Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1097. doi: 10.1107/S1600536811012785

N-(2-Chloro­phenyl­sulfon­yl)acetamide

K Shakuntala a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3089153  PMID: 21754417

Abstract

The asymmetric unit of the title compound, C8H8ClNO3S, contains two independent mol­ecules in which the C—S—N—C torsion angles are −71.7 (3) and 61.2 (3)°. The benzene rings and the SO2—NH—CO—C segments form dihedral angles of 80.2 (1) and 88.1 (2)° in the two independent mol­ecules. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains in the b-axis direction.

Related literature

For the sulfanilamide moiety in sulfonamide drugs, see; Maren (1976). For its ability to form hydrogen bonds in the solid state, see; Yang & Guillory (1972). For hydrogen-bonding modes of sulfonamides, see; Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2000), of N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007) and of N-(substituted phenyl­sulfon­yl)-substituted amides, see: Gowda et al. (2010).graphic file with name e-67-o1097-scheme1.jpg

Experimental

Crystal data

  • C8H8ClNO3S

  • M r = 233.66

  • Monoclinic, Inline graphic

  • a = 11.215 (2) Å

  • b = 9.393 (2) Å

  • c = 19.655 (3) Å

  • β = 98.61 (2)°

  • V = 2047.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 K

  • 0.16 × 0.16 × 0.04 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.916, T max = 0.978

  • 8327 measured reflections

  • 4168 independent reflections

  • 1942 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.099

  • S = 0.95

  • 4168 reflections

  • 261 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012785/vm2086sup1.cif

e-67-o1097-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012785/vm2086Isup2.hkl

e-67-o1097-Isup2.hkl (204.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.85 (2) 2.03 (2) 2.848 (4) 162 (3)
N2—H2N⋯O6ii 0.84 (2) 1.96 (2) 2.788 (4) 172 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

supplementary crystallographic information

Comment

The structures of sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). The affinity for hydrogen bonding in the solid state due to the presence of various hydrogen bond donors and acceptors give rise to polymorphism (Yang & Guillory, 1972). The hydrogen bonding preferences of sulfonamides have also been investigated (Adsmond & Grant, 2001). The nature and position of substituents play a significant role on the crystal structures of N-(aryl)-amides and N-(aryl)- sulfonoamides (Gowda et al., 2000, 2007, 2010). As a part of studying the effects of substituents on the structures of this class of compounds, the structure of N-(2-chlorophenylsulfonyl)-acetamide (I) has been determined (Fig. 1). The asymmetric unit of (I) contains two independent molecules. The rms deviation of a fit of the inverted molecule 2 (containing Cl2) on molecule 1 (containing Cl1) is 0.278 Å for 12 fitted atoms (excluding H atoms and O atoms SO2 groups). In one of the molecules, the conformation of the N—C bond in the C—SO2—NH—C(O) segment has gauche torsions with respect to the S═O bonds, the torsional angles being C15—N2—S2—O5 = -54.0 (4)° and C15—N2—S2—O4 = 176.4 (3)°. The conformations of the N—H and C=O bonds of these segments are anti to each other, similar to that observed in N-(phenylsulfonyl)-acetamide (II) (Gowda et al., 2010).

The molecules in (I) are bent at the S-atom with a C—S—N—C torsion angles of -71.7 (3)° and 61.2 (3)° in the two independent molecules, compared to the values of -58.8 (4)° in (II),

Further, the dihedral angles between the benzene rings and the SO2—NH—CO—C groups in (I) are 80.2 (1)° in molecule 1 and 88.1 (2)° in molecule 2, compared to the values of 89.0 (2)° in (II).

In the crystal structure, the intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into chains in the b-direction. Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing 2-chlorobenzenesulfonamide (0.10 mole) with an excess of acetyl chloride (0.20 mole) for one hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra.

Plate like colourless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution of the compound.

Refinement

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H distance = 0.93 Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H8ClNO3S F(000) = 960
Mr = 233.66 Dx = 1.516 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1468 reflections
a = 11.215 (2) Å θ = 2.6–27.9°
b = 9.393 (2) Å µ = 0.56 mm1
c = 19.655 (3) Å T = 293 K
β = 98.61 (2)° Plate, colourless
V = 2047.2 (6) Å3 0.16 × 0.16 × 0.04 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 4168 independent reflections
Radiation source: fine-focus sealed tube 1942 reflections with I > 2σ(I)
graphite Rint = 0.048
Rotation method data acquisition using ω and φ scans θmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −10→14
Tmin = 0.916, Tmax = 0.978 k = −9→11
8327 measured reflections l = −24→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0348P)2] where P = (Fo2 + 2Fc2)/3
4168 reflections (Δ/σ)max < 0.001
261 parameters Δρmax = 0.26 e Å3
2 restraints Δρmin = −0.26 e Å3

Special details

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.51810 (9) 0.17437 (11) 0.37185 (7) 0.0865 (4)
S1 0.27802 (8) 0.36595 (10) 0.38303 (5) 0.0430 (3)
O1 0.19970 (19) 0.4751 (2) 0.39993 (13) 0.0544 (7)
O2 0.27435 (19) 0.2294 (2) 0.41421 (12) 0.0536 (7)
O3 0.2486 (2) 0.5660 (3) 0.26563 (13) 0.0541 (7)
N1 0.2528 (2) 0.3364 (3) 0.29999 (16) 0.0379 (8)
H1N 0.248 (3) 0.249 (2) 0.2887 (17) 0.045*
C1 0.4262 (3) 0.4343 (4) 0.39817 (17) 0.0374 (9)
C2 0.5274 (3) 0.3523 (4) 0.39431 (19) 0.0474 (10)
C3 0.6403 (3) 0.4118 (5) 0.4089 (2) 0.0562 (11)
H3 0.7082 0.3568 0.4057 0.067*
C4 0.6532 (3) 0.5523 (5) 0.4280 (2) 0.0572 (11)
H4 0.7298 0.5916 0.4388 0.069*
C5 0.5534 (4) 0.6345 (4) 0.43133 (19) 0.0549 (11)
H5 0.5623 0.7299 0.4437 0.066*
C6 0.4403 (3) 0.5763 (4) 0.41646 (18) 0.0455 (10)
H6 0.3727 0.6325 0.4187 0.055*
C7 0.2354 (3) 0.4414 (4) 0.2506 (2) 0.0382 (9)
C8 0.1998 (3) 0.3873 (4) 0.17924 (19) 0.0552 (11)
H8A 0.2523 0.3105 0.1709 0.066*
H8B 0.2062 0.4627 0.1470 0.066*
H8C 0.1181 0.3537 0.1738 0.066*
Cl2 0.71788 (9) 0.38447 (10) 0.10127 (6) 0.0742 (4)
S2 0.55209 (8) 0.57945 (11) 0.18903 (6) 0.0530 (3)
O4 0.4912 (2) 0.4460 (3) 0.18511 (14) 0.0686 (8)
O5 0.5000 (2) 0.7009 (3) 0.21600 (15) 0.0696 (8)
O6 0.7597 (2) 0.7639 (3) 0.22798 (14) 0.0606 (8)
N2 0.6830 (3) 0.5457 (3) 0.23640 (17) 0.0460 (8)
H2N 0.693 (3) 0.460 (2) 0.2471 (18) 0.055*
C9 0.5848 (3) 0.6257 (4) 0.10696 (19) 0.0399 (9)
C10 0.6495 (3) 0.5395 (4) 0.0678 (2) 0.0477 (10)
C11 0.6630 (3) 0.5774 (5) 0.0015 (2) 0.0643 (12)
H11 0.7069 0.5194 −0.0241 0.077*
C12 0.6121 (4) 0.6996 (5) −0.0266 (2) 0.0698 (13)
H12 0.6203 0.7244 −0.0715 0.084*
C13 0.5487 (3) 0.7862 (4) 0.0114 (3) 0.0652 (13)
H13 0.5151 0.8702 −0.0077 0.078*
C14 0.5342 (3) 0.7500 (4) 0.0776 (2) 0.0530 (11)
H14 0.4903 0.8091 0.1026 0.064*
C15 0.7731 (3) 0.6440 (4) 0.2501 (2) 0.0486 (10)
C16 0.8857 (3) 0.5899 (4) 0.2931 (2) 0.0636 (12)
H16A 0.8666 0.5536 0.3358 0.076*
H16B 0.9429 0.6662 0.3021 0.076*
H16C 0.9199 0.5151 0.2688 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0709 (7) 0.0570 (7) 0.1361 (13) −0.0036 (6) 0.0295 (7) −0.0294 (8)
S1 0.0420 (5) 0.0432 (6) 0.0434 (7) −0.0090 (5) 0.0055 (4) −0.0003 (5)
O1 0.0476 (15) 0.0558 (17) 0.0618 (19) −0.0011 (12) 0.0151 (12) −0.0133 (15)
O2 0.0601 (15) 0.0492 (16) 0.051 (2) −0.0157 (12) 0.0075 (13) 0.0148 (14)
O3 0.0791 (17) 0.0272 (15) 0.054 (2) −0.0058 (13) 0.0025 (13) 0.0003 (14)
N1 0.0472 (17) 0.0241 (16) 0.039 (2) −0.0065 (14) −0.0047 (14) −0.0022 (17)
C1 0.040 (2) 0.037 (2) 0.034 (2) −0.0069 (17) 0.0015 (16) −0.0035 (19)
C2 0.048 (2) 0.049 (2) 0.046 (3) −0.0083 (19) 0.0077 (18) −0.005 (2)
C3 0.041 (2) 0.071 (3) 0.057 (3) −0.004 (2) 0.0120 (18) −0.002 (3)
C4 0.050 (3) 0.072 (3) 0.048 (3) −0.028 (2) 0.0022 (19) 0.005 (3)
C5 0.062 (3) 0.053 (3) 0.048 (3) −0.021 (2) 0.002 (2) 0.003 (2)
C6 0.048 (2) 0.045 (2) 0.042 (3) −0.0023 (19) 0.0035 (17) 0.005 (2)
C7 0.038 (2) 0.031 (2) 0.045 (3) −0.0024 (17) 0.0037 (17) −0.001 (2)
C8 0.073 (3) 0.046 (3) 0.045 (3) 0.004 (2) 0.000 (2) 0.002 (2)
Cl2 0.0904 (8) 0.0504 (7) 0.0851 (10) 0.0276 (6) 0.0237 (6) −0.0008 (6)
S2 0.0460 (6) 0.0515 (7) 0.0632 (8) 0.0038 (5) 0.0141 (5) −0.0027 (6)
O4 0.0527 (15) 0.0630 (19) 0.091 (2) −0.0193 (14) 0.0146 (14) 0.0033 (17)
O5 0.0653 (17) 0.0676 (19) 0.081 (2) 0.0259 (14) 0.0283 (15) −0.0087 (17)
O6 0.0748 (18) 0.0335 (16) 0.069 (2) −0.0025 (14) −0.0023 (14) −0.0024 (16)
N2 0.0552 (19) 0.0281 (17) 0.054 (2) 0.0019 (16) 0.0048 (16) 0.0010 (18)
C9 0.0354 (19) 0.037 (2) 0.046 (3) 0.0006 (17) 0.0034 (17) −0.004 (2)
C10 0.047 (2) 0.039 (2) 0.055 (3) 0.0045 (18) 0.001 (2) −0.003 (2)
C11 0.074 (3) 0.059 (3) 0.060 (4) 0.005 (2) 0.013 (2) −0.004 (3)
C12 0.091 (3) 0.067 (3) 0.049 (3) 0.000 (3) 0.001 (3) 0.000 (3)
C13 0.069 (3) 0.051 (3) 0.068 (4) 0.006 (2) −0.014 (3) 0.008 (3)
C14 0.044 (2) 0.046 (3) 0.066 (4) 0.0048 (19) −0.001 (2) −0.006 (3)
C15 0.056 (3) 0.039 (2) 0.050 (3) 0.003 (2) 0.005 (2) −0.008 (2)
C16 0.070 (3) 0.054 (3) 0.061 (3) 0.004 (2) −0.009 (2) 0.005 (2)

Geometric parameters (Å, °)

Cl1—C2 1.728 (4) Cl2—C10 1.729 (4)
S1—O1 1.421 (2) S2—O5 1.420 (2)
S1—O2 1.425 (2) S2—O4 1.424 (2)
S1—N1 1.638 (3) S2—N2 1.647 (3)
S1—C1 1.765 (3) S2—C9 1.761 (4)
O3—C7 1.210 (4) O6—C15 1.209 (4)
N1—C7 1.377 (4) N2—C15 1.366 (4)
N1—H1N 0.850 (17) N2—H2N 0.835 (17)
C1—C2 1.383 (4) C9—C14 1.386 (4)
C1—C6 1.384 (4) C9—C10 1.393 (5)
C2—C3 1.375 (4) C10—C11 1.382 (5)
C3—C4 1.375 (5) C11—C12 1.361 (5)
C3—H3 0.9300 C11—H11 0.9300
C4—C5 1.369 (5) C12—C13 1.373 (5)
C4—H4 0.9300 C12—H12 0.9300
C5—C6 1.373 (4) C13—C14 1.377 (5)
C5—H5 0.9300 C13—H13 0.9300
C6—H6 0.9300 C14—H14 0.9300
C7—C8 1.490 (5) C15—C16 1.499 (4)
C8—H8A 0.9600 C16—H16A 0.9600
C8—H8B 0.9600 C16—H16B 0.9600
C8—H8C 0.9600 C16—H16C 0.9600
O1—S1—O2 119.34 (15) O5—S2—O4 120.45 (16)
O1—S1—N1 109.54 (15) O5—S2—N2 108.97 (17)
O2—S1—N1 105.33 (15) O4—S2—N2 103.94 (16)
O1—S1—C1 107.31 (16) O5—S2—C9 107.31 (17)
O2—S1—C1 110.00 (15) O4—S2—C9 109.35 (17)
N1—S1—C1 104.32 (15) N2—S2—C9 105.95 (16)
C7—N1—S1 124.5 (2) C15—N2—S2 123.5 (2)
C7—N1—H1N 121 (2) C15—N2—H2N 123 (2)
S1—N1—H1N 115 (2) S2—N2—H2N 113 (2)
C2—C1—C6 119.2 (3) C14—C9—C10 118.3 (4)
C2—C1—S1 123.2 (3) C14—C9—S2 117.4 (3)
C6—C1—S1 117.5 (3) C10—C9—S2 124.0 (3)
C3—C2—C1 120.0 (3) C11—C10—C9 120.7 (3)
C3—C2—Cl1 117.7 (3) C11—C10—Cl2 118.1 (3)
C1—C2—Cl1 122.3 (3) C9—C10—Cl2 121.2 (3)
C2—C3—C4 120.2 (4) C12—C11—C10 120.1 (4)
C2—C3—H3 119.9 C12—C11—H11 120.0
C4—C3—H3 119.9 C10—C11—H11 120.0
C5—C4—C3 120.1 (3) C11—C12—C13 119.9 (4)
C5—C4—H4 120.0 C11—C12—H12 120.0
C3—C4—H4 120.0 C13—C12—H12 120.0
C4—C5—C6 120.1 (4) C12—C13—C14 120.8 (4)
C4—C5—H5 120.0 C12—C13—H13 119.6
C6—C5—H5 120.0 C14—C13—H13 119.6
C5—C6—C1 120.4 (3) C13—C14—C9 120.1 (4)
C5—C6—H6 119.8 C13—C14—H14 119.9
C1—C6—H6 119.8 C9—C14—H14 119.9
O3—C7—N1 121.4 (3) O6—C15—N2 120.6 (3)
O3—C7—C8 124.4 (4) O6—C15—C16 124.6 (3)
N1—C7—C8 114.1 (3) N2—C15—C16 114.7 (3)
C7—C8—H8A 109.5 C15—C16—H16A 109.5
C7—C8—H8B 109.5 C15—C16—H16B 109.5
H8A—C8—H8B 109.5 H16A—C16—H16B 109.5
C7—C8—H8C 109.5 C15—C16—H16C 109.5
H8A—C8—H8C 109.5 H16A—C16—H16C 109.5
H8B—C8—H8C 109.5 H16B—C16—H16C 109.5
O1—S1—N1—C7 42.9 (3) O5—S2—N2—C15 −54.0 (3)
O2—S1—N1—C7 172.5 (2) O4—S2—N2—C15 176.4 (3)
C1—S1—N1—C7 −71.7 (3) C9—S2—N2—C15 61.2 (3)
O1—S1—C1—C2 172.8 (3) O5—S2—C9—C14 −13.5 (3)
O2—S1—C1—C2 41.5 (3) O4—S2—C9—C14 118.8 (3)
N1—S1—C1—C2 −71.0 (3) N2—S2—C9—C14 −129.8 (3)
O1—S1—C1—C6 −5.5 (3) O5—S2—C9—C10 172.2 (3)
O2—S1—C1—C6 −136.8 (3) O4—S2—C9—C10 −55.6 (3)
N1—S1—C1—C6 110.7 (3) N2—S2—C9—C10 55.9 (3)
C6—C1—C2—C3 0.3 (5) C14—C9—C10—C11 0.2 (5)
S1—C1—C2—C3 −178.0 (3) S2—C9—C10—C11 174.5 (3)
C6—C1—C2—Cl1 −180.0 (3) C14—C9—C10—Cl2 178.7 (2)
S1—C1—C2—Cl1 1.8 (5) S2—C9—C10—Cl2 −6.9 (4)
C1—C2—C3—C4 0.8 (6) C9—C10—C11—C12 −0.5 (6)
Cl1—C2—C3—C4 −179.0 (3) Cl2—C10—C11—C12 −179.1 (3)
C2—C3—C4—C5 −1.4 (6) C10—C11—C12—C13 0.9 (6)
C3—C4—C5—C6 1.0 (6) C11—C12—C13—C14 −0.9 (6)
C4—C5—C6—C1 0.1 (6) C12—C13—C14—C9 0.7 (6)
C2—C1—C6—C5 −0.7 (5) C10—C9—C14—C13 −0.3 (5)
S1—C1—C6—C5 177.7 (3) S2—C9—C14—C13 −175.0 (3)
S1—N1—C7—O3 6.9 (4) S2—N2—C15—O6 0.7 (5)
S1—N1—C7—C8 −173.2 (2) S2—N2—C15—C16 −178.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O3i 0.85 (2) 2.03 (2) 2.848 (4) 162 (3)
N2—H2N···O6ii 0.84 (2) 1.96 (2) 2.788 (4) 172 (3)

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2086).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.
  3. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.
  5. Maren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309–327. [DOI] [PubMed]
  6. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Yang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26–40. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012785/vm2086sup1.cif

e-67-o1097-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012785/vm2086Isup2.hkl

e-67-o1097-Isup2.hkl (204.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES