); [M + H]+ Calcd for C26H21O4, 397.1440; found, 397.1444. M.p. = 429.4–431.8 K

Refinement

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C). Rigid bond restrains were applied to the Uij values of naphthalene ring (C31—C32) and benzene ring (C40—C41) [2 restrains with the DELU command in SHELXL97].

Figures

Fig. 1.

Fig. 1.

The molecular structure of conformers (I) and (II). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Intermolecular C—H···O interactions in conformer (I) [symmetry code: (i) -x+3/2, y-1/2, z; (ii) -x+1, -y+2, -z].

Fig. 3.

Fig. 3.

Intermolecular C—H···O interactions in conformer (II) [symmetry code: (iii) -x+1, -y+1, -z+1].

Fig. 4.

Fig. 4.

The alignment of the molecules in the crystal structure, viewed along the a axis [conformer (I) is blue, conformer (II) is red].

Crystal data

C26H20O4 Z = 4
Mr = 396.42 F(000) = 832
Triclinic, P1 Dx = 1.301 Mg m3
Hall symbol: -P 1 Melting point = 429.4–431.8 K
a = 8.42828 (15) Å Cu Kα radiation, λ = 1.54187 Å
b = 12.5953 (2) Å Cell parameters from 27981 reflections
c = 20.0578 (4) Å θ = 3.6–68.2°
α = 96.222 (1)° µ = 0.71 mm1
β = 99.688 (1)° T = 193 K
γ = 102.727 (1)° Platelet, colourless
V = 2023.76 (6) Å3 0.60 × 0.40 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 7263 independent reflections
Radiation source: rotating anode 5957 reflections with I > 2σ(I)
graphite Rint = 0.031
Detector resolution: 10.000 pixels mm-1 θmax = 68.2°, θmin = 3.6°
ω scans h = −10→10
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −15→15
Tmin = 0.677, Tmax = 0.933 l = −23→24
32431 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.2292P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
7263 reflections Δρmax = 0.27 e Å3
546 parameters Δρmin = −0.21 e Å3
2 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0067 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.75620 (12) 1.12665 (8) 0.24000 (5) 0.0463 (3)
O2 0.14926 (12) 0.65855 (8) 0.03150 (5) 0.0455 (3)
O3 0.55140 (12) 0.85168 (9) 0.25446 (5) 0.0494 (3)
O4 0.03981 (14) 0.81814 (11) −0.11186 (6) 0.0629 (3)
O5 0.39029 (14) 0.33247 (9) 0.27240 (6) 0.0541 (3)
O6 0.39614 (13) 0.86845 (9) 0.44885 (5) 0.0511 (3)
O7 0.38552 (13) 0.58829 (10) 0.22876 (6) 0.0564 (3)
O8 0.36093 (17) 0.79742 (14) 0.60807 (6) 0.0856 (5)
C1 0.63721 (16) 1.08595 (11) 0.18260 (7) 0.0382 (3)
C2 0.58200 (17) 1.15268 (11) 0.13624 (8) 0.0423 (3)
H2 0.6302 1.2297 0.1434 0.051*
C3 0.45899 (17) 1.10584 (11) 0.08112 (7) 0.0410 (3)
H3 0.4233 1.1509 0.0496 0.049*
C4 0.38305 (16) 0.99224 (11) 0.06952 (7) 0.0364 (3)
C5 0.25120 (16) 0.94529 (11) 0.01373 (7) 0.0383 (3)
H5 0.2160 0.9910 −0.0175 0.046*
C6 0.17237 (16) 0.83613 (11) 0.00312 (7) 0.0377 (3)
C7 0.23026 (16) 0.76713 (11) 0.04875 (7) 0.0367 (3)
C8 0.35891 (15) 0.80916 (11) 0.10324 (7) 0.0357 (3)
H8 0.3957 0.7617 0.1328 0.043*
C9 0.43812 (15) 0.92381 (11) 0.11589 (7) 0.0340 (3)
C10 0.57067 (15) 0.97328 (11) 0.17229 (7) 0.0350 (3)
C11 0.63953 (16) 0.90486 (11) 0.22145 (7) 0.0354 (3)
C12 0.81623 (15) 0.89971 (10) 0.22638 (7) 0.0342 (3)
C13 0.91210 (17) 0.94624 (12) 0.18213 (7) 0.0419 (3)
H13 0.8666 0.9849 0.1486 0.050*
C14 1.07400 (18) 0.93639 (14) 0.18677 (8) 0.0505 (4)
H14 1.1390 0.9682 0.1563 0.061*
C15 1.14103 (18) 0.88071 (14) 0.23533 (8) 0.0519 (4)
H15 1.2518 0.8736 0.2382 0.062*
C16 1.04694 (18) 0.83527 (14) 0.27983 (9) 0.0526 (4)
H16 1.0936 0.7976 0.3137 0.063*
C17 0.88488 (17) 0.84427 (12) 0.27543 (8) 0.0437 (3)
H17 0.8205 0.8124 0.3061 0.052*
C18 0.02760 (17) 0.79442 (12) −0.05542 (7) 0.0414 (3)
C19 −0.13454 (16) 0.73366 (10) −0.04292 (7) 0.0376 (3)
C20 −0.17214 (18) 0.73856 (12) 0.02197 (8) 0.0448 (3)
H20 −0.0896 0.7760 0.0606 0.054*
C21 −0.3297 (2) 0.68907 (14) 0.03039 (10) 0.0581 (4)
H21 −0.3558 0.6935 0.0747 0.070*
C22 −0.4493 (2) 0.63315 (14) −0.02576 (11) 0.0633 (5)
H22 −0.5573 0.5988 −0.0199 0.076*
C23 −0.4121 (2) 0.62724 (12) −0.08983 (11) 0.0590 (5)
H23 −0.4945 0.5884 −0.1282 0.071*
C24 −0.25615 (18) 0.67716 (11) −0.09900 (8) 0.0464 (4)
H24 −0.2316 0.6730 −0.1436 0.056*
C25 0.8244 (2) 1.24308 (12) 0.25537 (9) 0.0547 (4)
H25A 0.9051 1.2604 0.2987 0.066*
H25B 0.7351 1.2804 0.2592 0.066*
H25C 0.8798 1.2682 0.2187 0.066*
C26 0.1872 (2) 0.58516 (12) 0.07768 (9) 0.0529 (4)
H26A 0.3027 0.5808 0.0801 0.064*
H26B 0.1132 0.5118 0.0614 0.064*
H26C 0.1718 0.6124 0.1232 0.064*
C27 0.36484 (18) 0.39304 (13) 0.32852 (8) 0.0460 (3)
C28 0.3038 (2) 0.34626 (14) 0.38244 (9) 0.0543 (4)
H28 0.2800 0.2688 0.3816 0.065*
C29 0.2792 (2) 0.41289 (14) 0.43577 (9) 0.0550 (4)
H29 0.2397 0.3808 0.4724 0.066*
C30 0.31049 (17) 0.52816 (13) 0.43836 (8) 0.0456 (3)
C31 0.28001 (18) 0.59751 (14) 0.49256 (8) 0.0497 (4)
H31 0.2393 0.5657 0.5291 0.060*
C32 0.30714 (17) 0.70823 (13) 0.49412 (7) 0.0456 (3)
C33 0.37117 (17) 0.75666 (13) 0.44010 (7) 0.0434 (3)
C34 0.40361 (16) 0.69303 (12) 0.38659 (7) 0.0411 (3)
H34 0.4465 0.7267 0.3511 0.049*
C35 0.37334 (16) 0.57641 (12) 0.38400 (7) 0.0401 (3)
C36 0.40236 (16) 0.50614 (12) 0.32941 (7) 0.0412 (3)
C37 0.47086 (17) 0.55206 (11) 0.27136 (7) 0.0400 (3)
C38 0.64577 (17) 0.55189 (11) 0.26701 (7) 0.0406 (3)
C39 0.75209 (19) 0.52482 (14) 0.31930 (9) 0.0535 (4)
H39 0.7149 0.5068 0.3598 0.064*
C40 0.9143 (2) 0.52407 (15) 0.31253 (11) 0.0673 (5)
H40 0.9881 0.5068 0.3487 0.081*
C41 0.9670 (2) 0.54832 (16) 0.25342 (12) 0.0731 (6)
H41 1.0764 0.5462 0.2484 0.088*
C42 0.8617 (2) 0.57558 (17) 0.20157 (11) 0.0698 (5)
H42 0.8984 0.5921 0.1608 0.084*
C43 0.70313 (19) 0.57898 (13) 0.20861 (8) 0.0517 (4)
H43 0.6322 0.6001 0.1731 0.062*
C44 0.26992 (19) 0.77897 (14) 0.55201 (8) 0.0515 (4)
C45 0.11741 (17) 0.82003 (12) 0.54022 (7) 0.0426 (3)
C46 0.00223 (18) 0.78735 (12) 0.47869 (8) 0.0456 (3)
H46 0.0234 0.7406 0.4425 0.055*
C47 −0.1424 (2) 0.82298 (14) 0.47039 (9) 0.0545 (4)
H47 −0.2213 0.8000 0.4286 0.065*
C48 −0.1730 (2) 0.89198 (14) 0.52258 (9) 0.0570 (4)
H48 −0.2727 0.9164 0.5166 0.068*
C49 −0.0592 (2) 0.92543 (13) 0.58321 (9) 0.0542 (4)
H49 −0.0804 0.9732 0.6189 0.065*
C50 0.08573 (19) 0.88984 (12) 0.59252 (8) 0.0479 (4)
H50 0.1637 0.9129 0.6345 0.057*
C51 0.3316 (2) 0.21502 (13) 0.26385 (9) 0.0578 (4)
H51A 0.3462 0.1827 0.2193 0.069*
H51B 0.2136 0.1959 0.2661 0.069*
H51C 0.3947 0.1862 0.3003 0.069*
C52 0.46383 (19) 0.92637 (13) 0.39871 (8) 0.0499 (4)
H52A 0.4778 1.0056 0.4119 0.060*
H52B 0.3883 0.9019 0.3542 0.060*
H52C 0.5718 0.9114 0.3956 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0494 (6) 0.0427 (5) 0.0421 (6) 0.0103 (4) 0.0006 (5) 0.0016 (4)
O2 0.0443 (5) 0.0388 (5) 0.0503 (6) 0.0099 (4) −0.0024 (5) 0.0124 (4)
O3 0.0365 (5) 0.0686 (7) 0.0494 (6) 0.0138 (5) 0.0130 (5) 0.0271 (5)
O4 0.0529 (7) 0.0952 (9) 0.0393 (6) 0.0091 (6) 0.0066 (5) 0.0267 (6)
O5 0.0627 (7) 0.0495 (6) 0.0495 (7) 0.0096 (5) 0.0141 (5) 0.0088 (5)
O6 0.0549 (6) 0.0536 (6) 0.0465 (6) 0.0110 (5) 0.0171 (5) 0.0081 (5)
O7 0.0478 (6) 0.0831 (8) 0.0468 (6) 0.0245 (6) 0.0108 (5) 0.0267 (6)
O8 0.0697 (8) 0.1516 (14) 0.0404 (7) 0.0559 (9) −0.0025 (6) −0.0036 (8)
C1 0.0345 (7) 0.0443 (7) 0.0382 (8) 0.0135 (6) 0.0092 (6) 0.0056 (6)
C2 0.0421 (8) 0.0378 (7) 0.0488 (9) 0.0120 (6) 0.0101 (6) 0.0082 (6)
C3 0.0403 (7) 0.0419 (7) 0.0466 (8) 0.0165 (6) 0.0105 (6) 0.0159 (6)
C4 0.0330 (7) 0.0430 (7) 0.0385 (7) 0.0145 (5) 0.0116 (6) 0.0122 (6)
C5 0.0360 (7) 0.0466 (7) 0.0379 (8) 0.0156 (6) 0.0092 (6) 0.0167 (6)
C6 0.0325 (7) 0.0474 (7) 0.0360 (7) 0.0126 (6) 0.0074 (6) 0.0120 (6)
C7 0.0324 (7) 0.0404 (7) 0.0398 (8) 0.0112 (5) 0.0082 (6) 0.0105 (6)
C8 0.0326 (7) 0.0414 (7) 0.0386 (7) 0.0153 (5) 0.0086 (6) 0.0136 (6)
C9 0.0293 (6) 0.0419 (7) 0.0362 (7) 0.0143 (5) 0.0114 (5) 0.0095 (6)
C10 0.0309 (6) 0.0425 (7) 0.0358 (7) 0.0143 (5) 0.0096 (5) 0.0086 (6)
C11 0.0329 (7) 0.0412 (7) 0.0324 (7) 0.0090 (5) 0.0071 (5) 0.0062 (6)
C12 0.0312 (7) 0.0370 (6) 0.0328 (7) 0.0086 (5) 0.0028 (5) 0.0029 (5)
C13 0.0374 (7) 0.0555 (8) 0.0363 (8) 0.0154 (6) 0.0089 (6) 0.0105 (6)
C14 0.0375 (8) 0.0733 (10) 0.0430 (9) 0.0149 (7) 0.0130 (6) 0.0079 (7)
C15 0.0335 (7) 0.0730 (11) 0.0485 (9) 0.0193 (7) 0.0032 (7) 0.0011 (8)
C16 0.0420 (8) 0.0635 (10) 0.0531 (10) 0.0208 (7) −0.0020 (7) 0.0143 (8)
C17 0.0378 (7) 0.0485 (8) 0.0452 (8) 0.0103 (6) 0.0051 (6) 0.0138 (6)
C18 0.0410 (8) 0.0491 (8) 0.0367 (8) 0.0145 (6) 0.0062 (6) 0.0122 (6)
C19 0.0382 (7) 0.0366 (7) 0.0393 (8) 0.0131 (5) 0.0028 (6) 0.0108 (6)
C20 0.0411 (8) 0.0520 (8) 0.0445 (8) 0.0149 (6) 0.0061 (6) 0.0169 (7)
C21 0.0502 (9) 0.0697 (11) 0.0676 (11) 0.0217 (8) 0.0212 (8) 0.0374 (9)
C22 0.0401 (9) 0.0490 (9) 0.1035 (16) 0.0077 (7) 0.0110 (9) 0.0343 (10)
C23 0.0454 (9) 0.0394 (8) 0.0824 (13) 0.0080 (7) −0.0092 (9) 0.0054 (8)
C24 0.0477 (8) 0.0403 (7) 0.0487 (9) 0.0159 (6) −0.0034 (7) 0.0046 (6)
C25 0.0589 (10) 0.0460 (8) 0.0514 (10) 0.0046 (7) 0.0043 (8) 0.0009 (7)
C26 0.0506 (9) 0.0443 (8) 0.0618 (10) 0.0093 (7) 0.0004 (8) 0.0204 (7)
C27 0.0418 (8) 0.0532 (8) 0.0427 (8) 0.0097 (6) 0.0074 (6) 0.0120 (7)
C28 0.0579 (10) 0.0518 (9) 0.0534 (10) 0.0073 (7) 0.0128 (8) 0.0182 (8)
C29 0.0557 (9) 0.0646 (10) 0.0486 (10) 0.0096 (8) 0.0173 (8) 0.0255 (8)
C30 0.0396 (8) 0.0593 (9) 0.0396 (8) 0.0099 (6) 0.0090 (6) 0.0168 (7)
C31 0.0450 (8) 0.0716 (10) 0.0359 (8) 0.0125 (7) 0.0127 (6) 0.0192 (7)
C32 0.0381 (7) 0.0643 (9) 0.0355 (8) 0.0134 (7) 0.0068 (6) 0.0112 (7)
C33 0.0337 (7) 0.0566 (9) 0.0385 (8) 0.0082 (6) 0.0051 (6) 0.0106 (7)
C34 0.0327 (7) 0.0549 (8) 0.0359 (8) 0.0073 (6) 0.0082 (6) 0.0124 (6)
C35 0.0298 (7) 0.0551 (8) 0.0350 (7) 0.0077 (6) 0.0048 (5) 0.0128 (6)
C36 0.0337 (7) 0.0517 (8) 0.0377 (8) 0.0085 (6) 0.0053 (6) 0.0115 (6)
C37 0.0364 (7) 0.0461 (7) 0.0357 (8) 0.0082 (6) 0.0043 (6) 0.0066 (6)
C38 0.0364 (7) 0.0409 (7) 0.0412 (8) 0.0047 (6) 0.0066 (6) 0.0036 (6)
C39 0.0413 (8) 0.0607 (9) 0.0565 (10) 0.0108 (7) 0.0040 (7) 0.0125 (8)
C40 0.0405 (9) 0.0676 (11) 0.0880 (14) 0.0139 (8) −0.0037 (9) 0.0113 (10)
C41 0.0414 (9) 0.0769 (12) 0.1002 (16) 0.0101 (8) 0.0242 (10) 0.0030 (11)
C42 0.0481 (10) 0.0860 (13) 0.0727 (13) 0.0028 (9) 0.0272 (9) 0.0055 (10)
C43 0.0436 (8) 0.0582 (9) 0.0490 (9) 0.0013 (7) 0.0127 (7) 0.0065 (7)
C44 0.0449 (8) 0.0732 (11) 0.0368 (8) 0.0136 (7) 0.0083 (7) 0.0110 (7)
C45 0.0408 (7) 0.0479 (8) 0.0387 (8) 0.0051 (6) 0.0105 (6) 0.0134 (6)
C46 0.0453 (8) 0.0500 (8) 0.0409 (8) 0.0084 (6) 0.0085 (6) 0.0110 (6)
C47 0.0481 (9) 0.0646 (10) 0.0484 (9) 0.0128 (7) 0.0010 (7) 0.0140 (8)
C48 0.0516 (9) 0.0609 (10) 0.0642 (11) 0.0210 (8) 0.0129 (8) 0.0171 (8)
C49 0.0586 (10) 0.0486 (9) 0.0582 (10) 0.0137 (7) 0.0181 (8) 0.0089 (7)
C50 0.0474 (8) 0.0506 (8) 0.0424 (8) 0.0039 (7) 0.0095 (7) 0.0085 (7)
C51 0.0624 (10) 0.0501 (9) 0.0607 (11) 0.0146 (8) 0.0095 (8) 0.0107 (8)
C52 0.0500 (9) 0.0558 (9) 0.0451 (9) 0.0117 (7) 0.0106 (7) 0.0135 (7)

Geometric parameters (Å, °)

O1—C1 1.3606 (16) C25—H25A 0.9800
O1—C25 1.4306 (17) C25—H25B 0.9800
O2—C7 1.3647 (16) C25—H25C 0.9800
O2—C26 1.4251 (17) C26—H26A 0.9800
O3—C11 1.2172 (16) C26—H26B 0.9800
O4—C18 1.2168 (17) C26—H26C 0.9800
O5—C27 1.3646 (18) C27—C36 1.387 (2)
O5—C51 1.4340 (18) C27—C28 1.405 (2)
O6—C33 1.3641 (18) C28—C29 1.360 (2)
O6—C52 1.4276 (18) C28—H28 0.9500
O7—C37 1.2157 (17) C29—C30 1.411 (2)
O8—C44 1.2170 (18) C29—H29 0.9500
C1—C10 1.3848 (19) C30—C31 1.414 (2)
C1—C2 1.408 (2) C30—C35 1.426 (2)
C2—C3 1.360 (2) C31—C32 1.359 (2)
C2—H2 0.9500 C31—H31 0.9500
C3—C4 1.4090 (19) C32—C33 1.426 (2)
C3—H3 0.9500 C32—C44 1.504 (2)
C4—C5 1.4090 (19) C33—C34 1.370 (2)
C4—C9 1.4242 (18) C34—C35 1.428 (2)
C5—C6 1.3652 (19) C34—H34 0.9500
C5—H5 0.9500 C35—C36 1.420 (2)
C6—C7 1.4282 (19) C36—C37 1.500 (2)
C6—C18 1.4984 (18) C37—C38 1.4918 (19)
C7—C8 1.3687 (18) C38—C39 1.384 (2)
C8—C9 1.4261 (18) C38—C43 1.388 (2)
C8—H8 0.9500 C39—C40 1.399 (2)
C9—C10 1.4252 (18) C39—H39 0.9500
C10—C11 1.5045 (19) C40—C41 1.376 (3)
C11—C12 1.4921 (18) C40—H40 0.9500
C12—C17 1.3875 (19) C41—C42 1.374 (3)
C12—C13 1.3892 (19) C41—H41 0.9500
C13—C14 1.386 (2) C42—C43 1.377 (2)
C13—H13 0.9500 C42—H42 0.9500
C14—C15 1.377 (2) C43—H43 0.9500
C14—H14 0.9500 C44—C45 1.481 (2)
C15—C16 1.379 (2) C45—C50 1.394 (2)
C15—H15 0.9500 C45—C46 1.395 (2)
C16—C17 1.384 (2) C46—C47 1.380 (2)
C16—H16 0.9500 C46—H46 0.9500
C17—H17 0.9500 C47—C48 1.382 (2)
C18—C19 1.4872 (19) C47—H47 0.9500
C19—C20 1.389 (2) C48—C49 1.377 (2)
C19—C24 1.3927 (19) C48—H48 0.9500
C20—C21 1.384 (2) C49—C50 1.382 (2)
C20—H20 0.9500 C49—H49 0.9500
C21—C22 1.384 (3) C50—H50 0.9500
C21—H21 0.9500 C51—H51A 0.9800
C22—C23 1.371 (3) C51—H51B 0.9800
C22—H22 0.9500 C51—H51C 0.9800
C23—C24 1.378 (2) C52—H52A 0.9800
C23—H23 0.9500 C52—H52B 0.9800
C24—H24 0.9500 C52—H52C 0.9800
C1—O1—C25 118.57 (11) H26A—C26—H26C 109.5
C7—O2—C26 117.91 (11) H26B—C26—H26C 109.5
C27—O5—C51 118.04 (12) O5—C27—C36 115.63 (13)
C33—O6—C52 118.14 (11) O5—C27—C28 123.42 (14)
O1—C1—C10 115.76 (12) C36—C27—C28 120.96 (14)
O1—C1—C2 123.07 (12) C29—C28—C27 119.40 (15)
C10—C1—C2 121.16 (13) C29—C28—H28 120.3
C3—C2—C1 119.35 (13) C27—C28—H28 120.3
C3—C2—H2 120.3 C28—C29—C30 122.05 (15)
C1—C2—H2 120.3 C28—C29—H29 119.0
C2—C3—C4 121.78 (13) C30—C29—H29 119.0
C2—C3—H3 119.1 C29—C30—C31 122.31 (14)
C4—C3—H3 119.1 C29—C30—C35 118.90 (14)
C5—C4—C3 121.30 (12) C31—C30—C35 118.78 (14)
C5—C4—C9 119.27 (12) C32—C31—C30 122.09 (14)
C3—C4—C9 119.41 (12) C32—C31—H31 119.0
C6—C5—C4 122.06 (12) C30—C31—H31 119.0
C6—C5—H5 119.0 C31—C32—C33 119.19 (14)
C4—C5—H5 119.0 C31—C32—C44 120.49 (14)
C5—C6—C7 118.58 (12) C33—C32—C44 120.32 (14)
C5—C6—C18 118.45 (12) O6—C33—C34 125.97 (13)
C7—C6—C18 122.97 (12) O6—C33—C32 113.10 (13)
O2—C7—C8 124.78 (12) C34—C33—C32 120.93 (14)
O2—C7—C6 113.96 (11) C33—C34—C35 120.31 (13)
C8—C7—C6 121.23 (12) C33—C34—H34 119.8
C7—C8—C9 120.42 (12) C35—C34—H34 119.8
C7—C8—H8 119.8 C36—C35—C30 118.47 (13)
C9—C8—H8 119.8 C36—C35—C34 122.84 (13)
C4—C9—C10 118.28 (12) C30—C35—C34 118.69 (13)
C4—C9—C8 118.39 (12) C27—C36—C35 120.16 (13)
C10—C9—C8 123.33 (12) C27—C36—C37 118.84 (13)
C1—C10—C9 119.93 (12) C35—C36—C37 120.99 (13)
C1—C10—C11 119.13 (12) O7—C37—C38 120.84 (13)
C9—C10—C11 120.94 (12) O7—C37—C36 120.69 (13)
O3—C11—C12 120.80 (12) C38—C37—C36 118.47 (12)
O3—C11—C10 120.73 (12) C39—C38—C43 119.07 (14)
C12—C11—C10 118.42 (11) C39—C38—C37 121.92 (14)
C17—C12—C13 119.27 (12) C43—C38—C37 119.01 (13)
C17—C12—C11 118.88 (12) C38—C39—C40 119.94 (17)
C13—C12—C11 121.83 (12) C38—C39—H39 120.0
C14—C13—C12 120.13 (14) C40—C39—H39 120.0
C14—C13—H13 119.9 C41—C40—C39 119.94 (18)
C12—C13—H13 119.9 C41—C40—H40 120.0
C15—C14—C13 120.28 (15) C39—C40—H40 120.0
C15—C14—H14 119.9 C42—C41—C40 120.14 (16)
C13—C14—H14 119.9 C42—C41—H41 119.9
C14—C15—C16 119.83 (14) C40—C41—H41 119.9
C14—C15—H15 120.1 C41—C42—C43 120.15 (18)
C16—C15—H15 120.1 C41—C42—H42 119.9
C15—C16—C17 120.33 (14) C43—C42—H42 119.9
C15—C16—H16 119.8 C42—C43—C38 120.70 (17)
C17—C16—H16 119.8 C42—C43—H43 119.6
C16—C17—C12 120.16 (14) C38—C43—H43 119.6
C16—C17—H17 119.9 O8—C44—C45 121.31 (15)
C12—C17—H17 119.9 O8—C44—C32 119.79 (15)
O4—C18—C19 120.28 (13) C45—C44—C32 118.83 (13)
O4—C18—C6 119.60 (13) C50—C45—C46 119.36 (14)
C19—C18—C6 119.86 (12) C50—C45—C44 119.28 (14)
C20—C19—C24 119.30 (14) C46—C45—C44 121.32 (14)
C20—C19—C18 122.06 (12) C47—C46—C45 119.98 (15)
C24—C19—C18 118.46 (13) C47—C46—H46 120.0
C21—C20—C19 120.10 (15) C45—C46—H46 120.0
C21—C20—H20 120.0 C46—C47—C48 120.27 (15)
C19—C20—H20 120.0 C46—C47—H47 119.9
C22—C21—C20 119.99 (17) C48—C47—H47 119.9
C22—C21—H21 120.0 C49—C48—C47 120.08 (15)
C20—C21—H21 120.0 C49—C48—H48 120.0
C23—C22—C21 120.04 (16) C47—C48—H48 120.0
C23—C22—H22 120.0 C48—C49—C50 120.36 (15)
C21—C22—H22 120.0 C48—C49—H49 119.8
C22—C23—C24 120.54 (16) C50—C49—H49 119.8
C22—C23—H23 119.7 C49—C50—C45 119.94 (15)
C24—C23—H23 119.7 C49—C50—H50 120.0
C23—C24—C19 120.02 (16) C45—C50—H50 120.0
C23—C24—H24 120.0 O5—C51—H51A 109.5
C19—C24—H24 120.0 O5—C51—H51B 109.5
O1—C25—H25A 109.5 H51A—C51—H51B 109.5
O1—C25—H25B 109.5 O5—C51—H51C 109.5
H25A—C25—H25B 109.5 H51A—C51—H51C 109.5
O1—C25—H25C 109.5 H51B—C51—H51C 109.5
H25A—C25—H25C 109.5 O6—C52—H52A 109.5
H25B—C25—H25C 109.5 O6—C52—H52B 109.5
O2—C26—H26A 109.5 H52A—C52—H52B 109.5
O2—C26—H26B 109.5 O6—C52—H52C 109.5
H26A—C26—H26B 109.5 H52A—C52—H52C 109.5
O2—C26—H26C 109.5 H52B—C52—H52C 109.5
C25—O1—C1—C10 −177.07 (12) C51—O5—C27—C36 −171.18 (13)
C25—O1—C1—C2 2.29 (19) C51—O5—C27—C28 8.4 (2)
O1—C1—C2—C3 −178.06 (12) O5—C27—C28—C29 −178.70 (14)
C10—C1—C2—C3 1.3 (2) C36—C27—C28—C29 0.9 (2)
C1—C2—C3—C4 1.0 (2) C27—C28—C29—C30 1.1 (2)
C2—C3—C4—C5 177.43 (13) C28—C29—C30—C31 177.89 (16)
C2—C3—C4—C9 −1.2 (2) C28—C29—C30—C35 −1.4 (2)
C3—C4—C5—C6 −177.64 (13) C29—C30—C31—C32 −178.62 (14)
C9—C4—C5—C6 0.99 (19) C35—C30—C31—C32 0.7 (2)
C4—C5—C6—C7 −2.4 (2) C30—C31—C32—C33 −1.1 (2)
C4—C5—C6—C18 176.84 (12) C30—C31—C32—C44 178.77 (14)
C26—O2—C7—C8 7.8 (2) C52—O6—C33—C34 −0.7 (2)
C26—O2—C7—C6 −173.92 (13) C52—O6—C33—C32 178.53 (12)
C5—C6—C7—O2 −176.53 (12) C31—C32—C33—O6 −178.54 (12)
C18—C6—C7—O2 4.24 (18) C44—C32—C33—O6 1.55 (19)
C5—C6—C7—C8 1.8 (2) C31—C32—C33—C34 0.8 (2)
C18—C6—C7—C8 −177.42 (12) C44—C32—C33—C34 −179.15 (13)
O2—C7—C8—C9 178.41 (12) O6—C33—C34—C35 179.31 (12)
C6—C7—C8—C9 0.26 (19) C32—C33—C34—C35 0.1 (2)
C5—C4—C9—C10 −179.44 (11) C29—C30—C35—C36 −0.2 (2)
C3—C4—C9—C10 −0.78 (18) C31—C30—C35—C36 −179.48 (13)
C5—C4—C9—C8 1.10 (18) C29—C30—C35—C34 179.53 (13)
C3—C4—C9—C8 179.75 (12) C31—C30—C35—C34 0.2 (2)
C7—C8—C9—C4 −1.69 (18) C33—C34—C35—C36 179.10 (13)
C7—C8—C9—C10 178.87 (12) C33—C34—C35—C30 −0.6 (2)
O1—C1—C10—C9 176.13 (11) O5—C27—C36—C35 177.17 (12)
C2—C1—C10—C9 −3.24 (19) C28—C27—C36—C35 −2.4 (2)
O1—C1—C10—C11 −3.54 (17) O5—C27—C36—C37 −1.77 (19)
C2—C1—C10—C11 177.08 (12) C28—C27—C36—C37 178.60 (14)
C4—C9—C10—C1 2.95 (18) C30—C35—C36—C27 2.1 (2)
C8—C9—C10—C1 −177.61 (12) C34—C35—C36—C27 −177.65 (13)
C4—C9—C10—C11 −177.38 (11) C30—C35—C36—C37 −179.02 (12)
C8—C9—C10—C11 2.06 (19) C34—C35—C36—C37 1.3 (2)
C1—C10—C11—O3 119.31 (15) C27—C36—C37—O7 106.69 (17)
C9—C10—C11—O3 −60.36 (18) C35—C36—C37—O7 −72.25 (19)
C1—C10—C11—C12 −63.44 (16) C27—C36—C37—C38 −73.11 (17)
C9—C10—C11—C12 116.89 (13) C35—C36—C37—C38 107.95 (15)
O3—C11—C12—C17 −7.9 (2) O7—C37—C38—C39 171.32 (14)
C10—C11—C12—C17 174.81 (12) C36—C37—C38—C39 −8.9 (2)
O3—C11—C12—C13 170.31 (13) O7—C37—C38—C43 −9.1 (2)
C10—C11—C12—C13 −6.93 (19) C36—C37—C38—C43 170.69 (13)
C17—C12—C13—C14 0.5 (2) C43—C38—C39—C40 −0.6 (2)
C11—C12—C13—C14 −177.72 (13) C37—C38—C39—C40 178.99 (14)
C12—C13—C14—C15 −0.2 (2) C38—C39—C40—C41 −1.2 (3)
C13—C14—C15—C16 −0.5 (2) C39—C40—C41—C42 1.4 (3)
C14—C15—C16—C17 0.7 (2) C40—C41—C42—C43 0.1 (3)
C15—C16—C17—C12 −0.4 (2) C41—C42—C43—C38 −1.9 (3)
C13—C12—C17—C16 −0.3 (2) C39—C38—C43—C42 2.1 (2)
C11—C12—C17—C16 178.04 (13) C37—C38—C43—C42 −177.46 (15)
C5—C6—C18—O4 48.67 (19) C31—C32—C44—O8 73.7 (2)
C7—C6—C18—O4 −132.11 (15) C33—C32—C44—O8 −106.41 (19)
C5—C6—C18—C19 −125.45 (14) C31—C32—C44—C45 −103.19 (17)
C7—C6—C18—C19 53.78 (18) C33—C32—C44—C45 76.72 (19)
O4—C18—C19—C20 −156.43 (15) O8—C44—C45—C50 6.2 (2)
C6—C18—C19—C20 17.6 (2) C32—C44—C45—C50 −177.02 (14)
O4—C18—C19—C24 18.6 (2) O8—C44—C45—C46 −171.66 (17)
C6—C18—C19—C24 −167.32 (12) C32—C44—C45—C46 5.2 (2)
C24—C19—C20—C21 −1.0 (2) C50—C45—C46—C47 −0.8 (2)
C18—C19—C20—C21 174.04 (13) C44—C45—C46—C47 177.00 (14)
C19—C20—C21—C22 1.0 (2) C45—C46—C47—C48 0.7 (2)
C20—C21—C22—C23 −0.3 (2) C46—C47—C48—C49 −0.1 (3)
C21—C22—C23—C24 −0.3 (2) C47—C48—C49—C50 −0.4 (2)
C22—C23—C24—C19 0.4 (2) C48—C49—C50—C45 0.2 (2)
C20—C19—C24—C23 0.3 (2) C46—C45—C50—C49 0.4 (2)
C18—C19—C24—C23 −174.90 (13) C44—C45—C50—C49 −177.50 (14)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C19–C24 and C4–C9 rings, respectively.
D—H···A D—H H···A D···A D—H···A
C15—H15···O3i 0.95 2.57 3.5191 (19) 176
C25—H25C···O4ii 0.98 2.56 3.348 (2) 138
C51—H51C···O8iii 0.98 2.47 3.371 (2) 152
C3—H3···Cg1iv 0.95 2.59 3.416 (11) 145
C14—H14···Cg2v 0.95 2.86 3.578 (9) 133

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+2, −z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+2, −z; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2585).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Kataoka, K., Nishijima, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2972. [DOI] [PMC free article] [PubMed]
  5. Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659. [DOI] [PMC free article] [PubMed]
  6. Kato, Y., Takeuchi, R., Muto, T., Okamoto, A. & Yonezawa, N. (2011). Acta Cryst. E67, o668. [DOI] [PMC free article] [PubMed]
  7. Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [DOI] [PMC free article] [PubMed]
  8. Nishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904–o2905. [DOI] [PMC free article] [PubMed]
  9. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
  10. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  11. Rigaku (2010). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Watanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681101508X/rz2585sup1.cif

e-67-o1250-sup1.cif (33.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101508X/rz2585Isup2.hkl

e-67-o1250-Isup2.hkl (348.2KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681101508X/rz2585Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES