Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1248–o1249. doi: 10.1107/S1600536811015054

(2E)-1-(2-Hy­droxy-5-methyl­phen­yl)-3-(4-meth­oxy­phen­yl)prop-2-en-1-one

Hoong-Kun Fun a,*,, Suhana Arshad a, B K Sarojini b, V Musthafa Khaleel b, B Narayana c
PMCID: PMC3089145  PMID: 21754540

Abstract

In the title compound, C17H16O3, the dihedral angle between the aromatic rings is 4.59 (7)° and an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring. In the crystal, adjacent mol­ecules are linked by C—H⋯O hydrogen bonds, leading to the formation of [001] supra­molecular chains. Weak C—H⋯π inter­actions consolidate the packing.

Related literature

For a related structure and background references to chalcones, see: Fun et al. (2010). For related structures, see: Chantrapromma et al. (2009, 2010); Fun et al. (2009); Horkaew et al. (2010); Lu et al. (2009); Suwunwong et al. (2009); Wang et al. (2009, 2010); Jasinski et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).graphic file with name e-67-o1248-scheme1.jpg

Experimental

Crystal data

  • C17H16O3

  • M r = 268.30

  • Monoclinic, Inline graphic

  • a = 12.6990 (18) Å

  • b = 8.8022 (13) Å

  • c = 13.172 (2) Å

  • β = 105.565 (2)°

  • V = 1418.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.46 × 0.32 × 0.18 mm

Data collection

  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.962, T max = 0.984

  • 11493 measured reflections

  • 4090 independent reflections

  • 2608 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.131

  • S = 1.02

  • 4090 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811015054/hb5847sup1.cif

e-67-o1248-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015054/hb5847Isup2.hkl

e-67-o1248-Isup2.hkl (200.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015054/hb5847Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.95 (2) 1.65 (2) 2.5112 (18) 149.4 (19)
C11—H11A⋯O3i 0.93 2.60 3.4317 (17) 149
C16—H16CCg1ii 0.96 2.81 3.5800 (18) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the award of a research scholarship. VMK also thanks P. A. College of Engineering for research facilities.

supplementary crystallographic information

Comment

In continuation of our studies on the crystal structures of chalcones (Fun et al., 2010), we now report the synthesis and crystal structure of the title compound, (I). The structures of some related chalcones viz: (Z)-3-(9-anthryl)-1-(4-methoxyphenyl)prop-2-en-1-one (Chantrapromma et al., 2009), (Z)-3-(9-anthryl)- 1-(2-thienyl)prop-2-en-1-one (Fun et al., 2009), (E)-3- (anthracen-9-yl)-1-(4-bromophenyl)prop-2-en-1-one (Suwunwong et al., 2009), (Z)-3-(9-anthryl)-1-(4-bromophenyl)-2-(4-nitro-1H- imidazol-1-yl)prop-2-en-1-one (Lu et al., 2009),(Z)-3- (9-anthryl)-2-(4-nitro-1H-imidazol-1-yl)-1-p-tolylprop- 2-en-1-one (Wang et al., 2009), (E)-3-(9-anthryl)-1- (4-fluorophenyl)-2-(4-nitro-1H-imidazol-1-yl)prop-2-en-1-one (Wang et al., 2010), (E)-3-(anthracen-9-yl)-1-(furan-2-yl) prop-2-en-1-one (Horkaew et al., 2010), and an orthorhombic polymorph of (Z)-3-(9-anthryl)-1-(2-thienyl)prop-2-en-1-one (Chantrapromma et al., 2010) and 2(E)-3-(4-hydroxyphenyl)-1-(4-chlorophenyl) prop-2-en-1-one (Jasinski et al.,2011) have been reported.

The molecular structure is shown in Fig. 1. An intramolecular O1—H1O1···O2 hydrogen bond (Table 1) stabilizes the molecular structure and forms an S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the phenyl (C1–C6) ring and the methoxy-substituted phenyl (C10–C15) ring is 4.59 (7)°. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Fun et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked into infinite one-dimensional chain along the c-axis by intermolecular C11—H11A···O3 hydrogen bonds (Table 1). There are also C—H···π interactions (Table 1) which involves C16 and phenyl ring (Cg1 = C1–C6).

Experimental

2-Hydroxy-5-methylacetophenone (1.50 g, 0.01 mol) was mixed with 4-methoxybenzaldehyde (1.36 g, 0.01 mol) and dissolved in ethanol (40 ml). To this solution, 5 ml of KOH (50%) was added at 278 K. The reaction mixture stirred for 6 h and poured on to crushed ice. The pH of this mixture was adjusted to 3–4 with 2 M HCl aqueous solution. The resulting crude yellow solid was filtered, washed successively with dilute HCl solution and distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Orange blocks of (I) were grown by the slow evaporation of the solution of the compound in ethyl alcohol (m. p.: 361 K). Composition: Found (Calculated) for C17H16O3, C: 76.10 (76.16); H: 6.01 (6.05).

Refinement

H1O1 atom attached to the O atom was located from the difference map and refined freely [O–H = 0.94 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The dashed line indicates the intramolecular bond.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis.

Crystal data

C17H16O3 F(000) = 568
Mr = 268.30 Dx = 1.256 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2769 reflections
a = 12.6990 (18) Å θ = 2.8–28.6°
b = 8.8022 (13) Å µ = 0.09 mm1
c = 13.172 (2) Å T = 296 K
β = 105.565 (2)° Block, orange
V = 1418.3 (4) Å3 0.46 × 0.32 × 0.18 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD diffractometer 4090 independent reflections
Radiation source: fine-focus sealed tube 2608 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 29.9°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −17→17
Tmin = 0.962, Tmax = 0.984 k = −10→12
11493 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.1652P] where P = (Fo2 + 2Fc2)/3
4090 reflections (Δ/σ)max < 0.001
187 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.13821 (11) 0.18686 (15) 0.32930 (8) 0.0794 (4)
O2 0.26594 (9) 0.35672 (14) 0.26545 (7) 0.0758 (3)
O3 0.51456 (8) 0.87081 (13) −0.15126 (7) 0.0666 (3)
C1 0.03317 (10) 0.26022 (14) 0.04622 (10) 0.0486 (3)
H1A 0.0518 0.3125 −0.0078 0.058*
C2 −0.06268 (11) 0.17724 (16) 0.02260 (12) 0.0553 (3)
C3 −0.08898 (13) 0.10217 (19) 0.10552 (15) 0.0704 (4)
H3A −0.1538 0.0472 0.0921 0.084*
C4 −0.02277 (15) 0.10664 (19) 0.20568 (15) 0.0728 (4)
H4A −0.0427 0.0543 0.2590 0.087*
C5 0.07432 (12) 0.18853 (16) 0.22906 (11) 0.0581 (4)
C6 0.10376 (10) 0.26897 (14) 0.14840 (10) 0.0468 (3)
C7 0.20644 (11) 0.35632 (16) 0.17338 (10) 0.0502 (3)
C8 0.23943 (10) 0.44232 (15) 0.09183 (10) 0.0488 (3)
H8A 0.1929 0.4469 0.0240 0.059*
C9 0.33518 (10) 0.51410 (15) 0.11356 (10) 0.0478 (3)
H9A 0.3790 0.5037 0.1822 0.057*
C10 0.38013 (9) 0.60674 (14) 0.04375 (9) 0.0442 (3)
C11 0.48166 (10) 0.67433 (16) 0.08326 (10) 0.0501 (3)
H11A 0.5188 0.6589 0.1536 0.060*
C12 0.52938 (10) 0.76377 (16) 0.02169 (10) 0.0504 (3)
H12A 0.5973 0.8081 0.0504 0.060*
C13 0.47519 (10) 0.78657 (15) −0.08275 (9) 0.0477 (3)
C14 0.37276 (11) 0.72165 (17) −0.12373 (10) 0.0581 (4)
H14A 0.3355 0.7385 −0.1939 0.070*
C15 0.32612 (10) 0.63348 (16) −0.06231 (10) 0.0542 (3)
H15A 0.2577 0.5907 −0.0912 0.065*
C16 −0.13460 (12) 0.16543 (19) −0.08791 (14) 0.0704 (4)
H16A −0.1021 0.2204 −0.1347 0.106*
H16B −0.2051 0.2077 −0.0911 0.106*
H16C −0.1427 0.0606 −0.1086 0.106*
C17 0.61893 (12) 0.93974 (19) −0.11419 (12) 0.0645 (4)
H17A 0.6362 0.9942 −0.1708 0.097*
H17B 0.6731 0.8627 −0.0886 0.097*
H17C 0.6181 1.0090 −0.0581 0.097*
H1O1 0.2008 (17) 0.245 (2) 0.3290 (16) 0.107 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1019 (9) 0.0879 (9) 0.0533 (6) −0.0055 (7) 0.0295 (6) 0.0145 (6)
O2 0.0760 (7) 0.1013 (9) 0.0451 (5) −0.0174 (6) 0.0078 (5) 0.0079 (5)
O3 0.0642 (6) 0.0840 (8) 0.0509 (5) −0.0187 (5) 0.0142 (5) 0.0088 (5)
C1 0.0523 (7) 0.0438 (7) 0.0542 (7) 0.0022 (6) 0.0222 (6) −0.0008 (6)
C2 0.0514 (7) 0.0456 (8) 0.0729 (9) 0.0012 (6) 0.0239 (6) −0.0062 (6)
C3 0.0651 (9) 0.0595 (10) 0.0961 (13) −0.0098 (7) 0.0380 (9) −0.0011 (9)
C4 0.0863 (11) 0.0626 (10) 0.0845 (11) −0.0079 (9) 0.0488 (10) 0.0088 (8)
C5 0.0756 (9) 0.0509 (8) 0.0567 (8) 0.0042 (7) 0.0331 (7) 0.0038 (6)
C6 0.0552 (7) 0.0413 (7) 0.0496 (7) 0.0036 (6) 0.0241 (6) −0.0015 (5)
C7 0.0570 (7) 0.0503 (8) 0.0454 (6) 0.0025 (6) 0.0172 (6) −0.0010 (5)
C8 0.0537 (7) 0.0499 (7) 0.0428 (6) −0.0015 (6) 0.0130 (5) −0.0013 (5)
C9 0.0503 (6) 0.0489 (7) 0.0435 (6) 0.0024 (6) 0.0114 (5) −0.0028 (5)
C10 0.0445 (6) 0.0453 (7) 0.0427 (6) 0.0028 (5) 0.0113 (5) −0.0040 (5)
C11 0.0458 (6) 0.0617 (9) 0.0395 (6) 0.0009 (6) 0.0058 (5) 0.0004 (6)
C12 0.0400 (6) 0.0621 (9) 0.0462 (6) −0.0029 (6) 0.0065 (5) −0.0027 (6)
C13 0.0483 (6) 0.0521 (8) 0.0434 (6) −0.0004 (6) 0.0135 (5) −0.0012 (5)
C14 0.0554 (7) 0.0723 (10) 0.0401 (6) −0.0100 (7) 0.0016 (6) 0.0034 (6)
C15 0.0465 (7) 0.0632 (9) 0.0481 (7) −0.0098 (6) 0.0042 (5) −0.0018 (6)
C16 0.0544 (8) 0.0657 (10) 0.0876 (11) −0.0045 (7) 0.0131 (8) −0.0117 (8)
C17 0.0614 (8) 0.0662 (10) 0.0707 (9) −0.0104 (7) 0.0257 (7) −0.0025 (7)

Geometric parameters (Å, °)

O1—C5 1.3517 (18) C9—C10 1.4554 (17)
O1—H1O1 0.94 (2) C9—H9A 0.9300
O2—C7 1.2449 (15) C10—C11 1.3881 (17)
O3—C13 1.3624 (15) C10—C15 1.4011 (17)
O3—C17 1.4198 (17) C11—C12 1.3814 (18)
C1—C2 1.3815 (18) C11—H11A 0.9300
C1—C6 1.4048 (18) C12—C13 1.3778 (17)
C1—H1A 0.9300 C12—H12A 0.9300
C2—C3 1.392 (2) C13—C14 1.3903 (18)
C2—C16 1.500 (2) C14—C15 1.3656 (19)
C3—C4 1.361 (2) C14—H14A 0.9300
C3—H3A 0.9300 C15—H15A 0.9300
C4—C5 1.390 (2) C16—H16A 0.9600
C4—H4A 0.9300 C16—H16B 0.9600
C5—C6 1.4082 (18) C16—H16C 0.9600
C6—C7 1.4729 (18) C17—H17A 0.9600
C7—C8 1.4641 (18) C17—H17B 0.9600
C8—C9 1.3315 (17) C17—H17C 0.9600
C8—H8A 0.9300
C5—O1—H1O1 106.0 (13) C11—C10—C9 119.05 (11)
C13—O3—C17 118.65 (11) C15—C10—C9 123.64 (11)
C2—C1—C6 122.82 (12) C12—C11—C10 122.26 (11)
C2—C1—H1A 118.6 C12—C11—H11A 118.9
C6—C1—H1A 118.6 C10—C11—H11A 118.9
C1—C2—C3 117.18 (14) C13—C12—C11 119.26 (11)
C1—C2—C16 121.70 (13) C13—C12—H12A 120.4
C3—C2—C16 121.11 (14) C11—C12—H12A 120.4
C4—C3—C2 122.06 (15) O3—C13—C12 124.53 (11)
C4—C3—H3A 119.0 O3—C13—C14 115.97 (11)
C2—C3—H3A 119.0 C12—C13—C14 119.50 (12)
C3—C4—C5 120.69 (14) C15—C14—C13 120.86 (12)
C3—C4—H4A 119.7 C15—C14—H14A 119.6
C5—C4—H4A 119.7 C13—C14—H14A 119.6
O1—C5—C4 118.37 (13) C14—C15—C10 120.80 (12)
O1—C5—C6 122.08 (14) C14—C15—H15A 119.6
C4—C5—C6 119.54 (14) C10—C15—H15A 119.6
C1—C6—C5 117.70 (12) C2—C16—H16A 109.5
C1—C6—C7 122.80 (11) C2—C16—H16B 109.5
C5—C6—C7 119.49 (12) H16A—C16—H16B 109.5
O2—C7—C8 119.66 (12) C2—C16—H16C 109.5
O2—C7—C6 119.25 (12) H16A—C16—H16C 109.5
C8—C7—C6 121.09 (11) H16B—C16—H16C 109.5
C9—C8—C7 120.81 (12) O3—C17—H17A 109.5
C9—C8—H8A 119.6 O3—C17—H17B 109.5
C7—C8—H8A 119.6 H17A—C17—H17B 109.5
C8—C9—C10 128.35 (12) O3—C17—H17C 109.5
C8—C9—H9A 115.8 H17A—C17—H17C 109.5
C10—C9—H9A 115.8 H17B—C17—H17C 109.5
C11—C10—C15 117.30 (12)
C6—C1—C2—C3 1.0 (2) O2—C7—C8—C9 3.8 (2)
C6—C1—C2—C16 −177.83 (13) C6—C7—C8—C9 −176.22 (12)
C1—C2—C3—C4 −1.3 (2) C7—C8—C9—C10 −178.59 (12)
C16—C2—C3—C4 177.45 (14) C8—C9—C10—C11 178.78 (13)
C2—C3—C4—C5 0.5 (3) C8—C9—C10—C15 −0.7 (2)
C3—C4—C5—O1 −178.70 (15) C15—C10—C11—C12 −0.5 (2)
C3—C4—C5—C6 0.7 (2) C9—C10—C11—C12 −179.97 (12)
C2—C1—C6—C5 0.22 (19) C10—C11—C12—C13 −0.4 (2)
C2—C1—C6—C7 179.43 (12) C17—O3—C13—C12 0.6 (2)
O1—C5—C6—C1 178.32 (12) C17—O3—C13—C14 −179.83 (13)
C4—C5—C6—C1 −1.1 (2) C11—C12—C13—O3 −179.21 (13)
O1—C5—C6—C7 −0.9 (2) C11—C12—C13—C14 1.2 (2)
C4—C5—C6—C7 179.72 (13) O3—C13—C14—C15 179.21 (13)
C1—C6—C7—O2 −178.73 (13) C12—C13—C14—C15 −1.2 (2)
C5—C6—C7—O2 0.47 (19) C13—C14—C15—C10 0.3 (2)
C1—C6—C7—C8 1.27 (19) C11—C10—C15—C14 0.5 (2)
C5—C6—C7—C8 −179.54 (12) C9—C10—C15—C14 179.98 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O1···O2 0.95 (2) 1.65 (2) 2.5112 (18) 149.4 (19)
C11—H11A···O3i 0.93 2.60 3.4317 (17) 149.
C16—H16C···Cg1ii 0.96 2.81 3.5800 (18) 138

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5847).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chantrapromma, S., Horkaew, J., Suwunwong, T. & Fun, H.-K. (2009). Acta Cryst. E65, o2673–o2674. [DOI] [PMC free article] [PubMed]
  5. Chantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2010). Acta Cryst. E66, o312–o313. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864–o865. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168–o2169. [DOI] [PMC free article] [PubMed]
  8. Horkaew, J., Suwunwong, T., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o800–o801. [DOI] [PMC free article] [PubMed]
  9. Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Sarojini, B. K. & Musthafa Khaleel, V. (2011). Acta Cryst. E67, o756. [DOI] [PMC free article] [PubMed]
  10. Lu, Y.-H., Wang, G.-Z., Zhou, C.-H. & Zhang, Y.-Y. (2009). Acta Cryst. E65, o1396. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Suwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420–o421. [DOI] [PMC free article] [PubMed]
  14. Wang, G.-Z., Fang, B. & Zhou, C.-H. (2009). Acta Cryst. E65, o2619. [DOI] [PMC free article] [PubMed]
  15. Wang, X.-L., Wang, G.-Z., Geng, R.-X. & Zhou, C.-H. (2010). Acta Cryst. E66, o320. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811015054/hb5847sup1.cif

e-67-o1248-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015054/hb5847Isup2.hkl

e-67-o1248-Isup2.hkl (200.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015054/hb5847Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES