Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):o1032–o1033. doi: 10.1107/S1600536811011457

Redetermined structure, inter­molecular inter­actions and absolute configuration of royleanone

Hoong-Kun Fun a,*,, Suchada Chantrapromma b,§, Abdul Wahab Salae a,, Ibrahim Abdul Razak a, Chatchanok Karalai b
PMCID: PMC3089143  PMID: 21754362

Abstract

The structure of the title diterpenoid, C20H28O3, {systematic name: (4bS,8aS)-3-hy­droxy-2-isopropyl-4b,8,8-trimethyl-4b,5,6,7,8,8a,9,10-octa­hydro­phenanthrene-1,4-dione} is confirmed [Eugster et al. (1993). Private communication (refcode HACGUN). CCDC, Union Road, Cambridge] and its packing is now described. Its absolute structure was established by refinement against data collected with Cu radiation: the two stereogenic centres both have S configurations. One cyclo­hexane ring adopts a chair conformation whereas the other cyclo­hexane ring is in a half-chair conformation and the benzoquinone ring is slightly twisted. An intra­molecular O—H⋯O hydrogen bond generates an S(5) ring motif. In the crystal, mol­ecules are linked into chains along [010] by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions. The packing also features C⋯O [3.131 (3) Å] short contacts.

Related literature

For the previous determination of the title structure, see: Eugster et al. (1993). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to Verbenaceae plants and the bioactivity of diterpenoids, see: Bunluepuech & Tewtrakul (2009); Edwards et al. (1962); Kabouche et al. (2007); Suresh et al. (2011); Slamenová et al. (2004); Tezuka et al. (1998). For a related structure, see: Razak et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).graphic file with name e-67-o1032-scheme1.jpg

Experimental

Crystal data

  • C20H28O3

  • M r = 316.42

  • Monoclinic, Inline graphic

  • a = 10.2247 (2) Å

  • b = 7.6353 (1) Å

  • c = 10.7292 (2) Å

  • β = 97.992 (1)°

  • V = 829.48 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 100 K

  • 0.52 × 0.31 × 0.15 mm

Data collection

  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.726, T max = 0.909

  • 5901 measured reflections

  • 2390 independent reflections

  • 2375 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.098

  • S = 1.06

  • 2390 reflections

  • 217 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983) 699 Friedel pairs

  • Flack parameter: 0.11 (19)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011457/hb5812sup1.cif

e-67-o1032-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011457/hb5812Isup2.hkl

e-67-o1032-Isup2.hkl (117.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1 0.88 (4) 2.05 (3) 2.5977 (18) 119 (3)
O2—H1O2⋯O3i 0.88 (4) 2.35 (4) 3.1079 (19) 145 (3)
C1—H1A⋯O1 0.97 2.38 2.993 (2) 120
C7—H7A⋯O1ii 0.97 2.51 3.131 (3) 122
C17—H17B⋯O2 0.96 2.49 3.071 (2) 119
C20—H20A⋯O1 0.96 2.47 3.125 (2) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

AWS thanks Universiti Sains Malaysia for the PhD student visiting fellowship. SC thanks the Prince of Songkla University for generous support. The authors thank Universiti Sains Malaysia for the Research University Grant No.1001/PFIZIK/811151.

supplementary crystallographic information

Comment

The extracts of Verbenaceae plants have been found to possess anti-HIV-1 integrase activity (Bunluepuech & Tewtrakul, 2009) and cytotoxicity (Suresh et al., 2011). During the course of our study of chemical constituents and bioactive compounds from Premna obtusifolia (Verbenaceae), the title diterpenoid (I), which is known as royleanone (Edwards et al., 1962; Tezuka et al., 1998) was isolated from the roots of this plant. Compound (I) was reported to show significant biological properties such as antioxidant (Kabouche et al., 2007) and cytotoxic activities (Slame˘nová et al., 2004). The absolute configuration of (I) was determined by making use of the anomalous scattering of Cu KαX-radiation with the Flack parameter being refined to 0.11 (19). We herein report the crystal structure of (I).

The molecule of (I) has three fused six membered rings (Fig. 1). The two cyclohexane rings are trans fused. One cyclohexane ring (C1–C5/C10) is in a standard chair conformation whereas the other (C5–C10) is in half chair conformation, with the C5 and C6 atoms having the deviation of 0.396 (2) and -0.323 (2) Å, respectively from the plane through C7–C10 atoms and the puckering parameters Q = 0.563 (2) Å, θ = 55.20 (19)° and φ = 16.1 (2)° (Cremer & Pople, 1975). The benzoquinone ring (C8–C9/C11–C14/O1/O3) is slightly twisted with the maximum deviations of -0.091 (1) and 0.055 (2) Å for atoms C9 and C13, respectively, and with the puckering parameters Q = 0.1474 (19) Å, θ = 72.9 (7)° and φ = 86.8 (8)° (Cremer & Pople, 1975). The O1, O2 and O3 atoms lie close to the mean plane of the C8–C9/C11–C14 ring with the r.m.s. of 0.0870 (1) Å. The bond angles around C8, C9, C12 and C13 are indicative of sp2 hybridization for these atoms. The orientation of the propanyl group is described by the torsion angles C12–C13–C15–C16 = -69.8 (2) and C12–C13–C15–C17 = 54.2 (2) °. Intramolecular O2—H1O2···O1 hydrogen bond (Table 1) generate S(5) ring motif (Fig. 1) (Bernstein et al., 1995). The bond distances and angles in (I) are within normal ranges (Allen et al., 1987) and comparable with a related structure (Razak et al., 2010). The absolute configuration at atoms C1 and C5 or positions 4b and 8a of royleanone are both S, which agrees with the previous stereochemistry of royleanone (Kabouche et al., 2007; Slame˘nová et al., 2004; Tezuka et al., 1998). The S,S configurations are also consistent with those in a related structure (Razak et al., 2010).

In the crystal of (I) (Fig. 2), the molecules are linked into chains along the [0 1 0] through O2—H1O2···O3 hydrogen bond and C7—H7A···O1 weak interaction (Fig. 2 and Table 1). The crystal is stabilized by these interactions together with C···O[3.131 (3) Å] short contacts.

Experimental

The air-dried roots of premna obtusifolia (4.5 kg) were extracted with hexane (2 × 20 l) at room temperature. The combined extracts were concentrated under reduced pressure to give a dark yellow extract (40.0 g) which was subjected to quick column chromatography (QCC) over silica gel using solvents of increasing polarity from n-hexane to EtOAc to afford 7 fractions (F1-F7). Fraction F2 was further purified by quick column chromatography using hexane, yielding the title compound (6.1 mg). Yellow blocks were recrystallized from CH2Cl2 by the slow evaporation of the solvent at room temperature after several days, M.p 451-453 K.

Refinement

The hydroxy H atom was located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with (C—H) = 0.98 for CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.74 Å from C10 and the deepest hole is located at 0.72 Å from C2. 699 Friedel pairs were used to determine the absolute configuration.

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing 40% probability displacement ellipsoids. The hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

The crystal packing of (I) viewed along the a axis, showing [010] chains. Hydrogen bonds are shown as dashed lines.

Crystal data

C20H28O3 F(000) = 344
Mr = 316.42 Dx = 1.267 Mg m3
Monoclinic, P21 Melting point = 451–453 K
Hall symbol: P 2yb Cu Kα radiation, λ = 1.54178 Å
a = 10.2247 (2) Å Cell parameters from 2390 reflections
b = 7.6353 (1) Å θ = 5.6–72.1°
c = 10.7292 (2) Å µ = 0.66 mm1
β = 97.992 (1)° T = 100 K
V = 829.48 (2) Å3 Block, yellow
Z = 2 0.52 × 0.31 × 0.15 mm

Data collection

Bruker APEX Duo CCD diffractometer 2390 independent reflections
Radiation source: sealed tube 2375 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 72.1°, θmin = 5.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→12
Tmin = 0.726, Tmax = 0.909 k = −9→6
5901 measured reflections l = −13→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.2006P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2390 reflections Δρmax = 0.35 e Å3
217 parameters Δρmin = −0.20 e Å3
1 restraint Absolute structure: Flack (1983) 699 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.11 (19)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.64538 (13) −0.0889 (2) 0.48735 (12) 0.0254 (3)
O2 0.54777 (12) −0.05136 (18) 0.25211 (12) 0.0219 (3)
H1O2 0.567 (3) −0.139 (5) 0.304 (3) 0.055 (9)*
O3 0.59784 (11) 0.55637 (18) 0.31995 (11) 0.0202 (3)
C1 0.91254 (18) 0.0149 (3) 0.61639 (17) 0.0244 (4)
H1A 0.8633 −0.0932 0.6003 0.029*
H1B 0.9513 0.0438 0.5414 0.029*
C2 1.02342 (19) −0.0129 (3) 0.72689 (19) 0.0293 (4)
H2A 0.9853 −0.0529 0.7997 0.035*
H2B 1.0828 −0.1033 0.7048 0.035*
C3 1.10107 (17) 0.1532 (3) 0.76032 (17) 0.0258 (5)
H3A 1.1496 0.1824 0.6916 0.031*
H3B 1.1652 0.1310 0.8341 0.031*
C4 1.01699 (15) 0.3115 (3) 0.78684 (15) 0.0194 (4)
C5 0.90137 (15) 0.3285 (3) 0.67650 (14) 0.0181 (4)
H5A 0.9442 0.3520 0.6020 0.022*
C6 0.80962 (18) 0.4855 (3) 0.68588 (18) 0.0264 (4)
H6A 0.7458 0.4577 0.7419 0.032*
H6B 0.8607 0.5859 0.7199 0.032*
C7 0.73866 (16) 0.5283 (3) 0.55608 (16) 0.0194 (4)
H7A 0.6623 0.6004 0.5646 0.023*
H7B 0.7972 0.5959 0.5108 0.023*
C8 0.69435 (15) 0.3689 (2) 0.48092 (15) 0.0155 (4)
C9 0.72317 (14) 0.2047 (2) 0.52206 (14) 0.0153 (4)
C10 0.81709 (15) 0.1624 (2) 0.64288 (14) 0.0153 (3)
C11 0.65384 (15) 0.0604 (3) 0.44783 (15) 0.0174 (4)
C12 0.58810 (16) 0.0954 (3) 0.31623 (15) 0.0175 (4)
C13 0.57151 (15) 0.2572 (3) 0.26820 (15) 0.0165 (4)
C14 0.61740 (15) 0.4041 (3) 0.35330 (15) 0.0156 (3)
C15 0.51364 (15) 0.3012 (3) 0.13372 (14) 0.0184 (4)
H15A 0.5037 0.4287 0.1280 0.022*
C16 0.61027 (18) 0.2461 (3) 0.04345 (16) 0.0260 (4)
H16A 0.6936 0.3034 0.0671 0.039*
H16B 0.5750 0.2790 −0.0409 0.039*
H16C 0.6226 0.1215 0.0477 0.039*
C17 0.37759 (17) 0.2199 (3) 0.09225 (18) 0.0262 (4)
H17A 0.3187 0.2518 0.1508 0.039*
H17B 0.3856 0.0947 0.0900 0.039*
H17C 0.3431 0.2621 0.0099 0.039*
C18 1.10451 (18) 0.4757 (3) 0.78830 (19) 0.0294 (5)
H18A 1.1833 0.4592 0.8472 0.044*
H18B 1.0570 0.5755 0.8129 0.044*
H18C 1.1279 0.4948 0.7058 0.044*
C19 0.97379 (18) 0.2988 (3) 0.91827 (15) 0.0266 (4)
H19A 1.0493 0.3138 0.9813 0.040*
H19B 0.9350 0.1860 0.9281 0.040*
H19C 0.9101 0.3886 0.9274 0.040*
C20 0.73179 (17) 0.1029 (3) 0.74287 (16) 0.0265 (4)
H20A 0.6730 0.0115 0.7087 0.040*
H20B 0.6813 0.2003 0.7666 0.040*
H20C 0.7880 0.0598 0.8155 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0347 (7) 0.0149 (7) 0.0236 (6) −0.0044 (6) −0.0064 (5) 0.0030 (5)
O2 0.0283 (6) 0.0142 (8) 0.0208 (6) −0.0021 (5) −0.0050 (5) −0.0011 (5)
O3 0.0217 (6) 0.0152 (7) 0.0221 (6) −0.0003 (5) −0.0024 (4) 0.0026 (5)
C1 0.0284 (8) 0.0194 (11) 0.0228 (8) 0.0053 (8) −0.0062 (7) −0.0049 (7)
C2 0.0307 (9) 0.0224 (11) 0.0313 (10) 0.0092 (9) −0.0082 (7) −0.0048 (9)
C3 0.0194 (8) 0.0331 (13) 0.0227 (8) 0.0065 (8) −0.0046 (6) −0.0044 (8)
C4 0.0183 (7) 0.0220 (11) 0.0169 (7) −0.0007 (8) −0.0006 (6) −0.0001 (7)
C5 0.0189 (7) 0.0198 (10) 0.0152 (7) −0.0025 (7) 0.0009 (6) 0.0001 (7)
C6 0.0310 (9) 0.0199 (10) 0.0258 (9) 0.0003 (8) −0.0055 (7) −0.0054 (8)
C7 0.0224 (7) 0.0148 (10) 0.0207 (8) −0.0005 (7) 0.0016 (6) −0.0011 (7)
C8 0.0143 (7) 0.0157 (10) 0.0163 (7) −0.0009 (6) 0.0020 (6) −0.0002 (6)
C9 0.0147 (6) 0.0167 (10) 0.0145 (7) −0.0008 (6) 0.0020 (5) −0.0005 (6)
C10 0.0172 (7) 0.0158 (9) 0.0124 (7) −0.0013 (7) 0.0005 (6) 0.0006 (6)
C11 0.0177 (7) 0.0158 (10) 0.0182 (7) 0.0007 (7) 0.0015 (6) 0.0008 (7)
C12 0.0176 (7) 0.0167 (11) 0.0178 (8) −0.0011 (7) 0.0016 (6) −0.0020 (7)
C13 0.0141 (7) 0.0179 (10) 0.0170 (8) 0.0000 (6) 0.0004 (6) −0.0003 (7)
C14 0.0132 (6) 0.0157 (9) 0.0181 (7) 0.0007 (6) 0.0029 (6) −0.0001 (7)
C15 0.0220 (7) 0.0160 (10) 0.0161 (7) 0.0003 (7) −0.0016 (6) 0.0009 (7)
C16 0.0301 (9) 0.0294 (12) 0.0181 (8) 0.0049 (8) 0.0020 (6) 0.0026 (7)
C17 0.0224 (8) 0.0256 (11) 0.0277 (8) 0.0000 (8) −0.0065 (6) −0.0001 (8)
C18 0.0268 (9) 0.0307 (12) 0.0281 (9) −0.0091 (9) −0.0056 (7) 0.0027 (9)
C19 0.0277 (8) 0.0341 (12) 0.0167 (8) −0.0016 (8) −0.0013 (6) −0.0050 (8)
C20 0.0225 (8) 0.0388 (13) 0.0181 (8) −0.0087 (8) 0.0020 (6) 0.0034 (8)

Geometric parameters (Å, °)

O1—C11 1.224 (2) C8—C14 1.506 (2)
O2—C12 1.349 (2) C9—C11 1.481 (2)
O2—H1O2 0.88 (4) C9—C10 1.536 (2)
O3—C14 1.225 (2) C10—C20 1.542 (2)
C1—C2 1.537 (2) C11—C12 1.501 (2)
C1—C10 1.542 (2) C12—C13 1.341 (3)
C1—H1A 0.9700 C13—C14 1.481 (3)
C1—H1B 0.9700 C13—C15 1.519 (2)
C2—C3 1.513 (3) C15—C17 1.532 (2)
C2—H2A 0.9700 C15—C16 1.535 (2)
C2—H2B 0.9700 C15—H15A 0.9800
C3—C4 1.533 (3) C16—H16A 0.9600
C3—H3A 0.9700 C16—H16B 0.9600
C3—H3B 0.9700 C16—H16C 0.9600
C4—C19 1.538 (2) C17—H17A 0.9600
C4—C18 1.539 (3) C17—H17B 0.9600
C4—C5 1.558 (2) C17—H17C 0.9600
C5—C6 1.534 (3) C18—H18A 0.9600
C5—C10 1.548 (3) C18—H18B 0.9600
C5—H5A 0.9800 C18—H18C 0.9600
C6—C7 1.514 (2) C19—H19A 0.9600
C6—H6A 0.9700 C19—H19B 0.9600
C6—H6B 0.9700 C19—H19C 0.9600
C7—C8 1.495 (2) C20—H20A 0.9600
C7—H7A 0.9700 C20—H20B 0.9600
C7—H7B 0.9700 C20—H20C 0.9600
C8—C9 1.348 (3)
C12—O2—H1O2 107 (2) C9—C10—C5 106.69 (14)
C2—C1—C10 112.12 (15) C20—C10—C5 115.45 (14)
C2—C1—H1A 109.2 C1—C10—C5 107.17 (13)
C10—C1—H1A 109.2 O1—C11—C9 123.94 (15)
C2—C1—H1B 109.2 O1—C11—C12 116.59 (16)
C10—C1—H1B 109.2 C9—C11—C12 119.46 (16)
H1A—C1—H1B 107.9 C13—C12—O2 123.80 (15)
C3—C2—C1 111.93 (18) C13—C12—C11 122.80 (16)
C3—C2—H2A 109.2 O2—C12—C11 113.40 (16)
C1—C2—H2A 109.2 C12—C13—C14 116.67 (14)
C3—C2—H2B 109.2 C12—C13—C15 125.48 (17)
C1—C2—H2B 109.2 C14—C13—C15 117.82 (16)
H2A—C2—H2B 107.9 O3—C14—C13 120.92 (15)
C2—C3—C4 114.57 (15) O3—C14—C8 118.62 (15)
C2—C3—H3A 108.6 C13—C14—C8 120.41 (16)
C4—C3—H3A 108.6 C13—C15—C17 113.86 (15)
C2—C3—H3B 108.6 C13—C15—C16 109.82 (14)
C4—C3—H3B 108.6 C17—C15—C16 110.11 (15)
H3A—C3—H3B 107.6 C13—C15—H15A 107.6
C3—C4—C19 111.12 (16) C17—C15—H15A 107.6
C3—C4—C18 107.69 (15) C16—C15—H15A 107.6
C19—C4—C18 106.43 (16) C15—C16—H16A 109.5
C3—C4—C5 108.09 (14) C15—C16—H16B 109.5
C19—C4—C5 114.68 (13) H16A—C16—H16B 109.5
C18—C4—C5 108.58 (15) C15—C16—H16C 109.5
C6—C5—C10 109.26 (13) H16A—C16—H16C 109.5
C6—C5—C4 114.94 (15) H16B—C16—H16C 109.5
C10—C5—C4 116.62 (16) C15—C17—H17A 109.5
C6—C5—H5A 104.9 C15—C17—H17B 109.5
C10—C5—H5A 104.9 H17A—C17—H17B 109.5
C4—C5—H5A 104.9 C15—C17—H17C 109.5
C7—C6—C5 109.12 (15) H17A—C17—H17C 109.5
C7—C6—H6A 109.9 H17B—C17—H17C 109.5
C5—C6—H6A 109.9 C4—C18—H18A 109.5
C7—C6—H6B 109.9 C4—C18—H18B 109.5
C5—C6—H6B 109.9 H18A—C18—H18B 109.5
H6A—C6—H6B 108.3 C4—C18—H18C 109.5
C8—C7—C6 113.02 (17) H18A—C18—H18C 109.5
C8—C7—H7A 109.0 H18B—C18—H18C 109.5
C6—C7—H7A 109.0 C4—C19—H19A 109.5
C8—C7—H7B 109.0 C4—C19—H19B 109.5
C6—C7—H7B 109.0 H19A—C19—H19B 109.5
H7A—C7—H7B 107.8 C4—C19—H19C 109.5
C9—C8—C7 122.99 (14) H19A—C19—H19C 109.5
C9—C8—C14 121.79 (15) H19B—C19—H19C 109.5
C7—C8—C14 115.20 (15) C10—C20—H20A 109.5
C8—C9—C11 116.69 (14) C10—C20—H20B 109.5
C8—C9—C10 123.65 (15) H20A—C20—H20B 109.5
C11—C9—C10 119.60 (16) C10—C20—H20C 109.5
C9—C10—C20 107.53 (12) H20A—C20—H20C 109.5
C9—C10—C1 109.58 (13) H20B—C20—H20C 109.5
C20—C10—C1 110.27 (16)
C10—C1—C2—C3 −56.7 (2) C4—C5—C10—C9 −172.64 (13)
C1—C2—C3—C4 54.2 (2) C6—C5—C10—C20 −64.48 (19)
C2—C3—C4—C19 76.8 (2) C4—C5—C10—C20 67.96 (19)
C2—C3—C4—C18 −167.00 (15) C6—C5—C10—C1 172.24 (13)
C2—C3—C4—C5 −49.9 (2) C4—C5—C10—C1 −55.33 (17)
C3—C4—C5—C6 −177.96 (16) C8—C9—C11—O1 −162.38 (16)
C19—C4—C5—C6 57.5 (2) C10—C9—C11—O1 14.7 (2)
C18—C4—C5—C6 −61.40 (19) C8—C9—C11—C12 17.2 (2)
C3—C4—C5—C10 52.25 (18) C10—C9—C11—C12 −165.74 (13)
C19—C4—C5—C10 −72.3 (2) O1—C11—C12—C13 169.20 (16)
C18—C4—C5—C10 168.81 (14) C9—C11—C12—C13 −10.4 (2)
C10—C5—C6—C7 −68.58 (19) O1—C11—C12—O2 −10.7 (2)
C4—C5—C6—C7 158.12 (15) C9—C11—C12—O2 169.71 (14)
C5—C6—C7—C8 40.90 (19) O2—C12—C13—C14 177.82 (14)
C6—C7—C8—C9 −4.3 (2) C11—C12—C13—C14 −2.1 (2)
C6—C7—C8—C14 177.17 (14) O2—C12—C13—C15 −4.1 (2)
C7—C8—C9—C11 169.78 (13) C11—C12—C13—C15 176.03 (14)
C14—C8—C9—C11 −11.8 (2) C12—C13—C14—O3 −174.92 (15)
C7—C8—C9—C10 −7.2 (2) C15—C13—C14—O3 6.8 (2)
C14—C8—C9—C10 171.21 (13) C12—C13—C14—C8 7.7 (2)
C8—C9—C10—C20 105.79 (19) C15—C13—C14—C8 −170.58 (13)
C11—C9—C10—C20 −71.10 (19) C9—C8—C14—O3 −177.84 (15)
C8—C9—C10—C1 −134.34 (17) C7—C8—C14—O3 0.68 (19)
C11—C9—C10—C1 48.77 (19) C9—C8—C14—C13 −0.4 (2)
C8—C9—C10—C5 −18.63 (19) C7—C8—C14—C13 178.12 (13)
C11—C9—C10—C5 164.48 (13) C12—C13—C15—C17 54.2 (2)
C2—C1—C10—C9 170.62 (16) C14—C13—C15—C17 −127.68 (17)
C2—C1—C10—C20 −71.2 (2) C12—C13—C15—C16 −69.8 (2)
C2—C1—C10—C5 55.2 (2) C14—C13—C15—C16 108.33 (18)
C6—C5—C10—C9 54.93 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H1O2···O1 0.88 (4) 2.05 (3) 2.5977 (18) 119 (3)
O2—H1O2···O3i 0.88 (4) 2.35 (4) 3.1079 (19) 145 (3)
C1—H1A···O1 0.97 2.38 2.993 (2) 120
C7—H7A···O1ii 0.97 2.51 3.131 (3) 122
C17—H17B···O2 0.96 2.49 3.071 (2) 119
C20—H20A···O1 0.96 2.47 3.125 (2) 125

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5812).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bunluepuech, K. & Tewtrakul, S. (2009). Songklanakarin J. Sci. Technol 31, 289–292
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Edwards, O. E., Feniak, G. & Los, M. (1962). Can. J. Chem 40, 1540–1546.
  8. Eugster, C. H., Ruedi, P., Tanudjaja, T., Bieri, J. H., Prewo, R. & Linden, A. (1993). Private communication (refcode HACGUN). CCDC, Union Road, Cambridge.
  9. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  10. Kabouche, A., Kabouche, Z., Öztürk, M., Kolak, U. & Topçu, G. (2007). Food Chem 102, 1281–1287.
  11. Razak, I. A., Salae, A. W., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o1566–o1567. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Slamenová, D., Masterová, I., Lábaj, J., Horváthová, E., Kubala, P., Jakubíková, J. & Wsólová, L. (2004). Basic Clin. Pharmacol. Toxicol 94, 282–290. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Suresh, G., Babu, K. S., Rao, V. R. S., Rao, M. S. A., Nayak, V. L. & Ramakrishna, S. (2011). Tetrahedron. Lett. 52, 1273–1276.
  16. Tezuka, Y., Kasimu, R., Li, J. X., Basnet, P., Tanaka, K., Namba, T. & Kadota, S. (1998). Chem. Pharm. Bull 46, 107–112.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011457/hb5812sup1.cif

e-67-o1032-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011457/hb5812Isup2.hkl

e-67-o1032-Isup2.hkl (117.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES