Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):o1028–o1029. doi: 10.1107/S1600536811011500

Redetermined structure of diphenyl­phospho­nimidotriphenyl­phospho­rane: location of the hydrogen atoms and analysis of the inter­molecular inter­actions

Richard Betz a,*, Thomas Gerber a, Eric Hosten a, Henk Schalekamp a
PMCID: PMC3089147  PMID: 21754359

Abstract

The title compound, C30H25NOP2, is a bulky phosphazene derivative. Its previous crystal structure [Cameron et al. (1979). Acta Cryst. B35, 1373–1377] is confirmed and its H atoms have been located in the present study. The formal P=N double bond is about 0.05 Å shorter than the P—N single bond and the large P=N—P bond angle reflects the steric strain in the mol­ecule. An intra­molecular C—H⋯O inter­action occurs. In the crystal, short C—H⋯O contacts connect the mol­ecules into chains propagating in [011], which are cross-linked via C—H⋯π inter­actions, generating a three-dimensional network. Aromatic π–π stacking also occurs [shortest centroid–centroid separation = 3.6012 (11) Å].

Related literature

For the previous structure determination, see: Cameron et al. (1979). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-67-o1028-scheme1.jpg

Experimental

Crystal data

  • C30H25NOP2

  • M r = 477.45

  • Orthorhombic, Inline graphic

  • a = 17.6607 (12) Å

  • b = 15.1593 (10) Å

  • c = 8.9192 (6) Å

  • V = 2387.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 200 K

  • 0.88 × 0.42 × 0.31 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 12511 measured reflections

  • 4498 independent reflections

  • 4348 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.076

  • S = 1.11

  • 4498 reflections

  • 307 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), 1332 Friedel pairs

  • Flack parameter: −0.03 (6)

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011500/hb5826sup1.cif

e-67-o1028-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011500/hb5826Isup2.hkl

e-67-o1028-Isup2.hkl (220.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

P1—N1 1.6014 (13)
P2—N1 1.5532 (13)
P2—N1—P1 146.35 (12)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯O1 0.95 2.34 3.257 (2) 163
C43—H43⋯O1i 0.95 2.34 3.257 (2) 162
C45—H45⋯Cg1ii 0.95 2.92 3.846 (2) 165
C55—H55⋯Cg2iii 0.95 2.73 3.644 (2) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Mr Gerhard Schneeberger for helpful discussions.

supplementary crystallographic information

Comment

For many main group elements as well as transition and rare earth metals, preferred coordination numbers in coordination compounds are apparent. While coordination numbers of 4, 6 and 8 have been found to be dominant in most cases and, as a consequence, vast structural information has been collected for such compounds in solution and in the solid state, information about other coordination numbers is comparatively limited. Especially for smaller coordination numbers the literature is scant or hitherto completely unknown for many elements. One reason for this certainly is that sometimes challenging synthesis procedures have to be followed and, thus, a general but simple synthetic protocol is desireable. Since such compounds may act as versatile and potent catalysts in many industrial processes and might even show interesting pharmacological properties, we were interested in developing an easy-access-route for their synthesis. Applying bulky ligands might open up a pathway in this aspect. In order to be able to compare metrical parameters in envisioned reaction products, we determined the crystal structure of the title compound. The latter one has already been reported earlier (Cameron et al. (1979)), however, no hydrogen atoms were included in the refinement thus ruling out the possibility to assess the role of C–H···X contacts.

The length of the N–P bonds deviate by 0.05 Å with the – formal – P–N-double bond found at around 1.55 Å. The P–N–P angle was measured at more than 146 °. The marked widening of this angle in comparison to the value expected for a sp2-hybridized nitrogen atom can be explained by the repulsive interaction of the phenyl-moieties on both P atoms. The phenyl groups on each phosphorus atom are approximately orientated perpendicular to each other. The least-squares planes defined by their carbon atoms intersect at an angle of 82.19 (6) ° in case of the P(O)Ph2-moiety and at angles of 79.82 (5) °, 80.91 (6) ° and 83.28 (6) °, respectively, in case of the PPh3-moiety. Due to the formation of an intramolecular C–H···O contact (see below), the least-squares plane defined by the P(O)–N–P motif encloses an angle of only 29.40 (9) ° with one of the aromatic carbocycles on the PPh3-moiety (Fig. 1). For the same reason, both phenyl groups of the P(O)Ph2-moiety adopt a slightly ecliptic conformation with respect to the P(O) motif, the respective dihedral angles were found at about 19 ° and 26 °.

In the crystal structure, intermolecular C–H···O contacts are present whose range falls by more than 0.3 Å below the sum of van-der-Waals radii of the atoms participating. These can be observed between one of the H atoms in meta-position of a phenyl group on the PPh3-moiety and the O atom of the P(O)Ph2-moiety and connect the molecules to infinte chains along [0 1 1] (Fig. 2). Furthermore, intramolecular C–H···O contacts invariably involving hydrogen atoms in ortho-position on one of the phenyl groups of the PPh3-moiety as well as both phenyl groups of the P(O)Ph2-moiety are present. However, the latter two ones are not very pronounced. Additionally, a set of C–H···π contacts are evident involving H atoms and aromatic systems both on the PPh3-moiety as well as the P(O)Ph2-moiety. Their details are listed in Table 1 (with Cg(1) = C41···C46, Cg(2) = C31···C36 and Cg(3) = C11···C16). In total, the C–H···O contacts as well as the C–H···π contacts connect the molecules to a three dimensional network. In terms of graph-set analysis (Etter et al. (1990); Bernstein et al. (1995)), the intermolecular C–H···O contacts can be assigned a C11(8) descriptor on the unitary level while the intramolecular C–H···O contact involving the phenyl group of the PPh3-moiety necessitates a S11(7) descriptor. For the other two intramolecular C–H···O contacts, a S11(5) each is feasible. An analysis of Cg···Cg interactions shows the closest distance between two centers of gravity to occur between a phenyl group on the PPh3-moiety and a phenyl group on the P(O)Ph2-moiety. The distance was measured at 3.6012 (11) Å.

The packing of the title compound in the crystal structure is shown in Figure 3.

Experimental

The compound was obtained commercially (Aldrich). A colourles block suitable for the X-ray diffraction study were taken directly from the provided material.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Intermolecular contacts, viewed along [-1 0 0]. Symmetry operators: i -x + 1/2, y - 1/2, z + 1/2; ii -x + 1/2, y + 1/2, z - 1/2.

Fig. 3.

Fig. 3.

Crystal packing of the title compound, viewed along [0 0 - 1] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C30H25NOP2 Dx = 1.328 Mg m3
Mr = 477.45 Melting point = 442–445 K
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 9977 reflections
a = 17.6607 (12) Å θ = 2.7–28.3°
b = 15.1593 (10) Å µ = 0.21 mm1
c = 8.9192 (6) Å T = 200 K
V = 2387.9 (3) Å3 Block, colourless
Z = 4 0.88 × 0.42 × 0.31 mm
F(000) = 1000

Data collection

Bruker APEXII CCD diffractometer 4348 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.021
graphite θmax = 28.3°, θmin = 2.9°
φ and ω scans h = −22→23
12511 measured reflections k = −20→16
4498 independent reflections l = −7→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.5077P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max < 0.001
4498 reflections Δρmax = 0.21 e Å3
307 parameters Δρmin = −0.25 e Å3
1 restraint Absolute structure: Flack (1983), 1332 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.03 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.083912 (19) 0.16050 (2) 0.55082 (5) 0.02138 (9)
P2 0.227542 (18) 0.05280 (2) 0.53590 (6) 0.02115 (9)
O1 0.08330 (6) 0.21271 (8) 0.40946 (15) 0.0276 (3)
N1 0.15673 (7) 0.10297 (9) 0.59418 (19) 0.0272 (3)
C11 0.06899 (9) 0.23246 (11) 0.7102 (2) 0.0251 (3)
C12 0.02931 (10) 0.31087 (11) 0.6883 (3) 0.0327 (4)
H12 0.0132 0.3268 0.5903 0.039*
C13 0.01304 (11) 0.36602 (13) 0.8084 (3) 0.0420 (5)
H13 −0.0139 0.4194 0.7924 0.050*
C14 0.03602 (12) 0.34320 (14) 0.9502 (3) 0.0440 (5)
H14 0.0252 0.3813 1.0321 0.053*
C15 0.07484 (12) 0.26496 (15) 0.9752 (3) 0.0426 (5)
H15 0.0898 0.2489 1.0738 0.051*
C16 0.09162 (10) 0.21044 (13) 0.8546 (2) 0.0336 (4)
H16 0.1190 0.1573 0.8710 0.040*
C21 0.00231 (8) 0.08902 (9) 0.5576 (2) 0.0228 (3)
C22 −0.05883 (9) 0.10711 (11) 0.4654 (2) 0.0294 (4)
H22 −0.0563 0.1549 0.3968 0.035*
C23 −0.12411 (10) 0.05546 (13) 0.4728 (2) 0.0358 (4)
H23 −0.1663 0.0687 0.4106 0.043*
C24 −0.12731 (9) −0.01467 (12) 0.5705 (2) 0.0357 (4)
H24 −0.1714 −0.0504 0.5741 0.043*
C25 −0.06683 (10) −0.03348 (12) 0.6635 (2) 0.0331 (4)
H25 −0.0693 −0.0819 0.7309 0.040*
C26 −0.00227 (9) 0.01904 (11) 0.6576 (2) 0.0286 (4)
H26 0.0391 0.0069 0.7225 0.034*
C31 0.29089 (9) 0.11812 (11) 0.4214 (2) 0.0250 (3)
C32 0.26144 (10) 0.18326 (12) 0.3296 (2) 0.0352 (4)
H32 0.2087 0.1958 0.3315 0.042*
C33 0.30909 (12) 0.23043 (13) 0.2347 (3) 0.0421 (5)
H33 0.2887 0.2747 0.1711 0.051*
C34 0.38560 (11) 0.21312 (13) 0.2327 (2) 0.0378 (4)
H34 0.4179 0.2455 0.1676 0.045*
C35 0.41530 (10) 0.14935 (15) 0.3242 (3) 0.0404 (5)
H35 0.4681 0.1377 0.3222 0.048*
C36 0.36879 (10) 0.10175 (14) 0.4197 (2) 0.0350 (4)
H36 0.3898 0.0581 0.4839 0.042*
C41 0.28149 (8) 0.01741 (10) 0.6966 (2) 0.0222 (3)
C42 0.31729 (9) −0.06444 (11) 0.7022 (2) 0.0288 (4)
H42 0.3146 −0.1031 0.6186 0.035*
C43 0.35690 (10) −0.08954 (12) 0.8295 (2) 0.0340 (4)
H43 0.3809 −0.1456 0.8334 0.041*
C44 0.36148 (10) −0.03317 (14) 0.9506 (2) 0.0375 (4)
H44 0.3886 −0.0504 1.0378 0.045*
C45 0.32647 (11) 0.04883 (13) 0.9453 (2) 0.0372 (4)
H45 0.3301 0.0878 1.0284 0.045*
C46 0.28624 (9) 0.07380 (11) 0.8190 (2) 0.0290 (4)
H46 0.2618 0.1296 0.8161 0.035*
C51 0.20882 (9) −0.04527 (11) 0.4262 (2) 0.0252 (3)
C52 0.25999 (10) −0.07830 (13) 0.3230 (2) 0.0335 (4)
H52 0.3072 −0.0494 0.3088 0.040*
C53 0.24317 (12) −0.15319 (13) 0.2399 (3) 0.0402 (5)
H53 0.2786 −0.1757 0.1695 0.048*
C54 0.17403 (12) −0.19490 (12) 0.2607 (3) 0.0396 (5)
H54 0.1617 −0.2456 0.2030 0.047*
C55 0.12324 (11) −0.16321 (12) 0.3645 (3) 0.0369 (4)
H55 0.0763 −0.1926 0.3792 0.044*
C56 0.14026 (9) −0.08887 (11) 0.4474 (2) 0.0310 (4)
H56 0.1050 −0.0674 0.5192 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.01837 (15) 0.02043 (17) 0.0254 (2) 0.00090 (11) 0.00122 (16) 0.00224 (17)
P2 0.01691 (14) 0.02080 (17) 0.0257 (2) 0.00025 (12) −0.00016 (17) 0.00197 (17)
O1 0.0292 (6) 0.0257 (6) 0.0280 (7) 0.0001 (4) 0.0027 (5) 0.0053 (5)
N1 0.0199 (5) 0.0267 (6) 0.0351 (8) 0.0034 (5) 0.0010 (5) 0.0037 (6)
C11 0.0199 (6) 0.0245 (8) 0.0308 (9) −0.0035 (6) 0.0018 (6) −0.0028 (7)
C12 0.0298 (8) 0.0289 (8) 0.0395 (11) 0.0029 (6) 0.0048 (8) 0.0001 (8)
C13 0.0428 (10) 0.0290 (9) 0.0542 (14) 0.0017 (8) 0.0125 (10) −0.0085 (9)
C14 0.0450 (10) 0.0417 (11) 0.0452 (13) −0.0110 (8) 0.0144 (10) −0.0188 (10)
C15 0.0421 (10) 0.0524 (12) 0.0333 (11) −0.0127 (9) −0.0004 (9) −0.0061 (9)
C16 0.0309 (8) 0.0361 (9) 0.0338 (10) −0.0025 (7) −0.0022 (8) −0.0020 (8)
C21 0.0199 (6) 0.0213 (6) 0.0271 (9) 0.0013 (5) 0.0022 (6) −0.0025 (7)
C22 0.0264 (7) 0.0307 (8) 0.0312 (9) 0.0017 (6) −0.0034 (7) −0.0001 (7)
C23 0.0232 (7) 0.0444 (10) 0.0398 (11) 0.0007 (7) −0.0051 (7) −0.0080 (9)
C24 0.0265 (7) 0.0418 (9) 0.0388 (11) −0.0100 (6) 0.0079 (7) −0.0124 (8)
C25 0.0346 (8) 0.0314 (8) 0.0332 (10) −0.0077 (7) 0.0073 (8) 0.0006 (8)
C26 0.0258 (7) 0.0317 (8) 0.0282 (9) −0.0022 (6) 0.0002 (7) 0.0028 (7)
C31 0.0232 (7) 0.0257 (7) 0.0262 (8) −0.0035 (6) 0.0031 (6) −0.0017 (7)
C32 0.0318 (8) 0.0326 (9) 0.0411 (12) 0.0050 (7) 0.0094 (8) 0.0071 (8)
C33 0.0481 (10) 0.0323 (9) 0.0460 (12) 0.0030 (8) 0.0174 (10) 0.0110 (9)
C34 0.0417 (10) 0.0398 (10) 0.0320 (10) −0.0152 (8) 0.0124 (8) −0.0041 (8)
C35 0.0238 (8) 0.0626 (13) 0.0348 (11) −0.0106 (8) 0.0025 (8) −0.0013 (10)
C36 0.0243 (7) 0.0480 (10) 0.0328 (10) −0.0023 (7) −0.0012 (7) 0.0056 (8)
C41 0.0186 (6) 0.0234 (7) 0.0247 (8) −0.0013 (5) −0.0001 (6) 0.0030 (6)
C42 0.0257 (7) 0.0273 (8) 0.0335 (10) 0.0035 (6) −0.0004 (7) −0.0010 (7)
C43 0.0290 (8) 0.0324 (8) 0.0407 (11) 0.0042 (6) −0.0041 (8) 0.0091 (8)
C44 0.0316 (8) 0.0503 (11) 0.0305 (10) 0.0008 (7) −0.0061 (7) 0.0094 (9)
C45 0.0346 (9) 0.0451 (10) 0.0319 (10) −0.0010 (7) −0.0040 (8) −0.0076 (9)
C46 0.0255 (7) 0.0279 (8) 0.0335 (10) 0.0004 (6) −0.0005 (7) −0.0030 (8)
C51 0.0232 (7) 0.0239 (7) 0.0284 (9) 0.0016 (5) −0.0052 (6) 0.0014 (6)
C52 0.0289 (8) 0.0379 (9) 0.0339 (11) 0.0013 (7) −0.0019 (7) −0.0064 (8)
C53 0.0417 (10) 0.0382 (10) 0.0407 (12) 0.0087 (8) −0.0027 (9) −0.0109 (9)
C54 0.0471 (10) 0.0272 (8) 0.0443 (12) 0.0033 (7) −0.0163 (9) −0.0032 (8)
C55 0.0346 (8) 0.0282 (8) 0.0480 (12) −0.0054 (7) −0.0104 (9) 0.0039 (8)
C56 0.0265 (7) 0.0286 (8) 0.0379 (10) −0.0019 (6) −0.0023 (7) 0.0012 (8)

Geometric parameters (Å, °)

P1—O1 1.4887 (13) C32—C33 1.392 (3)
P1—N1 1.6014 (13) C32—H32 0.9500
P1—C21 1.8040 (15) C33—C34 1.377 (3)
P1—C11 1.8109 (18) C33—H33 0.9500
P2—N1 1.5532 (13) C34—C35 1.370 (3)
P2—C41 1.8027 (17) C34—H34 0.9500
P2—C31 1.8099 (17) C35—C36 1.386 (3)
P2—C51 1.8099 (17) C35—H35 0.9500
C11—C16 1.389 (3) C36—H36 0.9500
C11—C12 1.394 (2) C41—C46 1.389 (2)
C12—C13 1.389 (3) C41—C42 1.394 (2)
C12—H12 0.9500 C42—C43 1.387 (3)
C13—C14 1.373 (4) C42—H42 0.9500
C13—H13 0.9500 C43—C44 1.380 (3)
C14—C15 1.388 (3) C43—H43 0.9500
C14—H14 0.9500 C44—C45 1.389 (3)
C15—C16 1.388 (3) C44—H44 0.9500
C15—H15 0.9500 C45—C46 1.384 (3)
C16—H16 0.9500 C45—H45 0.9500
C21—C22 1.385 (2) C46—H46 0.9500
C21—C26 1.388 (2) C51—C52 1.384 (3)
C22—C23 1.395 (2) C51—C56 1.392 (2)
C22—H22 0.9500 C52—C53 1.388 (3)
C23—C24 1.376 (3) C52—H52 0.9500
C23—H23 0.9500 C53—C54 1.387 (3)
C24—C25 1.382 (3) C53—H53 0.9500
C24—H24 0.9500 C54—C55 1.375 (3)
C25—C26 1.392 (2) C54—H54 0.9500
C25—H25 0.9500 C55—C56 1.381 (3)
C26—H26 0.9500 C55—H55 0.9500
C31—C32 1.384 (3) C56—H56 0.9500
C31—C36 1.398 (2)
O1—P1—N1 120.00 (8) C31—C32—C33 119.94 (17)
O1—P1—C21 110.00 (8) C31—C32—H32 120.0
N1—P1—C21 107.83 (7) C33—C32—H32 120.0
O1—P1—C11 110.08 (7) C34—C33—C32 120.2 (2)
N1—P1—C11 104.80 (8) C34—C33—H33 119.9
C21—P1—C11 102.66 (7) C32—C33—H33 119.9
N1—P2—C41 107.77 (8) C35—C34—C33 120.16 (18)
N1—P2—C31 114.75 (7) C35—C34—H34 119.9
C41—P2—C31 106.55 (7) C33—C34—H34 119.9
N1—P2—C51 115.84 (7) C34—C35—C36 120.47 (17)
C41—P2—C51 106.37 (8) C34—C35—H35 119.8
C31—P2—C51 104.91 (8) C36—C35—H35 119.8
P2—N1—P1 146.35 (12) C35—C36—C31 119.81 (18)
C16—C11—C12 118.64 (17) C35—C36—H36 120.1
C16—C11—P1 122.75 (13) C31—C36—H36 120.1
C12—C11—P1 118.51 (15) C46—C41—C42 119.50 (16)
C13—C12—C11 120.6 (2) C46—C41—P2 118.28 (12)
C13—C12—H12 119.7 C42—C41—P2 122.22 (14)
C11—C12—H12 119.7 C43—C42—C41 120.15 (18)
C14—C13—C12 119.86 (19) C43—C42—H42 119.9
C14—C13—H13 120.1 C41—C42—H42 119.9
C12—C13—H13 120.1 C44—C43—C42 120.04 (17)
C13—C14—C15 120.6 (2) C44—C43—H43 120.0
C13—C14—H14 119.7 C42—C43—H43 120.0
C15—C14—H14 119.7 C43—C44—C45 120.09 (18)
C14—C15—C16 119.3 (2) C43—C44—H44 120.0
C14—C15—H15 120.3 C45—C44—H44 120.0
C16—C15—H15 120.3 C46—C45—C44 120.07 (18)
C15—C16—C11 120.92 (18) C46—C45—H45 120.0
C15—C16—H16 119.5 C44—C45—H45 120.0
C11—C16—H16 119.5 C45—C46—C41 120.15 (16)
C22—C21—C26 119.16 (14) C45—C46—H46 119.9
C22—C21—P1 118.95 (13) C41—C46—H46 119.9
C26—C21—P1 121.82 (12) C52—C51—C56 119.09 (16)
C21—C22—C23 120.35 (17) C52—C51—P2 122.51 (13)
C21—C22—H22 119.8 C56—C51—P2 118.39 (14)
C23—C22—H22 119.8 C51—C52—C53 120.76 (17)
C24—C23—C22 119.84 (17) C51—C52—H52 119.6
C24—C23—H23 120.1 C53—C52—H52 119.6
C22—C23—H23 120.1 C54—C53—C52 119.33 (19)
C23—C24—C25 120.51 (15) C54—C53—H53 120.3
C23—C24—H24 119.7 C52—C53—H53 120.3
C25—C24—H24 119.7 C55—C54—C53 120.31 (18)
C24—C25—C26 119.50 (18) C55—C54—H54 119.8
C24—C25—H25 120.3 C53—C54—H54 119.8
C26—C25—H25 120.3 C54—C55—C56 120.23 (18)
C21—C26—C25 120.63 (16) C54—C55—H55 119.9
C21—C26—H26 119.7 C56—C55—H55 119.9
C25—C26—H26 119.7 C55—C56—C51 120.27 (18)
C32—C31—C36 119.36 (16) C55—C56—H56 119.9
C32—C31—P2 119.46 (12) C51—C56—H56 119.9
C36—C31—P2 121.14 (14)
C41—P2—N1—P1 173.79 (15) C41—P2—C31—C36 29.82 (17)
C31—P2—N1—P1 55.30 (19) C51—P2—C31—C36 −82.72 (17)
C51—P2—N1—P1 −67.26 (19) C36—C31—C32—C33 1.3 (3)
O1—P1—N1—P2 −25.4 (2) P2—C31—C32—C33 −176.30 (16)
C21—P1—N1—P2 101.52 (17) C31—C32—C33—C34 −0.6 (3)
C11—P1—N1—P2 −149.62 (16) C32—C33—C34—C35 0.0 (3)
O1—P1—C11—C16 −157.41 (13) C33—C34—C35—C36 −0.1 (3)
N1—P1—C11—C16 −27.08 (16) C34—C35—C36—C31 0.8 (3)
C21—P1—C11—C16 85.50 (15) C32—C31—C36—C35 −1.4 (3)
O1—P1—C11—C12 26.37 (15) P2—C31—C36—C35 176.14 (16)
N1—P1—C11—C12 156.70 (13) N1—P2—C41—C46 −38.07 (14)
C21—P1—C11—C12 −90.72 (14) C31—P2—C41—C46 85.57 (13)
C16—C11—C12—C13 0.3 (2) C51—P2—C41—C46 −162.90 (13)
P1—C11—C12—C13 176.66 (14) N1—P2—C41—C42 141.06 (13)
C11—C12—C13—C14 −0.2 (3) C31—P2—C41—C42 −95.30 (14)
C12—C13—C14—C15 −0.6 (3) C51—P2—C41—C42 16.23 (16)
C13—C14—C15—C16 1.2 (3) C46—C41—C42—C43 0.5 (2)
C14—C15—C16—C11 −1.1 (3) P2—C41—C42—C43 −178.67 (13)
C12—C11—C16—C15 0.3 (3) C41—C42—C43—C44 −0.5 (3)
P1—C11—C16—C15 −175.88 (14) C42—C43—C44—C45 0.0 (3)
O1—P1—C21—C22 −18.58 (16) C43—C44—C45—C46 0.7 (3)
N1—P1—C21—C22 −151.12 (14) C44—C45—C46—C41 −0.8 (3)
C11—P1—C21—C22 98.56 (15) C42—C41—C46—C45 0.2 (2)
O1—P1—C21—C26 164.52 (14) P2—C41—C46—C45 179.36 (14)
N1—P1—C21—C26 31.99 (17) N1—P2—C51—C52 155.63 (15)
C11—P1—C21—C26 −78.33 (15) C41—P2—C51—C52 −84.66 (17)
C26—C21—C22—C23 −0.1 (3) C31—P2—C51—C52 28.00 (17)
P1—C21—C22—C23 −177.12 (14) N1—P2—C51—C56 −24.50 (18)
C21—C22—C23—C24 −1.0 (3) C41—P2—C51—C56 95.21 (15)
C22—C23—C24—C25 1.2 (3) C31—P2—C51—C56 −152.12 (14)
C23—C24—C25—C26 −0.1 (3) C56—C51—C52—C53 0.8 (3)
C22—C21—C26—C25 1.2 (3) P2—C51—C52—C53 −179.31 (16)
P1—C21—C26—C25 178.09 (14) C51—C52—C53—C54 0.3 (3)
C24—C25—C26—C21 −1.1 (3) C52—C53—C54—C55 −1.1 (3)
N1—P2—C31—C32 −33.42 (18) C53—C54—C55—C56 0.9 (3)
C41—P2—C31—C32 −152.60 (15) C54—C55—C56—C51 0.2 (3)
C51—P2—C31—C32 94.86 (16) C52—C51—C56—C55 −1.0 (3)
N1—P2—C31—C36 148.99 (15) P2—C51—C56—C55 179.07 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C32—H32···O1 0.95 2.34 3.257 (2) 163
C43—H43···O1i 0.95 2.34 3.257 (2) 162
C45—H45···Cg1ii 0.95 2.92 3.846 (2) 165
C55—H55···Cg2iii 0.95 2.73 3.644 (2) 163

Symmetry codes: (i) −x+1/2, y−1/2, z+1/2; (ii) x, y, z+1; (iii) −x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5826).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.
  3. Cameron, A. F., Cameron, I. R. & Keat, R. (1979). Acta Cryst. B35, 1373–1377.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011500/hb5826sup1.cif

e-67-o1028-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011500/hb5826Isup2.hkl

e-67-o1028-Isup2.hkl (220.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES