Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1221. doi: 10.1107/S1600536811014334

Biphenyl-3,3′-dicarb­oxy­lic acid

Shao-Hua Deng a, Jun Zhao a,*, Yi-Qiang Mu a, Cai Li a, Hui-Min Liu a
PMCID: PMC3089151  PMID: 21754519

Abstract

The asymmetric unit of the title compound, C14H10O4, contains one half mol­ecule, the complete mol­ecule being generated by a twofold axis. The two benzene rings form a dihedral angle of 43.11 (5)°. Inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into one-dimensional zigzag chains. These chains are further connected into two-dimensional supra­molecular layers by weak π–π stacking inter­actions between neighbouring benzene rings, with centroid–centroid distances of 3.7648 (8) Å.

Related literature

For general background non-covalent intermolecular interactions, see: Etter et al. (1990); Desiraju (2003); Yaghi et al. (2003); Li et al. (2010). For the structures of related complexes, see: Wang et al. (2005); Zhu (2010).graphic file with name e-67-o1221-scheme1.jpg

Experimental

Crystal data

  • C14H10O4

  • M r = 242.22

  • Monoclinic, Inline graphic

  • a = 6.6123 (9) Å

  • b = 3.7648 (8) Å

  • c = 22.554 (3) Å

  • β = 93.14 (2)°

  • V = 560.61 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.21 × 0.18 × 0.13 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.978, T max = 0.986

  • 5212 measured reflections

  • 1286 independent reflections

  • 1006 reflections with I > 2σ(I)

  • R int = 0.107

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.155

  • S = 1.04

  • 1286 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014334/zq2097sup1.cif

e-67-o1221-sup1.cif (13.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014334/zq2097Isup2.hkl

e-67-o1221-Isup2.hkl (63.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.6268 (17) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Natural Science Foundation of Hubei Province of China (grant No. 2010CDB10707) and the Project of Hubei Provincial Education Office (grant No. Q20101203).

supplementary crystallographic information

Comment

Non-covalent intermolecular interactions, mainly hydrogen bonding and aromatic stacking, play the key role to perfectly project and regulate the detailed crystal packing of supramolecular materials (Desiraju, 2003). Aromatic carboxylates have also been proved to be effective building blocks in constructing various architectures (Yaghi et al., 2003; Li et al., 2010; Wang et al., 2005; Zhu, 2010). Recently, we obtained the title compound under hydrothermal conditions and we report its crystal structure here.

The asymmetric unit of the title compound, C14H10O4, contains one-half molecule, the complete molecule being generated by a two-fold axis (Fig. 1). The two benzene rings form a dihedral angle of 43.11 (5)°. The carboxylic acid groups form the classic cyclic R22(8) hydrogen-bond motif (Etter et al., 1990) with other acid groups of neighbouring molecules (Table 1). These interactions result into one-dimensional zigzag chains (Fig. 2). The chains are further connected into two-dimensional supramolecular layers by weak π-π stacking interactions between neighbouring benzene rings, with centroid-centroid distances of 3.7648 (8) Å.

Experimental

A mixture of 3,3'-biphenyldicarboxylic acid (0.0242 g, 0.1 mmol), Pb(CH3COO)2 (0.0379 g, 0.1 mmol), water (8 ml) was stired vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 413 K for 3 days, and then cooled to room temperature at 5 K h-1 to obtain colorless prism crystals suitable for X-ray analysis.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å and O—H = 0.82 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms [symmetry code (A): -x + 3/2, y, -z + 1/2].

Fig. 2.

Fig. 2.

View of the one-dimensional chains connected by cyclic R22(8) hydrogen-bonds.

Fig. 3.

Fig. 3.

View of the two-dimensional layers formed by weak π-π stacking interactions between neighbouring benzene rings.

Crystal data

C14H10O4 F(000) = 252
Mr = 242.22 Dx = 1.435 Mg m3
Monoclinic, P2/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yac Cell parameters from 1286 reflections
a = 6.6123 (9) Å θ = 3.2–27.6°
b = 3.7648 (8) Å µ = 0.11 mm1
c = 22.554 (3) Å T = 296 K
β = 93.14 (2)° Prism, colourless
V = 560.61 (15) Å3 0.21 × 0.18 × 0.13 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer 1286 independent reflections
Radiation source: fine-focus sealed tube 1006 reflections with I > 2σ(I)
graphite Rint = 0.107
φ and ω scans θmax = 27.6°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.978, Tmax = 0.986 k = −4→4
5212 measured reflections l = −29→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0843P)2] where P = (Fo2 + 2Fc2)/3
1286 reflections (Δ/σ)max < 0.001
83 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.73331 (19) 0.2984 (4) 0.48869 (5) 0.0617 (5)
H1 0.6601 0.3923 0.5124 0.093*
C2 0.7741 (2) 0.2032 (4) 0.38631 (6) 0.0340 (4)
O2 0.48155 (17) 0.4652 (4) 0.42503 (5) 0.0527 (4)
C3 0.6866 (2) 0.2063 (4) 0.32849 (6) 0.0323 (4)
H3 0.5542 0.2860 0.3216 0.039*
C4 0.79643 (19) 0.0906 (4) 0.28086 (6) 0.0321 (4)
C1 0.6531 (2) 0.3318 (4) 0.43585 (6) 0.0373 (4)
C5 0.9952 (2) −0.0282 (4) 0.29269 (7) 0.0384 (4)
H5 1.0701 −0.1063 0.2615 0.046*
C7 0.9722 (2) 0.0838 (4) 0.39736 (7) 0.0402 (4)
H7 1.0301 0.0811 0.4359 0.048*
C6 1.0825 (2) −0.0316 (4) 0.35005 (8) 0.0421 (4)
H6 1.2149 −0.1110 0.3570 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0573 (8) 0.1005 (11) 0.0274 (6) 0.0284 (7) 0.0010 (5) −0.0027 (6)
C2 0.0336 (7) 0.0401 (7) 0.0285 (7) 0.0010 (6) 0.0038 (5) 0.0021 (6)
O2 0.0415 (7) 0.0832 (9) 0.0336 (6) 0.0178 (6) 0.0024 (5) −0.0019 (5)
C3 0.0270 (7) 0.0397 (7) 0.0305 (7) 0.0014 (5) 0.0030 (5) 0.0024 (5)
C4 0.0297 (7) 0.0374 (7) 0.0295 (8) −0.0018 (5) 0.0033 (5) 0.0013 (5)
C1 0.0352 (8) 0.0475 (8) 0.0291 (7) 0.0020 (6) 0.0012 (5) 0.0009 (6)
C5 0.0294 (7) 0.0501 (9) 0.0363 (8) 0.0027 (6) 0.0071 (6) −0.0010 (6)
C7 0.0350 (8) 0.0520 (9) 0.0332 (8) 0.0019 (6) −0.0028 (5) 0.0037 (6)
C6 0.0272 (7) 0.0571 (9) 0.0418 (9) 0.0075 (6) 0.0014 (6) 0.0046 (7)

Geometric parameters (Å, °)

O1—C1 1.2837 (17) C4—C5 1.400 (2)
O1—H1 0.8200 C4—C4i 1.490 (3)
C2—C7 1.394 (2) C5—C6 1.388 (2)
C2—C3 1.3975 (19) C5—H5 0.9300
C2—C1 1.490 (2) C7—C6 1.394 (2)
O2—C1 1.2520 (18) C7—H7 0.9300
C3—C4 1.399 (2) C6—H6 0.9300
C3—H3 0.9300
C1—O1—H1 109.5 O2—C1—C2 120.13 (13)
C7—C2—C3 120.43 (13) O1—C1—C2 116.90 (12)
C7—C2—C1 120.56 (13) C6—C5—C4 121.26 (13)
C3—C2—C1 119.01 (12) C6—C5—H5 119.4
C2—C3—C4 120.53 (12) C4—C5—H5 119.4
C2—C3—H3 119.7 C2—C7—C6 119.28 (14)
C4—C3—H3 119.7 C2—C7—H7 120.4
C3—C4—C5 118.33 (13) C6—C7—H7 120.4
C3—C4—C4i 120.83 (14) C5—C6—C7 120.16 (13)
C5—C4—C4i 120.83 (14) C5—C6—H6 119.9
O2—C1—O1 122.97 (13) C7—C6—H6 119.9
C7—C2—C3—C4 −0.1 (2) C3—C2—C1—O1 174.69 (14)
C1—C2—C3—C4 179.39 (13) C3—C4—C5—C6 −0.1 (2)
C2—C3—C4—C5 0.1 (2) C4i—C4—C5—C6 −179.54 (11)
C2—C3—C4—C4i 179.53 (10) C3—C2—C7—C6 0.2 (2)
C7—C2—C1—O2 174.22 (14) C1—C2—C7—C6 −179.33 (14)
C3—C2—C1—O2 −5.3 (2) C4—C5—C6—C7 0.2 (2)
C7—C2—C1—O1 −5.8 (2) C2—C7—C6—C5 −0.2 (2)

Symmetry codes: (i) −x+3/2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2ii 0.82 1.82 2.6268 (17) 169.

Symmetry codes: (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2097).

References

  1. Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Desiraju, G. R. (2003). J. Mol. Struct. 656, 5–15.
  3. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  4. Li, D. S., Wu, Y. P., Zhang, P., Du, M., Zhao, J., Li, C. P. & Wang, Y. Y. (2010). Cryst. Growth Des. 10, 2037–2040.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wang, R. H., Han, L., Jiang, F. L., Zhou, Y. F., Yuan, D. Q. & Hong, M. C. (2005). Cryst. Growth Des. 5, 129–135.
  8. Yaghi, O. M., O’Keeffe, M., Ockwing, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. [DOI] [PubMed]
  9. Zhu, B.-Y. (2010). Acta Cryst. E66, m1214. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014334/zq2097sup1.cif

e-67-o1221-sup1.cif (13.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014334/zq2097Isup2.hkl

e-67-o1221-Isup2.hkl (63.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES