Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1271–o1272. doi: 10.1107/S1600536811015315

(1S*,4′S*,5R*)-1-Isopropyl-5-meth­oxy-2′,3-dimethyl-4,6-dioxa-2-aza­spiro­[bicyclo­[3.2.0]hept-2-ene-7,4′-isoquinoline]-1′,3′(2′H,4′H)-dione

Hoong-Kun Fun a,*,, Ching Kheng Quah a,§, Chengmei Huang b, Haitao Yu b
PMCID: PMC3089152  PMID: 21754556

Abstract

In the isoquinoline ring system of the title mol­ecule, C18H20N2O5, the N-heterocyclic ring is in a half-boat conformation. The dioxa-2-aza­spiro ring is essentially planar, with a maximum deviation of 0.029 (1) Å, and makes a dihedral angle of 30.63 (5)° with the benzene ring. The mol­ecular structure is stabilized by a weak intra­molecular C—H⋯O hydrogen bond, which generates a S(6) ring motif. In the crystal, mol­ecules are linked via weak inter­molecular C—H⋯O hydrogen bonds into a three-dimensional supra­molecular network. Additional stabilization is provided by π–π stacking inter­actions between symmetry-related benzene rings with a centroid–centroid distance of 3.6507 (5) Å.

Related literature

For general background to and the potential biological activity of the title compound, see: Pollers-Wieers et al. (1981); Malamas et al. (1994); Yu et al. (2010); Du et al. (2008); Chen et al. (2006); Zhang et al. (2006); Mitchell et al. (1995, 2000); Harris et al. (2005); Wang et al. (2010); Huang et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). graphic file with name e-67-o1271-scheme1.jpg

Experimental

Crystal data

  • C18H20N2O5

  • M r = 344.36

  • Monoclinic, Inline graphic

  • a = 10.5721 (2) Å

  • b = 10.4260 (2) Å

  • c = 15.7633 (3) Å

  • β = 101.641 (1)°

  • V = 1701.77 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.51 × 0.37 × 0.35 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.951, T max = 0.966

  • 23124 measured reflections

  • 6242 independent reflections

  • 5286 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.108

  • S = 1.02

  • 6242 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811015315/lh5237sup1.cif

e-67-o1271-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015315/lh5237Isup2.hkl

e-67-o1271-Isup2.hkl (305.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O2i 0.93 2.59 3.3754 (12) 143
C15—H15A⋯O5 0.96 2.56 3.2151 (12) 126
C18—H18A⋯O1ii 0.96 2.58 3.4298 (13) 148
C18—H18C⋯O2iii 0.96 2.58 3.3641 (12) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). Financial support from the National Science Foundation of China (20972067) is also acknowledged.

supplementary crystallographic information

Comment

Isoquinolines are often found in bioactive natural products. They have been used to build blocks of benzo[c]phenanthridine alkaloids (Pollers-Wieers et al., 1981; Malamas et al., 1994; Yu et al., 2010). Isoquinoline-1,3,4-trione derivatives were reported to be a type of small molecular inhibitor against caspase-3 which can promote apoptosis of the cells (Du et al., 2008; Chen et al., 2006). They can also attenuate apoptosis of neuronal cells induced by β-amyloid.(Zhang et al., 2006). Isoquinoline-1,3,4-trione and its derivatives have been reported to be redox mediators of photosystems and have been used as herbicides (Mitchell et al., 2000; 1995). Oxazole rings are also found in some bioactive natural products such as Annuloline and Ostreogrycin A. Oxazoles can be used to inhibit the activity of malignant tumors (Harris et al., 2005). Since a lot of natural products especially the alkaloids containing the isoquinoline or oxazole ring are bioactive, there has been intense development of methodology to construct such moieties (Wang et al., 2010). The title compound which was derived from isoquinoline-1,3,4-trione and oxazoles (Huang et al., 2011) may have potential use in biochemical and pharmaceutical fields. Due to the importance of the isoquinoline-1,3,4-trione derivatives, we report herein the crystal structure of the title compound with a relative configuration of (1S*, 4'S*, 5R*).

In the title racemic compound, Fig. 1, atoms C9, C10 and C12 are the chiral centers. The isoquinoline ring system (N1/C1-C9) is not completely planar, the N-heterocyclic ring (N1/C1-C3/C8/C9) being distorted towards a half-boat conformation with atom C1 deviating by 0.243 (1) Å from the mean plane through the remaining atoms, puckering parameters (Cremer & Pople, 1975) Q = 0.2843 (9) Å, Θ = 64.10 (18)° and φ =100.97 (19)°. The dioxa-2-azaspiro ring (N2/O4/C10-C12) is essentially planar [maximum deviation of 0.029 (1) Å at atoms O4 and C10] and it inclines at a dihedral angle of 30.63 (5)° with the benzene ring (C3-C8). Bond lengths (Allen et al., 1987) and angles are within normal ranges. The molecular structure is stabilized by a weak intramolecular C15–H15A···O5 hydrogen bond (Table 1) which generates a S(6) ring motif (Fig. 1, Bernstein et al., 1995).

In the crystal structure, Fig. 2, molecules are linked via intermolecular C6–H6A···O2i, C18–H18A···O1ii and C18–H18C···O2iii hydrogen bonds (Table 1) into a three-dimensional supramolecular network. The crystal packing is further consolidated by π–π stacking interactions between the centroids of the C3-C8 (Cg1) rings, with a Cg1···Cg1iv distance of 3.6507 (5) Å [symmetry code: (iv) 1-x, 1-y, -z].

Experimental

The title compound was the main product from the photoreaction between isoquinoline-1,3,4-trione and 4-isopropyl-5-methoxy-2-methyloxazole. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:4) as eluents. X-ray quality crystals of the title compound was obtained from slow evaporation of an acetone and petroleum ether solution (1:5) (m.p. 451-453 K).

Refinement

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Intramolecular interaction is shown as dash line.

Fig. 2.

Fig. 2.

The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Crystal data

C18H20N2O5 F(000) = 728
Mr = 344.36 Dx = 1.344 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9966 reflections
a = 10.5721 (2) Å θ = 2.6–32.7°
b = 10.4260 (2) Å µ = 0.10 mm1
c = 15.7633 (3) Å T = 100 K
β = 101.641 (1)° Block, colourless
V = 1701.77 (6) Å3 0.51 × 0.37 × 0.35 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6242 independent reflections
Radiation source: fine-focus sealed tube 5286 reflections with I > 2σ(I)
graphite Rint = 0.026
φ and ω scans θmax = 32.7°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −16→15
Tmin = 0.951, Tmax = 0.966 k = −10→15
23124 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.4865P] where P = (Fo2 + 2Fc2)/3
6242 reflections (Δ/σ)max = 0.001
231 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.83725 (6) 0.47548 (7) 0.19496 (4) 0.01927 (13)
O2 0.43236 (7) 0.35091 (9) 0.21065 (5) 0.03015 (18)
O3 0.80900 (6) 0.41336 (6) 0.02423 (4) 0.01457 (12)
O4 1.01024 (6) 0.31366 (6) 0.07000 (4) 0.01661 (12)
O5 0.88314 (6) 0.26083 (6) −0.06194 (4) 0.01730 (13)
N1 0.64083 (7) 0.39850 (8) 0.20730 (4) 0.01585 (14)
N2 0.90028 (7) 0.20947 (7) 0.15999 (5) 0.01627 (14)
C1 0.74047 (8) 0.41697 (8) 0.16262 (5) 0.01427 (14)
C2 0.51566 (8) 0.36231 (9) 0.16792 (5) 0.01791 (16)
C3 0.48885 (8) 0.34408 (8) 0.07267 (5) 0.01483 (15)
C4 0.36037 (8) 0.32910 (9) 0.02963 (6) 0.01775 (16)
H4A 0.2944 0.3288 0.0608 0.021*
C5 0.33188 (9) 0.31473 (9) −0.05953 (6) 0.01878 (16)
H5A 0.2467 0.3038 −0.0883 0.023*
C6 0.43059 (9) 0.31659 (9) −0.10635 (5) 0.01847 (16)
H6A 0.4110 0.3070 −0.1662 0.022*
C7 0.55824 (8) 0.33279 (8) −0.06381 (5) 0.01616 (15)
H7A 0.6237 0.3353 −0.0953 0.019*
C8 0.58806 (8) 0.34536 (8) 0.02622 (5) 0.01330 (14)
C9 0.72502 (8) 0.35261 (8) 0.07458 (5) 0.01283 (14)
C10 0.88181 (8) 0.29935 (8) 0.01999 (5) 0.01360 (14)
C11 1.00499 (8) 0.26235 (9) 0.14963 (5) 0.01693 (15)
C12 0.80770 (8) 0.22272 (8) 0.07841 (5) 0.01327 (14)
C13 0.73890 (8) 0.09734 (8) 0.04853 (6) 0.01698 (15)
H13A 0.6784 0.1133 −0.0063 0.020*
C14 0.66170 (10) 0.04867 (9) 0.11444 (7) 0.02400 (19)
H14A 0.5977 0.1111 0.1211 0.036*
H14B 0.7190 0.0350 0.1692 0.036*
H14C 0.6200 −0.0306 0.0944 0.036*
C15 0.83697 (10) −0.00346 (9) 0.03243 (7) 0.02421 (19)
H15A 0.8840 0.0289 −0.0091 0.036*
H15B 0.7923 −0.0805 0.0105 0.036*
H15C 0.8960 −0.0218 0.0858 0.036*
C16 0.66478 (10) 0.43923 (10) 0.29833 (5) 0.02245 (18)
H16A 0.7481 0.4091 0.3275 0.034*
H16B 0.5994 0.4041 0.3259 0.034*
H16C 0.6625 0.5312 0.3012 0.034*
C17 0.92704 (10) 0.35916 (10) −0.11451 (6) 0.02420 (19)
H17A 0.9248 0.3263 −0.1717 0.036*
H17B 1.0138 0.3836 −0.0887 0.036*
H17C 0.8715 0.4326 −0.1180 0.036*
C18 1.12452 (9) 0.27703 (11) 0.21661 (6) 0.0258 (2)
H18A 1.1267 0.2126 0.2604 0.039*
H18B 1.1258 0.3605 0.2425 0.039*
H18C 1.1984 0.2675 0.1904 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0165 (3) 0.0212 (3) 0.0188 (3) −0.0030 (2) 0.0004 (2) −0.0021 (2)
O2 0.0189 (3) 0.0524 (5) 0.0207 (3) −0.0037 (3) 0.0078 (3) 0.0031 (3)
O3 0.0144 (3) 0.0141 (3) 0.0161 (2) 0.0000 (2) 0.0054 (2) 0.0029 (2)
O4 0.0117 (3) 0.0213 (3) 0.0163 (3) −0.0018 (2) 0.0016 (2) 0.0039 (2)
O5 0.0197 (3) 0.0188 (3) 0.0144 (2) −0.0020 (2) 0.0057 (2) −0.0007 (2)
N1 0.0148 (3) 0.0204 (3) 0.0121 (3) 0.0003 (3) 0.0024 (2) 0.0008 (2)
N2 0.0133 (3) 0.0188 (3) 0.0162 (3) 0.0017 (3) 0.0017 (2) 0.0049 (2)
C1 0.0139 (3) 0.0147 (3) 0.0137 (3) 0.0012 (3) 0.0016 (3) 0.0012 (3)
C2 0.0150 (4) 0.0221 (4) 0.0165 (3) 0.0003 (3) 0.0028 (3) 0.0025 (3)
C3 0.0131 (3) 0.0149 (3) 0.0158 (3) −0.0002 (3) 0.0013 (3) 0.0012 (3)
C4 0.0130 (4) 0.0179 (4) 0.0215 (4) −0.0006 (3) 0.0015 (3) 0.0021 (3)
C5 0.0152 (4) 0.0159 (4) 0.0224 (4) −0.0013 (3) −0.0030 (3) 0.0006 (3)
C6 0.0200 (4) 0.0164 (4) 0.0165 (3) 0.0010 (3) −0.0023 (3) −0.0010 (3)
C7 0.0171 (4) 0.0162 (4) 0.0144 (3) 0.0016 (3) 0.0014 (3) −0.0004 (3)
C8 0.0131 (3) 0.0117 (3) 0.0143 (3) 0.0003 (3) 0.0008 (3) 0.0010 (2)
C9 0.0119 (3) 0.0137 (3) 0.0128 (3) −0.0008 (3) 0.0025 (2) 0.0015 (2)
C10 0.0120 (3) 0.0148 (3) 0.0138 (3) −0.0005 (3) 0.0022 (2) 0.0009 (3)
C11 0.0150 (4) 0.0190 (4) 0.0164 (3) 0.0011 (3) 0.0020 (3) 0.0038 (3)
C12 0.0112 (3) 0.0140 (3) 0.0145 (3) 0.0002 (3) 0.0025 (2) 0.0023 (3)
C13 0.0147 (4) 0.0132 (3) 0.0233 (4) −0.0006 (3) 0.0045 (3) 0.0011 (3)
C14 0.0217 (4) 0.0165 (4) 0.0366 (5) −0.0006 (3) 0.0126 (4) 0.0057 (4)
C15 0.0219 (4) 0.0153 (4) 0.0372 (5) 0.0019 (3) 0.0104 (4) −0.0001 (3)
C16 0.0236 (4) 0.0310 (5) 0.0125 (3) 0.0002 (4) 0.0033 (3) −0.0012 (3)
C17 0.0298 (5) 0.0280 (5) 0.0174 (4) −0.0049 (4) 0.0107 (3) 0.0023 (3)
C18 0.0161 (4) 0.0359 (5) 0.0224 (4) −0.0038 (4) −0.0032 (3) 0.0084 (4)

Geometric parameters (Å, °)

O1—C1 1.2118 (10) C7—H7A 0.9300
O2—C2 1.2176 (11) C8—C9 1.4960 (11)
O3—C10 1.4250 (10) C9—C12 1.6063 (12)
O3—C9 1.4504 (10) C10—C12 1.5464 (11)
O4—C11 1.3759 (10) C11—C18 1.4822 (12)
O4—C10 1.4336 (10) C12—C13 1.5237 (12)
O5—C10 1.3553 (10) C13—C14 1.5314 (13)
O5—C17 1.4520 (11) C13—C15 1.5330 (13)
N1—C1 1.3937 (11) C13—H13A 0.9800
N1—C2 1.3955 (11) C14—H14A 0.9600
N1—C16 1.4686 (11) C14—H14B 0.9600
N2—C11 1.2764 (11) C14—H14C 0.9600
N2—C12 1.4569 (10) C15—H15A 0.9600
C1—C9 1.5203 (11) C15—H15B 0.9600
C2—C3 1.4830 (12) C15—H15C 0.9600
C3—C8 1.3950 (11) C16—H16A 0.9600
C3—C4 1.3991 (12) C16—H16B 0.9600
C4—C5 1.3849 (12) C16—H16C 0.9600
C4—H4A 0.9300 C17—H17A 0.9600
C5—C6 1.3947 (13) C17—H17B 0.9600
C5—H5A 0.9300 C17—H17C 0.9600
C6—C7 1.3907 (12) C18—H18A 0.9600
C6—H6A 0.9300 C18—H18B 0.9600
C7—C8 1.3965 (11) C18—H18C 0.9600
C10—O3—C9 93.30 (6) N2—C11—C18 126.18 (8)
C11—O4—C10 104.66 (6) O4—C11—C18 115.10 (8)
C10—O5—C17 113.61 (7) N2—C12—C13 112.66 (7)
C1—N1—C2 123.92 (7) N2—C12—C10 104.11 (6)
C1—N1—C16 117.07 (7) C13—C12—C10 121.79 (7)
C2—N1—C16 118.29 (7) N2—C12—C9 112.13 (6)
C11—N2—C12 106.96 (7) C13—C12—C9 119.31 (7)
O1—C1—N1 121.13 (7) C10—C12—C9 83.07 (6)
O1—C1—C9 122.16 (7) C12—C13—C14 111.17 (7)
N1—C1—C9 116.58 (7) C12—C13—C15 110.04 (7)
O2—C2—N1 120.47 (8) C14—C13—C15 110.86 (8)
O2—C2—C3 122.39 (8) C12—C13—H13A 108.2
N1—C2—C3 117.09 (7) C14—C13—H13A 108.2
C8—C3—C4 120.38 (7) C15—C13—H13A 108.2
C8—C3—C2 121.32 (7) C13—C14—H14A 109.5
C4—C3—C2 118.28 (8) C13—C14—H14B 109.5
C5—C4—C3 119.69 (8) H14A—C14—H14B 109.5
C5—C4—H4A 120.2 C13—C14—H14C 109.5
C3—C4—H4A 120.2 H14A—C14—H14C 109.5
C4—C5—C6 120.19 (8) H14B—C14—H14C 109.5
C4—C5—H5A 119.9 C13—C15—H15A 109.5
C6—C5—H5A 119.9 C13—C15—H15B 109.5
C7—C6—C5 120.23 (8) H15A—C15—H15B 109.5
C7—C6—H6A 119.9 C13—C15—H15C 109.5
C5—C6—H6A 119.9 H15A—C15—H15C 109.5
C6—C7—C8 119.97 (8) H15B—C15—H15C 109.5
C6—C7—H7A 120.0 N1—C16—H16A 109.5
C8—C7—H7A 120.0 N1—C16—H16B 109.5
C3—C8—C7 119.53 (7) H16A—C16—H16B 109.5
C3—C8—C9 119.08 (7) N1—C16—H16C 109.5
C7—C8—C9 121.29 (7) H16A—C16—H16C 109.5
O3—C9—C8 112.32 (6) H16B—C16—H16C 109.5
O3—C9—C1 109.99 (6) O5—C17—H17A 109.5
C8—C9—C1 113.71 (7) O5—C17—H17B 109.5
O3—C9—C12 90.01 (6) H17A—C17—H17B 109.5
C8—C9—C12 116.10 (6) O5—C17—H17C 109.5
C1—C9—C12 112.35 (6) H17A—C17—H17C 109.5
O5—C10—O3 113.67 (7) H17B—C17—H17C 109.5
O5—C10—O4 111.35 (7) C11—C18—H18A 109.5
O3—C10—O4 110.37 (6) C11—C18—H18B 109.5
O5—C10—C12 121.22 (7) H18A—C18—H18B 109.5
O3—C10—C12 93.42 (6) C11—C18—H18C 109.5
O4—C10—C12 105.29 (6) H18A—C18—H18C 109.5
N2—C11—O4 118.71 (7) H18B—C18—H18C 109.5
C2—N1—C1—O1 162.97 (9) C17—O5—C10—O4 −70.72 (9)
C16—N1—C1—O1 −7.11 (12) C17—O5—C10—C12 164.67 (8)
C2—N1—C1—C9 −21.02 (12) C9—O3—C10—O5 122.71 (7)
C16—N1—C1—C9 168.91 (7) C9—O3—C10—O4 −111.37 (6)
C1—N1—C2—O2 −178.18 (9) C9—O3—C10—C12 −3.67 (6)
C16—N1—C2—O2 −8.22 (14) C11—O4—C10—O5 −138.23 (7)
C1—N1—C2—C3 −0.57 (13) C11—O4—C10—O3 94.54 (7)
C16—N1—C2—C3 169.39 (8) C11—O4—C10—C12 −5.10 (8)
O2—C2—C3—C8 −173.71 (9) C12—N2—C11—O4 −1.58 (11)
N1—C2—C3—C8 8.73 (12) C12—N2—C11—C18 177.19 (9)
O2—C2—C3—C4 8.11 (14) C10—O4—C11—N2 4.53 (11)
N1—C2—C3—C4 −169.45 (8) C10—O4—C11—C18 −174.37 (8)
C8—C3—C4—C5 0.38 (13) C11—N2—C12—C13 132.03 (8)
C2—C3—C4—C5 178.58 (8) C11—N2—C12—C10 −1.88 (9)
C3—C4—C5—C6 −0.71 (13) C11—N2—C12—C9 −90.04 (8)
C4—C5—C6—C7 0.05 (13) O5—C10—C12—N2 131.75 (8)
C5—C6—C7—C8 0.95 (13) O3—C10—C12—N2 −107.82 (6)
C4—C3—C8—C7 0.61 (12) O4—C10—C12—N2 4.38 (8)
C2—C3—C8—C7 −177.53 (8) O5—C10—C12—C13 3.21 (12)
C4—C3—C8—C9 −175.90 (8) O3—C10—C12—C13 123.64 (8)
C2—C3—C8—C9 5.95 (12) O4—C10—C12—C13 −124.16 (8)
C6—C7—C8—C3 −1.27 (12) O5—C10—C12—C9 −117.10 (8)
C6—C7—C8—C9 175.16 (8) O3—C10—C12—C9 3.33 (5)
C10—O3—C9—C8 −114.88 (7) O4—C10—C12—C9 115.52 (6)
C10—O3—C9—C1 117.40 (7) O3—C9—C12—N2 99.19 (7)
C10—O3—C9—C12 3.52 (6) C8—C9—C12—N2 −145.79 (7)
C3—C8—C9—O3 −152.15 (7) C1—C9—C12—N2 −12.51 (9)
C7—C8—C9—O3 31.40 (10) O3—C9—C12—C13 −125.97 (7)
C3—C8—C9—C1 −26.43 (10) C8—C9—C12—C13 −10.95 (10)
C7—C8—C9—C1 157.12 (8) C1—C9—C12—C13 122.33 (8)
C3—C8—C9—C12 106.23 (8) O3—C9—C12—C10 −3.26 (5)
C7—C8—C9—C12 −70.21 (10) C8—C9—C12—C10 111.76 (7)
O1—C1—C9—O3 −23.47 (11) C1—C9—C12—C10 −114.96 (7)
N1—C1—C9—O3 160.56 (7) N2—C12—C13—C14 61.23 (9)
O1—C1—C9—C8 −150.42 (8) C10—C12—C13—C14 −174.06 (7)
N1—C1—C9—C8 33.61 (10) C9—C12—C13—C14 −73.40 (9)
O1—C1—C9—C12 75.15 (10) N2—C12—C13—C15 −61.98 (9)
N1—C1—C9—C12 −100.83 (8) C10—C12—C13—C15 62.73 (10)
C17—O5—C10—O3 54.68 (9) C9—C12—C13—C15 163.39 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6A···O2i 0.93 2.59 3.3754 (12) 143
C15—H15A···O5 0.96 2.56 3.2151 (12) 126
C18—H18A···O1ii 0.96 2.58 3.4298 (13) 148
C18—H18C···O2iii 0.96 2.58 3.3641 (12) 139

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, y−1/2, −z+1/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5237).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chen, Y.-H., Zhang, Y.-H., Zhang, H.-J., Liu, D.-Z., Gu, M., Li, J.-Y., Wu, F., Zhu, X.-Z., Li, J. & Nan, F.-J. (2006). J. Med. Chem. 49, 1613–1623. [DOI] [PubMed]
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Du, J.-Q., Wu, J., Zhang, H.-J., Zhang, Y.-H., Qiu, B.-Y., Wu, F., Chen, Y.-H., Li, J.-Y., Nan, F.-J., Ding, J.-P. & Li, J. (2008). Biol. Chem. 283, 30205–30215. [DOI] [PMC free article] [PubMed]
  8. Harris, P. A., Cheung, M., Hunter, R. N., Brown, M. L., Veal, J. M., Nolte, R. T., Wang, L., Liu, W., Crosby, R. M., Johnson, J. H., Epperly, A. H., Kumar, R., Luttrell, D. K. & Stafford, J. A. (2005). J. Med. Chem. 48, 1610–1619. [DOI] [PubMed]
  9. Huang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629–3631. [DOI] [PubMed]
  10. Malamas, M. S., Hohman, T. C. & Millen, J. (1994). J. Med. Chem. 37, 2043–2058. [DOI] [PubMed]
  11. Mitchell, G., Clarke, E. D., Ridley, S. M., Bartlett, D. W., Gillen, K. J., Vohra, S. K., Greenhow, D. T., Ormrod, J. C. & Wardman, P. (2000). Pest. Manag. Sci. 56, 120–126.
  12. Mitchell, G., Clarke, E. D., Ridley, S. M., Greenhow, D. T., Gillen, K. J., Vohra, S. K. & Wardman, P. (1995). Pestic. Sci. 44, 49–58.
  13. Pollers-Wieers, C., Vekemans, J., Toppet, S. & Hoornaert, G. (1981). Tetrahedron, 37, 4321–4326.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Wang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757–7768. [DOI] [PubMed]
  17. Yu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001. [DOI] [PubMed]
  18. Zhang, Y.-H., Zhang, H.-J., Wu, F., Chen, Y.-H., Ma, X.-Q., Du, J.-Q., Zhou, Z.-L., Li, J.-Y., Nan, F.-J. & Li, J. (2006). FEBS J. 273, 4842–4852. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811015315/lh5237sup1.cif

e-67-o1271-sup1.cif (22.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015315/lh5237Isup2.hkl

e-67-o1271-Isup2.hkl (305.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES