Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):o1159. doi: 10.1107/S1600536811013419

Redetermination of (E)-N,N′-bis­(4-bromo­phen­yl)formamidine

L-J Han a,*
PMCID: PMC3089148  PMID: 21754467

Abstract

In comprison with the previous structural study [Anulewicz et al. (1991). Pol. J. Chem. 65, 465–471], for which only the coordinates of all non-H atoms and of some H atoms were reported, the current redetermination of the title compound, C13H10Br2N2, additionally reports anisotropic displacement parameters for all non-H atoms and the coordinates of all H atoms, accompanied by higher accuracy of the geometric parameters. Two independent half-mol­ecules are present in the asymmetric unit, which are completed by a twofold rotation axis as symmetry element. In the crystal, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into dimers. Linear chains parallel to [102] are formed by inter­molecular Br⋯Br inter­actions of 3.4328 (7) Å between two Br atoms of adjacent mol­ecules. The dihedral angles between the benzene rings are 50.05 (15) and 75.61 (11)° in the two independent molecules. Owing to the twofold symmetry of the mol­ecules, H atoms attached to the N atoms are only half-occupied, leading to them being disordered over two positions of equal occupancy.

Related literature

For the previous structure determination, see: Anulewicz et al. (1991). For Br⋯Br inter­actions, see: Fujiwara et al. (2006); Reddy et al. (1996). For N—H⋯N hydrogen bonds, see: Del Bene & Elguero (2006); Grotjahn et al. (2000); Thar & Kirchner (2006).graphic file with name e-67-o1159-scheme1.jpg

Experimental

Crystal data

  • C13H10Br2N2

  • M r = 354.05

  • Monoclinic, Inline graphic

  • a = 11.563 (2) Å

  • b = 23.447 (5) Å

  • c = 9.881 (2) Å

  • β = 95.43 (3)°

  • V = 2666.9 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.06 mm−1

  • T = 293 K

  • 0.15 × 0.07 × 0.06 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.403, T max = 0.695

  • 5954 measured reflections

  • 2611 independent reflections

  • 1715 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.114

  • S = 1.00

  • 2611 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013419/wm2476sup1.cif

e-67-o1159-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013419/wm2476Isup2.hkl

e-67-o1159-Isup2.hkl (128.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2A⋯N2i 0.85 2.12 2.964 (4) 180
N2—H3A⋯N1ii 0.88 2.12 2.964 (4) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Scientific Foundation of China (No.20741004/B010303).

supplementary crystallographic information

Comment

With the determination of reliable intermolecular distances, Br···Br interactions (Fujiwara et al., 2006; Reddy et al., 1996) and N–H···N hydrogen bonding (Del Bene & Elguero, 2006; Grotjahn et al. 2000; Thar & Kirchner, 2006) became important criteria in the description of supramolecular chemistry and in applied crystal engineering. The title compound C13H10Br2N2, (I), has been determined previously by Anulewicz et al. (1991). However, in that study only coordinates of all non-H atoms and of some H atoms were given. The present re-determination additionally reports anisotropic displacement parameters for all non-H atoms and the coordinates of all H atoms, accompanied by higher accuracy of all geometric parameters.

In (I) two independent half-molecules are present in the asymmetric unit which are completed by a twofold rotation axis as symmetry element that runs to the central C—H groups (C1—H1 and C2—H2, respectively). One molecule is displayed in Fig. 1. The dihedral angles between the two benzene rings in the individual molecules are 50.05 (15) ° for the first and and 75.61 (11) ° for the second molecule.

In the crystal, intermolecular N—H···N hydrogen bonds link the individual molecules into dimers (Fig. 2). Linear chains parallel to [102] are formed by intermolecular Br···Br interactions of 3.4328 (7) Å between two bromine atoms of adjacent molecules (Fig. 3). This interaction is significantly less than the van der Waals contact of 3.90 Å (Reddy et al., 1996; Fujiwara et al., 2006), hence making this interaction important for consolidation of the crystal packing.

Experimental

The title compound was synthesized by the following reaction. 17.202 g (0.1 mol) of 4-bromobenzenamine and 8.33 ml (0.05 mol) of triethyl orthoformate were combined in a round-bottom flask equipped with a distillation tube and heated at 160 until the distillation of ethanol creased. The retained solid was washed with ether, and dried under a dynamic vacuum to yield 16.10 g of white solid, (91%). 0.04 g of the white solid was dissolved in THF (3 ml) and the solution was layered with hexane. Colourless needle-shaped crystals formed after several days. 1HNMR(CDCl3, p.p.m.): 8.08(s, 1H, –NCHN–), 7.43(d, 2H, aromatic), 7.40(d, 2H, aromatic), 6.93(d, 2H, aromatic), 6.91(d, 2H, aromatic). Anal. Calcd. C13H10Br2N2: C, 44.10; H, 2.85; N, 7.91; Found: C, 43.83; H, 2.69; N, 8.02.

Refinement

H atoms attached to C atoms were positioned geometrically with C—H = 0.93 (CH), and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). H atoms attached to N atoms were found from difference Fourier maps and were fixed. They were refined with Uiso(H) = 1.2Ueq(N). Owing to the 2 symmetry of the molecules, the H atoms attached to the N atoms are only half-occupied, leading to being disordered over two positions of equal occupancy.

Figures

Fig. 1.

Fig. 1.

Molecular structure of one of the two molecules of (I) drawn with displacement ellipsoids at the 30% probability level. [Symmetry code A) -x+1, y. -z+1/2.]

Fig. 2.

Fig. 2.

A dimer formed by intermolecular N–H···N hydrogen bonds.

Fig. 3.

Fig. 3.

Part of an one-dimensional linear chain of the title compound, viewed along [010]. Br···Br interactions are drawn with blue dashed lines.

Crystal data

C13H10Br2N2 F(000) = 1376
Mr = 354.05 Dx = 1.764 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4303 reflections
a = 11.563 (2) Å θ = 2.5–26.7°
b = 23.447 (5) Å µ = 6.06 mm1
c = 9.881 (2) Å T = 293 K
β = 95.43 (3)° Needle, colourless
V = 2666.9 (9) Å3 0.15 × 0.07 × 0.06 mm
Z = 8

Data collection

Bruker SMART CCD diffractometer 2611 independent reflections
Radiation source: fine-focus sealed tube 1715 reflections with I > 2σ(I)
graphite Rint = 0.061
ω scans θmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −12→14
Tmin = 0.403, Tmax = 0.695 k = −26→28
5954 measured reflections l = −12→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0533P)2] where P = (Fo2 + 2Fc2)/3
2611 reflections (Δ/σ)max = 0.001
155 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.91 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.24399 (5) 0.73912 (2) 0.82770 (5) 0.0708 (2)
N1 0.4449 (3) 0.63281 (13) 0.3396 (3) 0.0429 (8)
H2A 0.4352 0.5975 0.3271 0.052* 0.50
C1 0.5000 0.6600 (2) 0.2500 0.0428 (13)
H1 0.5000 0.6997 0.2500 0.051*
C11 0.3994 (4) 0.65996 (16) 0.4505 (4) 0.0404 (9)
C12 0.4347 (4) 0.71277 (17) 0.4995 (4) 0.0525 (11)
H12A 0.4903 0.7329 0.4570 0.063*
C13 0.3885 (4) 0.73617 (18) 0.6108 (5) 0.0569 (11)
H13A 0.4131 0.7719 0.6428 0.068*
C14 0.3065 (4) 0.70681 (17) 0.6738 (4) 0.0459 (10)
C15 0.2716 (4) 0.65412 (19) 0.6293 (4) 0.0560 (11)
H15A 0.2171 0.6340 0.6737 0.067*
C16 0.3177 (4) 0.63066 (17) 0.5178 (4) 0.0546 (11)
H16A 0.2935 0.5947 0.4873 0.066*
Br2 0.02928 (6) 0.61567 (3) 1.05388 (8) 0.1036 (3)
N2 0.4121 (3) 0.49146 (13) 0.7963 (3) 0.0507 (8)
H3A 0.4085 0.4541 0.7936 0.061* 0.50
C2 0.5000 0.5180 (2) 0.7500 0.0520 (15)
H2B 0.5000 0.5577 0.7500 0.062*
C21 0.3242 (4) 0.52137 (16) 0.8556 (4) 0.0455 (10)
C22 0.2110 (4) 0.50352 (19) 0.8320 (5) 0.0588 (12)
H32A 0.1933 0.4723 0.7758 0.071*
C23 0.1229 (4) 0.53143 (19) 0.8908 (5) 0.0635 (12)
H33A 0.0466 0.5189 0.8746 0.076*
C24 0.1488 (4) 0.57764 (18) 0.9729 (5) 0.0561 (11)
C25 0.2603 (4) 0.59524 (19) 0.9991 (4) 0.0584 (12)
H35A 0.2774 0.6264 1.0557 0.070*
C26 0.3483 (4) 0.56719 (17) 0.9422 (4) 0.0561 (11)
H36A 0.4247 0.5791 0.9621 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0872 (4) 0.0873 (4) 0.0409 (3) 0.0246 (3) 0.0215 (2) −0.0074 (2)
N1 0.046 (2) 0.0446 (17) 0.0413 (18) 0.0019 (15) 0.0199 (15) −0.0018 (14)
C1 0.040 (3) 0.042 (3) 0.047 (3) 0.000 0.006 (3) 0.000
C11 0.044 (2) 0.046 (2) 0.033 (2) 0.0046 (18) 0.0111 (17) 0.0051 (17)
C12 0.059 (3) 0.056 (2) 0.045 (2) −0.014 (2) 0.017 (2) −0.001 (2)
C13 0.070 (3) 0.056 (2) 0.046 (3) −0.009 (2) 0.012 (2) −0.007 (2)
C14 0.056 (3) 0.055 (2) 0.028 (2) 0.010 (2) 0.0129 (18) −0.0038 (18)
C15 0.053 (3) 0.073 (3) 0.047 (2) −0.005 (2) 0.029 (2) 0.000 (2)
C16 0.064 (3) 0.051 (2) 0.053 (3) −0.009 (2) 0.025 (2) −0.003 (2)
Br2 0.0764 (5) 0.0940 (5) 0.1485 (7) 0.0149 (3) 0.0538 (4) −0.0264 (4)
N2 0.046 (2) 0.0459 (18) 0.063 (2) 0.0002 (16) 0.0217 (17) −0.0012 (17)
C2 0.055 (4) 0.043 (3) 0.059 (4) 0.000 0.011 (3) 0.000
C21 0.047 (3) 0.044 (2) 0.047 (2) 0.0014 (18) 0.0127 (19) 0.0011 (18)
C22 0.049 (3) 0.061 (3) 0.067 (3) −0.010 (2) 0.014 (2) −0.019 (2)
C23 0.035 (3) 0.078 (3) 0.079 (3) −0.006 (2) 0.014 (2) −0.016 (3)
C24 0.052 (3) 0.057 (3) 0.062 (3) 0.011 (2) 0.019 (2) 0.000 (2)
C25 0.057 (3) 0.053 (3) 0.067 (3) 0.000 (2) 0.017 (2) −0.014 (2)
C26 0.047 (3) 0.059 (3) 0.061 (3) −0.007 (2) 0.005 (2) −0.010 (2)

Geometric parameters (Å, °)

Br1—C14 1.901 (4) Br2—C24 1.886 (4)
N1—C1 1.305 (4) N2—C2 1.311 (4)
N1—C11 1.412 (5) N2—C21 1.407 (5)
N1—H2A 0.8422 N2—H3A 0.8763
C1—N1i 1.305 (4) C2—N2ii 1.311 (4)
C1—H1 0.9300 C2—H2B 0.9300
C11—C12 1.377 (5) C21—C22 1.373 (6)
C11—C16 1.388 (6) C21—C26 1.385 (5)
C12—C13 1.381 (6) C22—C23 1.383 (6)
C12—H12A 0.9300 C22—H32A 0.9300
C13—C14 1.369 (6) C23—C24 1.369 (6)
C13—H13A 0.9300 C23—H33A 0.9300
C14—C15 1.360 (6) C24—C25 1.355 (6)
C15—C16 1.383 (6) C25—C26 1.375 (6)
C15—H15A 0.9300 C25—H35A 0.9300
C16—H16A 0.9300 C26—H36A 0.9300
C1—N1—C11 123.2 (3) C2—N2—C21 121.5 (3)
C1—N1—H2A 116.6 C2—N2—H3A 120.0
C11—N1—H2A 120.1 C21—N2—H3A 118.5
N1i—C1—N1 121.4 (5) N2ii—C2—N2 123.3 (5)
N1i—C1—H1 119.3 N2ii—C2—H2B 118.4
N1—C1—H1 119.3 N2—C2—H2B 118.4
C12—C11—C16 118.0 (4) C22—C21—C26 118.3 (4)
C12—C11—N1 123.9 (4) C22—C21—N2 119.4 (3)
C16—C11—N1 118.0 (3) C26—C21—N2 122.2 (4)
C11—C12—C13 120.9 (4) C21—C22—C23 120.8 (4)
C11—C12—H12A 119.6 C21—C22—H32A 119.6
C13—C12—H12A 119.6 C23—C22—H32A 119.6
C14—C13—C12 120.0 (4) C24—C23—C22 119.6 (4)
C14—C13—H13A 120.0 C24—C23—H33A 120.2
C12—C13—H13A 120.0 C22—C23—H33A 120.2
C15—C14—C13 120.5 (4) C25—C24—C23 120.3 (4)
C15—C14—Br1 119.8 (3) C25—C24—Br2 119.8 (3)
C13—C14—Br1 119.7 (3) C23—C24—Br2 119.8 (3)
C14—C15—C16 119.6 (4) C24—C25—C26 120.2 (4)
C14—C15—H15A 120.2 C24—C25—H35A 119.9
C16—C15—H15A 120.2 C26—C25—H35A 119.9
C15—C16—C11 121.1 (4) C25—C26—C21 120.7 (4)
C15—C16—H16A 119.5 C25—C26—H36A 119.7
C11—C16—H16A 119.5 C21—C26—H36A 119.7

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H2A···N2iii 0.85 2.12 2.964 (4) 180
N2—H3A···N1iv 0.88 2.12 2.964 (4) 161

Symmetry codes: (iii) x, −y+1, z−1/2; (iv) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2476).

References

  1. Anulewicz, R., Krygowski, T. M., Jaroszewska-Manaj, J. & Pniewska, B. (1991). Pol. J. Chem. 65, 465–471.
  2. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR. Bonn, Germany.
  3. Bruker. (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker. (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Del Bene, J. E. & Elguero, J. (2006). J. Phys. Chem. A, 110, 7496–7502. [DOI] [PubMed]
  6. Fujiwara, H., Hayashi, T., Sugimoto, T., Nakazumi, H., Noguchi, S., Li, L., Yokogawa, K., Yasuzuka, S., Murata, K. & Mori, T. (2006). Inorg. Chem. 45, 5712–5714. [DOI] [PubMed]
  7. Grotjahn, D. B., Combs, D., Van, S., Aguirre, G. & Ortega, F. (2000). Inorg. Chem. 39, 2080–2086. [DOI] [PubMed]
  8. Reddy, D. S., Craig, D. C. & Desiraju, G. R. (1996). J. Am. Chem. Soc. 118, 4090–4093.
  9. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Thar, J. & Kirchner, B. (2006). J. Phys. Chem. A, 110, 4229–4237. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013419/wm2476sup1.cif

e-67-o1159-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013419/wm2476Isup2.hkl

e-67-o1159-Isup2.hkl (128.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES