Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1215. doi: 10.1107/S1600536811014619

Ethyl 1-[2-(morpholin-4-yl)eth­yl]-2-[4-(trifluoro­meth­yl)phen­yl]-1H-benzimid­azole-5-carboxyl­ate

Yeong Keng Yoon a, Mohamed Ashraf Ali a, Tan Soo Choon a, Madhukar Hemamalini b, Hoong-Kun Fun b,*,
PMCID: PMC3089142  PMID: 21754513

Abstract

In the title compound, C23H24F3N3O3, the morpholine ring adopts a chair conformation. The benzimidazole ring is approximately planar, with a maximum deviation of 0.028 (1) Å for one of the unsubstituted C atoms. The benzimidazole ring makes dihedral angles of 35.66 (4) and 75.45 (5)° with the attached phenyl and morpholine rings, respectively. In the crystal structure, adjacent mol­ecules are linked via C—H⋯F and C—H⋯O hydrogen bonds to form a two-dimensional network.

Related literature

For background to benzimidazoles, see: Boruah & Skibo (1994); Haugwitz (1982); Hisano (1982); Hubschwerlen (1992); Shi (1996). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o1215-scheme1.jpg

Experimental

Crystal data

  • C23H24F3N3O3

  • M r = 447.45

  • Triclinic, Inline graphic

  • a = 10.1463 (2) Å

  • b = 10.5595 (2) Å

  • c = 11.5775 (2) Å

  • α = 96.868 (1)°

  • β = 109.638 (1)°

  • γ = 110.833 (1)°

  • V = 1050.83 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.51 × 0.33 × 0.19 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.945, T max = 0.979

  • 22546 measured reflections

  • 6122 independent reflections

  • 5266 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.106

  • S = 1.03

  • 6122 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014619/hb5849sup1.cif

e-67-o1215-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014619/hb5849Isup2.hkl

e-67-o1215-Isup2.hkl (299.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F1i 0.95 2.51 3.4617 (15) 175
C10—H10A⋯O3ii 0.95 2.38 3.1889 (14) 143
C20—H20A⋯O2iii 0.99 2.52 3.4878 (14) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

YKY, MAA and TSC thank the Universiti Sains Malysia, Penang, for providing research facilities. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

Comment

A wide variety of benzimidazole derivatives have been described for their chemotherapeutic importance (Boruah & Skibo, 1994). The synthesis of novel benzimidazole derivatives remains an important focus in medicinal research. Recent observations suggest that substituted benzimidazoles and heterocyclic, which are the structural isosters of nucleotides owing to their fused heterocyclic nuclei in their structures that allow them to interact easily with the biopolymers, possess potential activity with lower toxicities in the chemotherapeutic approach in man (Haugwitz, 1982; Hisano, 1982). Moreover, these fused heterocylces were distinctively studied for their antitumor, antiviral and antimicrobial activities as new nonnucleoside topoisomerase I poisons, human immunodeficiency virus-1 reverse transcriptase inhibitors and or potent DNA gyrase inhibitors (Hubschwerlen, 1992; Shi, 1996). In addition, benzimidazole derivatives have played a crucial role in the theoretical development of heterocyclic chemistry and are also used extensively in organic synthesis.

The molecular structure of the title compound, (I), is shown in Fig. 1. The benzimidazole (N1–N2/C1–C7) ring is approximately planar with maximum deviation of 0.028 (1) Å for atom C4. The morpholine (N3/O3/C20–C23) ring adopts a chair conformation [Q = 0.5778 (12) Å, θ = 178.81 (12)°, φ = 128 (5)°; Cremer & Pople, 1975]. The central benzimidazole (N1–N2/C1–C7) ring makes dihedral angles of 35.66 (4)° and 75.45 (5)° with the attached phenyl (C8–C13) and the morpholine (N3/O3/C20–C23) rings, respectively.

In the crystal (Fig. 2), adjacent molecules are connected via intermolecular C2—H2A···F1, C10—H10A···O3 and C20—H20A···O2 (Table 1) hydrogen bonds to form a two-dimensional network.

Experimental

Ethlyl-3-amino-4-(morpholinoethylamino) benzoate (0.01 mol) and sodium metabisulfite adduct of trifluromethyl benzaldehyde (0.01 mol) were dissolved in DMF. The reaction mixture was refluxed at 130°C for 4 h. After completion, the reaction mixture was diluted in ethyl acetate (20 ml) and washed with water (20 ml). The organic layer was collected, dried over Na2SO4 and the evaporated in vacuo to yield the product. The product was recrystallised from ethyl acetate to yield colourless blocks of (I).

Refinement

All H atoms were positioned geometrically [C—H = 0.95–0.99 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). A rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the title compound (I).

Crystal data

C23H24F3N3O3 Z = 2
Mr = 447.45 F(000) = 468
Triclinic, P1 Dx = 1.414 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.1463 (2) Å Cell parameters from 9996 reflections
b = 10.5595 (2) Å θ = 2.4–30.1°
c = 11.5775 (2) Å µ = 0.11 mm1
α = 96.868 (1)° T = 100 K
β = 109.638 (1)° Block, colourless
γ = 110.833 (1)° 0.51 × 0.33 × 0.19 mm
V = 1050.83 (3) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 6122 independent reflections
Radiation source: fine-focus sealed tube 5266 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −14→14
Tmin = 0.945, Tmax = 0.979 k = −14→14
22546 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.2843P] where P = (Fo2 + 2Fc2)/3
6122 reflections (Δ/σ)max = 0.001
290 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.57861 (8) 1.42374 (7) 0.30620 (7) 0.02777 (15)
F2 0.46917 (8) 1.29209 (7) 0.11309 (6) 0.02950 (16)
F3 0.71291 (8) 1.42604 (7) 0.19595 (7) 0.02843 (15)
O1 0.69592 (9) 0.47558 (8) 0.74341 (7) 0.02040 (15)
O2 0.85918 (10) 0.40173 (9) 0.69712 (8) 0.02932 (18)
O3 1.19661 (9) 0.84859 (9) 0.01681 (7) 0.02600 (17)
N1 0.83537 (9) 0.85327 (9) 0.38581 (8) 0.01618 (16)
N2 0.65751 (9) 0.82663 (9) 0.46835 (8) 0.01700 (16)
N3 0.98967 (9) 0.86116 (8) 0.13194 (7) 0.01548 (15)
C1 0.73153 (11) 0.74099 (10) 0.50627 (9) 0.01619 (17)
C2 0.71070 (11) 0.64983 (10) 0.58354 (9) 0.01726 (18)
H2A 0.6343 0.6359 0.6167 0.021*
C3 0.80658 (11) 0.58039 (10) 0.60970 (9) 0.01745 (18)
C4 0.92137 (11) 0.60204 (10) 0.56165 (9) 0.01902 (18)
H4A 0.9867 0.5550 0.5839 0.023*
C5 0.94156 (11) 0.68952 (10) 0.48328 (9) 0.01836 (18)
H5A 1.0176 0.7028 0.4498 0.022*
C6 0.84348 (11) 0.75739 (10) 0.45626 (9) 0.01645 (17)
C7 0.72211 (11) 0.89169 (10) 0.39757 (9) 0.01597 (17)
C8 0.68579 (11) 1.00214 (10) 0.34664 (9) 0.01626 (17)
C9 0.69019 (11) 1.02693 (10) 0.23121 (9) 0.01882 (18)
H9A 0.7115 0.9671 0.1792 0.023*
C10 0.66367 (11) 1.13828 (11) 0.19277 (9) 0.01912 (19)
H10A 0.6688 1.1559 0.1155 0.023*
C11 0.62940 (11) 1.22431 (10) 0.26810 (9) 0.01741 (18)
C12 0.61869 (11) 1.19837 (10) 0.38023 (9) 0.01806 (18)
H12A 0.5924 1.2558 0.4298 0.022*
C13 0.64690 (11) 1.08740 (10) 0.41914 (9) 0.01761 (18)
H13A 0.6397 1.0692 0.4957 0.021*
C14 0.59851 (12) 1.34179 (11) 0.22216 (10) 0.02011 (19)
C15 0.79184 (12) 0.47723 (11) 0.68685 (9) 0.01946 (19)
C16 0.67213 (13) 0.37082 (11) 0.81448 (10) 0.0224 (2)
H16A 0.7715 0.3881 0.8834 0.027*
H16B 0.6290 0.2752 0.7573 0.027*
C17 0.56154 (14) 0.38291 (12) 0.86957 (11) 0.0266 (2)
H17A 0.5412 0.3120 0.9164 0.040*
H17B 0.4645 0.3676 0.8006 0.040*
H17C 0.6065 0.4771 0.9277 0.040*
C18 0.94152 (11) 0.90747 (10) 0.32523 (9) 0.01693 (17)
H18A 1.0476 0.9268 0.3839 0.020*
H18B 0.9416 0.9972 0.3083 0.020*
C19 0.89489 (11) 0.80215 (10) 0.20000 (9) 0.01663 (17)
H19A 0.9059 0.7163 0.2182 0.020*
H19B 0.7850 0.7747 0.1453 0.020*
C20 1.15464 (11) 0.90256 (10) 0.20837 (9) 0.01811 (18)
H20A 1.1691 0.8211 0.2350 0.022*
H20B 1.1916 0.9786 0.2861 0.022*
C21 1.24758 (12) 0.95334 (12) 0.13135 (10) 0.0243 (2)
H21A 1.2383 1.0386 0.1099 0.029*
H21B 1.3579 0.9794 0.1835 0.029*
C22 1.03751 (13) 0.81211 (12) −0.05885 (10) 0.0251 (2)
H22A 1.0017 0.7401 −0.1390 0.030*
H22B 1.0260 0.8964 −0.0811 0.030*
C23 0.93906 (12) 0.75531 (11) 0.01281 (9) 0.02070 (19)
H23A 0.8295 0.7302 −0.0411 0.025*
H23B 0.9475 0.6691 0.0324 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0374 (4) 0.0265 (3) 0.0319 (3) 0.0204 (3) 0.0199 (3) 0.0113 (3)
F2 0.0268 (3) 0.0292 (3) 0.0280 (3) 0.0123 (3) 0.0044 (3) 0.0108 (3)
F3 0.0285 (3) 0.0250 (3) 0.0394 (4) 0.0103 (3) 0.0210 (3) 0.0170 (3)
O1 0.0242 (4) 0.0216 (3) 0.0227 (3) 0.0115 (3) 0.0144 (3) 0.0110 (3)
O2 0.0365 (5) 0.0326 (4) 0.0379 (4) 0.0238 (4) 0.0239 (4) 0.0197 (4)
O3 0.0221 (4) 0.0328 (4) 0.0221 (4) 0.0077 (3) 0.0141 (3) 0.0018 (3)
N1 0.0163 (4) 0.0184 (4) 0.0177 (4) 0.0081 (3) 0.0103 (3) 0.0056 (3)
N2 0.0174 (4) 0.0192 (4) 0.0174 (4) 0.0086 (3) 0.0095 (3) 0.0057 (3)
N3 0.0150 (4) 0.0176 (4) 0.0145 (3) 0.0055 (3) 0.0083 (3) 0.0043 (3)
C1 0.0162 (4) 0.0176 (4) 0.0162 (4) 0.0076 (3) 0.0082 (3) 0.0034 (3)
C2 0.0175 (4) 0.0195 (4) 0.0176 (4) 0.0082 (3) 0.0098 (3) 0.0056 (3)
C3 0.0190 (4) 0.0182 (4) 0.0164 (4) 0.0080 (3) 0.0085 (3) 0.0049 (3)
C4 0.0198 (4) 0.0210 (4) 0.0199 (4) 0.0109 (4) 0.0099 (4) 0.0053 (3)
C5 0.0173 (4) 0.0210 (4) 0.0202 (4) 0.0089 (4) 0.0109 (3) 0.0050 (3)
C6 0.0167 (4) 0.0170 (4) 0.0161 (4) 0.0064 (3) 0.0085 (3) 0.0034 (3)
C7 0.0159 (4) 0.0180 (4) 0.0158 (4) 0.0074 (3) 0.0085 (3) 0.0039 (3)
C8 0.0151 (4) 0.0176 (4) 0.0170 (4) 0.0064 (3) 0.0081 (3) 0.0046 (3)
C9 0.0213 (5) 0.0213 (4) 0.0181 (4) 0.0102 (4) 0.0116 (4) 0.0056 (3)
C10 0.0198 (4) 0.0231 (5) 0.0197 (4) 0.0098 (4) 0.0125 (4) 0.0081 (4)
C11 0.0157 (4) 0.0178 (4) 0.0197 (4) 0.0067 (3) 0.0085 (3) 0.0061 (3)
C12 0.0181 (4) 0.0206 (4) 0.0170 (4) 0.0093 (4) 0.0081 (3) 0.0036 (3)
C13 0.0182 (4) 0.0213 (4) 0.0159 (4) 0.0091 (4) 0.0091 (3) 0.0053 (3)
C14 0.0195 (5) 0.0208 (4) 0.0223 (4) 0.0084 (4) 0.0106 (4) 0.0075 (4)
C15 0.0207 (5) 0.0205 (4) 0.0184 (4) 0.0088 (4) 0.0090 (4) 0.0059 (3)
C16 0.0252 (5) 0.0226 (5) 0.0237 (5) 0.0107 (4) 0.0121 (4) 0.0124 (4)
C17 0.0309 (6) 0.0267 (5) 0.0272 (5) 0.0115 (4) 0.0170 (4) 0.0111 (4)
C18 0.0164 (4) 0.0181 (4) 0.0180 (4) 0.0056 (3) 0.0110 (3) 0.0043 (3)
C19 0.0153 (4) 0.0173 (4) 0.0178 (4) 0.0049 (3) 0.0100 (3) 0.0036 (3)
C20 0.0151 (4) 0.0216 (4) 0.0170 (4) 0.0056 (3) 0.0086 (3) 0.0040 (3)
C21 0.0198 (5) 0.0266 (5) 0.0224 (5) 0.0028 (4) 0.0131 (4) 0.0022 (4)
C22 0.0242 (5) 0.0318 (5) 0.0175 (4) 0.0080 (4) 0.0115 (4) 0.0040 (4)
C23 0.0190 (4) 0.0230 (5) 0.0165 (4) 0.0050 (4) 0.0088 (3) 0.0011 (3)

Geometric parameters (Å, °)

F1—C14 1.3384 (12) C9—H9A 0.9500
F2—C14 1.3528 (12) C10—C11 1.3950 (13)
F3—C14 1.3407 (12) C10—H10A 0.9500
O1—C15 1.3399 (12) C11—C12 1.3895 (13)
O1—C16 1.4561 (12) C11—C14 1.4975 (14)
O2—C15 1.2132 (13) C12—C13 1.3915 (13)
O3—C21 1.4251 (13) C12—H12A 0.9500
O3—C22 1.4311 (13) C13—H13A 0.9500
N1—C6 1.3815 (12) C16—C17 1.4986 (15)
N1—C7 1.3883 (12) C16—H16A 0.9900
N1—C18 1.4646 (12) C16—H16B 0.9900
N2—C7 1.3224 (12) C17—H17A 0.9800
N2—C1 1.3896 (12) C17—H17B 0.9800
N3—C19 1.4610 (12) C17—H17C 0.9800
N3—C23 1.4704 (12) C18—C19 1.5303 (13)
N3—C20 1.4722 (12) C18—H18A 0.9900
C1—C2 1.4000 (13) C18—H18B 0.9900
C1—C6 1.4077 (13) C19—H19A 0.9900
C2—C3 1.3922 (13) C19—H19B 0.9900
C2—H2A 0.9500 C20—C21 1.5139 (13)
C3—C4 1.4124 (13) C20—H20A 0.9900
C3—C15 1.4878 (13) C20—H20B 0.9900
C4—C5 1.3818 (14) C21—H21A 0.9900
C4—H4A 0.9500 C21—H21B 0.9900
C5—C6 1.3977 (13) C22—C23 1.5152 (14)
C5—H5A 0.9500 C22—H22A 0.9900
C7—C8 1.4724 (13) C22—H22B 0.9900
C8—C13 1.4019 (13) C23—H23A 0.9900
C8—C9 1.4042 (13) C23—H23B 0.9900
C9—C10 1.3865 (14)
C15—O1—C16 114.83 (8) F2—C14—C11 111.39 (8)
C21—O3—C22 109.12 (8) O2—C15—O1 123.35 (9)
C6—N1—C7 106.10 (8) O2—C15—C3 123.50 (9)
C6—N1—C18 123.21 (8) O1—C15—C3 113.15 (8)
C7—N1—C18 130.41 (8) O1—C16—C17 107.55 (8)
C7—N2—C1 105.02 (8) O1—C16—H16A 110.2
C19—N3—C23 109.01 (7) C17—C16—H16A 110.2
C19—N3—C20 111.75 (7) O1—C16—H16B 110.2
C23—N3—C20 108.99 (7) C17—C16—H16B 110.2
N2—C1—C2 129.84 (9) H16A—C16—H16B 108.5
N2—C1—C6 109.97 (8) C16—C17—H17A 109.5
C2—C1—C6 120.18 (9) C16—C17—H17B 109.5
C3—C2—C1 117.21 (9) H17A—C17—H17B 109.5
C3—C2—H2A 121.4 C16—C17—H17C 109.5
C1—C2—H2A 121.4 H17A—C17—H17C 109.5
C2—C3—C4 121.52 (9) H17B—C17—H17C 109.5
C2—C3—C15 122.16 (9) N1—C18—C19 111.25 (8)
C4—C3—C15 116.30 (9) N1—C18—H18A 109.4
C5—C4—C3 122.02 (9) C19—C18—H18A 109.4
C5—C4—H4A 119.0 N1—C18—H18B 109.4
C3—C4—H4A 119.0 C19—C18—H18B 109.4
C4—C5—C6 116.02 (9) H18A—C18—H18B 108.0
C4—C5—H5A 122.0 N3—C19—C18 111.69 (7)
C6—C5—H5A 122.0 N3—C19—H19A 109.3
N1—C6—C5 131.06 (9) C18—C19—H19A 109.3
N1—C6—C1 105.89 (8) N3—C19—H19B 109.3
C5—C6—C1 122.99 (9) C18—C19—H19B 109.3
N2—C7—N1 113.01 (8) H19A—C19—H19B 107.9
N2—C7—C8 122.72 (8) N3—C20—C21 110.18 (8)
N1—C7—C8 124.07 (8) N3—C20—H20A 109.6
C13—C8—C9 118.97 (9) C21—C20—H20A 109.6
C13—C8—C7 117.53 (8) N3—C20—H20B 109.6
C9—C8—C7 123.49 (8) C21—C20—H20B 109.6
C10—C9—C8 120.37 (9) H20A—C20—H20B 108.1
C10—C9—H9A 119.8 O3—C21—C20 111.87 (8)
C8—C9—H9A 119.8 O3—C21—H21A 109.2
C9—C10—C11 119.71 (9) C20—C21—H21A 109.2
C9—C10—H10A 120.1 O3—C21—H21B 109.2
C11—C10—H10A 120.1 C20—C21—H21B 109.2
C12—C11—C10 120.83 (9) H21A—C21—H21B 107.9
C12—C11—C14 121.00 (9) O3—C22—C23 110.72 (8)
C10—C11—C14 118.13 (9) O3—C22—H22A 109.5
C11—C12—C13 119.28 (9) C23—C22—H22A 109.5
C11—C12—H12A 120.4 O3—C22—H22B 109.5
C13—C12—H12A 120.4 C23—C22—H22B 109.5
C12—C13—C8 120.76 (9) H22A—C22—H22B 108.1
C12—C13—H13A 119.6 N3—C23—C22 110.37 (8)
C8—C13—H13A 119.6 N3—C23—H23A 109.6
F1—C14—F3 107.03 (8) C22—C23—H23A 109.6
F1—C14—F2 106.57 (8) N3—C23—H23B 109.6
F3—C14—F2 106.04 (8) C22—C23—H23B 109.6
F1—C14—C11 112.96 (8) H23A—C23—H23B 108.1
F3—C14—C11 112.41 (8)
C7—N2—C1—C2 179.25 (10) C9—C10—C11—C14 −178.85 (9)
C7—N2—C1—C6 0.28 (10) C10—C11—C12—C13 1.81 (15)
N2—C1—C2—C3 −177.58 (9) C14—C11—C12—C13 179.42 (9)
C6—C1—C2—C3 1.29 (14) C11—C12—C13—C8 0.00 (15)
C1—C2—C3—C4 0.72 (14) C9—C8—C13—C12 −2.40 (14)
C1—C2—C3—C15 −177.84 (9) C7—C8—C13—C12 176.78 (9)
C2—C3—C4—C5 −2.01 (15) C12—C11—C14—F1 7.10 (13)
C15—C3—C4—C5 176.62 (9) C10—C11—C14—F1 −175.22 (9)
C3—C4—C5—C6 1.14 (14) C12—C11—C14—F3 128.35 (10)
C7—N1—C6—C5 −176.49 (10) C10—C11—C14—F3 −53.98 (12)
C18—N1—C6—C5 −1.98 (16) C12—C11—C14—F2 −112.80 (10)
C7—N1—C6—C1 0.82 (10) C10—C11—C14—F2 64.87 (12)
C18—N1—C6—C1 175.33 (8) C16—O1—C15—O2 −2.71 (14)
C4—C5—C6—N1 177.86 (9) C16—O1—C15—C3 176.96 (8)
C4—C5—C6—C1 0.94 (14) C2—C3—C15—O2 169.88 (10)
N2—C1—C6—N1 −0.71 (10) C4—C3—C15—O2 −8.74 (15)
C2—C1—C6—N1 −179.79 (8) C2—C3—C15—O1 −9.78 (13)
N2—C1—C6—C5 176.88 (9) C4—C3—C15—O1 171.59 (8)
C2—C1—C6—C5 −2.20 (14) C15—O1—C16—C17 −179.41 (9)
C1—N2—C7—N1 0.27 (11) C6—N1—C18—C19 79.90 (11)
C1—N2—C7—C8 −174.75 (8) C7—N1—C18—C19 −107.04 (11)
C6—N1—C7—N2 −0.71 (11) C23—N3—C19—C18 −179.88 (8)
C18—N1—C7—N2 −174.67 (9) C20—N3—C19—C18 59.59 (10)
C6—N1—C7—C8 174.22 (8) N1—C18—C19—N3 173.79 (8)
C18—N1—C7—C8 0.26 (15) C19—N3—C20—C21 175.96 (8)
N2—C7—C8—C13 31.52 (13) C23—N3—C20—C21 55.41 (10)
N1—C7—C8—C13 −142.93 (9) C22—O3—C21—C20 59.43 (12)
N2—C7—C8—C9 −149.33 (10) N3—C20—C21—O3 −58.04 (12)
N1—C7—C8—C9 36.21 (14) C21—O3—C22—C23 −59.79 (11)
C13—C8—C9—C10 3.05 (15) C19—N3—C23—C22 −178.76 (8)
C7—C8—C9—C10 −176.09 (9) C20—N3—C23—C22 −56.55 (11)
C8—C9—C10—C11 −1.29 (15) O3—C22—C23—N3 59.56 (12)
C9—C10—C11—C12 −1.17 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···F1i 0.95 2.51 3.4617 (15) 175
C10—H10A···O3ii 0.95 2.38 3.1889 (14) 143
C20—H20A···O2iii 0.99 2.52 3.4878 (14) 166

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+2, −z; (iii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5849).

References

  1. Boruah, C. R. & Skibo, E. B. (1994). J. Med. Chem. 37, 1625–1631. [DOI] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Haugwitz, R. D. (1982). J. Med. Chem. 25, 969–974. [DOI] [PubMed]
  6. Hisano, T. (1982). Chem. Pharm. Bull. 30, 2996–3004.
  7. Hubschwerlen, C. (1992). J. Med. Chem. 35, 1385–1392. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shi, D. F. J. (1996). J. Med. Chem. 39, 3375–3384. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014619/hb5849sup1.cif

e-67-o1215-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014619/hb5849Isup2.hkl

e-67-o1215-Isup2.hkl (299.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES