Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):m522–m523. doi: 10.1107/S1600536811011603

Bis(2-phenyl­ethyl­ammonium) tetra­chloridocobaltate(II)

In-Hwan Oh a, Dahye Kim b, Young-Duk Huh b, Younbong Park c, J M Sungil Park a, Seong-Hun Park d,*
PMCID: PMC3089155  PMID: 21754265

Abstract

Crystals of the title compound, (C6H5CH2CH2NH3)2[CoCl4], were grown by the solvent-evaporation method. This inorganic–organic hybrid compound exhibits a layered structure in which isolated CoCl4 inorganic layers alternate with bilayers of phenylethylammonium cations. Although the inorganic anion is zero-dimensional, the layered structure is stabilized via N—H⋯Cl hydrogen bonds. The CoCl4 tetra­hedra connect to the cations through N—H⋯Cl hydrogen bonds, building a two-dimensional network extending parallel to (010).

Related literature

For inorganic–organic hybrids containing tetra­hedral anions, see: Abdi et al. (2005); Huh et al. (2006); Zouari & Ben Salah, (2004). For low-dimensional magnetism in inorganic–organic perovskite systems, see: de Jongh (1986); Park & Lee (2005, 2006); Depmeier (2009); Mitzi (1999). For classification of hydrogen bonds depending on bond lengths, see: Steiner (1998, 2002).graphic file with name e-67-0m522-scheme1.jpg

Experimental

Crystal data

  • (C8H12N)2[CoCl4]

  • M r = 445.10

  • Monoclinic, Inline graphic

  • a = 7.4623 (13) Å

  • b = 24.664 (3) Å

  • c = 11.1997 (16) Å

  • β = 91.769 (13)°

  • V = 2060.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 296 K

  • 0.50 × 0.40 × 0.35 mm

Data collection

  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.237, T max = 0.265

  • 4692 measured reflections

  • 3595 independent reflections

  • 1566 reflections with I > 2σ(I)

  • R int = 0.041

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.161

  • S = 1.03

  • 3595 reflections

  • 211 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011603/si2347sup1.cif

e-67-0m522-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011603/si2347Isup2.hkl

e-67-0m522-Isup2.hkl (172.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co1—Cl4 2.229 (2)
Co1—Cl2 2.251 (2)
Co1—Cl1 2.272 (2)
Co1—Cl3 2.276 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯Cl1i 0.89 2.62 3.445 (6) 156
N2—H2A⋯Cl4ii 0.89 2.51 3.321 (6) 152
N1—H1C⋯Cl3iii 0.89 2.42 3.291 (8) 167
N1—H1B⋯Cl1 0.89 2.55 3.382 (7) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

IHO thanks Professor G. Heger for discussion of the results and for suggestions.

supplementary crystallographic information

Comment

The title compound, (C6H5CH2CH2NH3)2CoCl4, belongs to the layered inorganic-organic hybrid systems of general formula A2MX4 (where A = organic cation, M = divalent metal, X = halides). These systems are of special interest because of typical low-dimensional magnetic systems (de Jongh, 1986; Mitzi, 1999). To investigate the role of interlayer spacing on the magnetic properties, a variety of hybrid systems using long-chain alkylamine have been developed. However, their crystallographic studies are limited because their insolubility make it difficult to obtain a good single-crystal. As a part of our research interest in the low-dimensional magnetism (Park & Lee 2005, 2006), we synthesized a series of the layered inorganic-organic perovskite materials using phenethylamine and present the crystal structure of (C6H5CH2CH2NH3)2CoCl4. Among the phenethylammonium-based compounds, several examples with tetrahedral anions are known to literature, for example, (C6H5C2H4NH3)2ZnBr4 (Huh et al., 2006), (C6H5(CH2)2NH3)2Cd0.75Hg0.25Br4 (Zouari & Ben Salah, 2004), (C8H12N)TlBr4 (Abdi et al., 2005). Except for (C8H12N)TlBr4, in which the heavy atom has trivalent, the other bivalent compounds have tetrahedral MBr4 anions with non-magnetic ions in common. The present paper is the first report of the tetrahedral MCl4 with magnetic ion using phenethylamine.

Fig. 1 shows the molecular structure of (C6H5CH2CH2NH3)2CoCl4. The asymmetric unit of the title compound consists of two phenethylammonium cations and one isolated CoCl4 anion; the latter is arranged as an distorted tetrahedron, whose bond lengths ranging from 2.229 (2) to 2.276 (2) Å (Table 1). Interestingly, the crystal structure exhibits a layered inorganic-organic structure although the dimension of inorganic backbone is 0-dimensional or isolated CoCl4 tetrahedra, as shown in Fig. 2. The CoCl4 tetrahedral groups are isolated and are connected to the organic cations by N—H···Cl hydrogen bonds via the NH3-groups. Tab. 2 and Fig. 2 display also the N—H···Cl hydrogen bonds of (C6H5CH2CH2NH3)2CoCl4. Between the CoCl4 layers, —CNH3+ ions are located in the space between CoCl4 tetrahedra, which is formed by Cl atoms. N—H···Cl hydrogen bonds connect the two groups. The CoCl4 tetrahedra connect the C6H5CH2CH2NH3+ ions through hydrogen bonds to build a two-dimensional hydrogen-bonded NH3—CoCl4 network. Due to the hydrogen bonds, the Co—Cl bond lengths increase, resulting in slightly deformed CoCl4 tetrahedra. The obtained bond lengths suggest that the strength of the N—H···Cl hydrogen bonds in the structure can be classified as weak (Steiner, 1998; Steiner, 2002).

Experimental

CoCl2.6H2O (99%, Aldrich), phenethylamine (C6H5CH2CH2NH2, 99.5%, Aldrich), HCl (37 wt % in water, Aldrich), and methanol (anhydrous, 99.8%, Aldrich) are used as received. For the preparation of single-crystal (C6H5CH2CH2NH3)2CoCl4, 10 ml of a 0.25M CoCl2.6H2O methanol solution were mixed with 10 ml of a 0.5M phenethylamine methanol solution. 1 mL of an HCl solution was added to the mixed solution. Blue crystals of (C6H5CH2CH2NH3)2CoCl4 were obtained after 7 days at room temperature. Elemental analysis of C, H, and N was carried out by CHNS analysis (CE Instrument EA 1112 series). The expected formula of C16H24N2Cl4Co was confirmed. The relative weights calculated for C16H24N2Cl4Co were: C, 43.17%, H, 5.43%, N, 6.29%; found: C, 43.14%, H, 5.44%, N, 6.23%.

Refinement

H atoms bonded to C were positioned geometrically and refined based on a riding model (C—H = 0.95Å in aromatic ring and 0.99 Å for CH2) with Uiso(H) = 1.2 of their parent atoms. H atoms at N atoms were located in a difference map and refined with distance constrained of N—H = 0.89 Å, and with Uiso(H) = 1.2Ueq(N). C7—C8 and C15—C16 bond lengths were refined with restrained distances 1.545 (2) Å.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (C6H5CH2CH2NH3)2CoCl4, showing the atomic labeling and 50% probability displacement elllisoids for non-H atoms.

Fig. 2.

Fig. 2.

Crystal structure of (C6H5CH2CH2NH3)2CoCl4 viewed along the a axis, showing the N—H···Cl hydrogen bonds as dashed lines.

Crystal data

(C8H12N)2[CoCl4] F(000) = 916
Mr = 445.10 Dx = 1.435 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 38 reflections
a = 7.4623 (13) Å θ = 3.3–12.3°
b = 24.664 (3) Å µ = 1.35 mm1
c = 11.1997 (16) Å T = 296 K
β = 91.769 (13)° Rectangle, blue
V = 2060.3 (5) Å3 0.5 × 0.4 × 0.35 mm
Z = 4

Data collection

Bruker P4 diffractometer 1566 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.041
graphite θmax = 25.0°, θmin = 2.0°
2θ/ω scans h = −1→8
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −1→29
Tmin = 0.237, Tmax = 0.265 l = −13→13
4692 measured reflections 3 standard reflections every 97 reflections
3595 independent reflections intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0502P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3595 reflections Δρmax = 0.43 e Å3
211 parameters Δρmin = −0.30 e Å3
2 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0018 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.25951 (13) 0.52176 (4) 0.77334 (8) 0.0581 (3)
Cl1 0.0134 (3) 0.55281 (9) 0.67021 (18) 0.0911 (7)
Cl2 0.2717 (3) 0.55493 (8) 0.96063 (16) 0.0901 (7)
Cl3 0.5051 (3) 0.54580 (9) 0.67008 (18) 0.0895 (7)
Cl4 0.2382 (4) 0.43175 (8) 0.78339 (19) 0.1218 (11)
C1 0.3714 (10) 0.6982 (4) 0.1447 (7) 0.075 (2)
H1 0.3974 0.6694 0.0946 0.090*
C2 0.4215 (10) 0.7492 (4) 0.1131 (6) 0.081 (3)
H31 0.4849 0.7546 0.0439 0.097*
C3 0.3783 (11) 0.7927 (3) 0.1835 (8) 0.083 (2)
H3 0.4077 0.8278 0.1608 0.099*
C4 0.2910 (10) 0.7836 (4) 0.2879 (7) 0.081 (2)
H4 0.2642 0.8125 0.3376 0.097*
C5 0.2433 (9) 0.7316 (4) 0.3188 (6) 0.068 (2)
H5 0.1823 0.7258 0.3888 0.082*
C6 0.2847 (10) 0.6882 (3) 0.2473 (6) 0.066 (2)
C7 0.2286 (12) 0.6304 (4) 0.2746 (7) 0.099 (3)
H7A 0.0987 0.6285 0.2720 0.118*
H7B 0.2717 0.6067 0.2126 0.118*
C8 0.2921 (13) 0.6110 (3) 0.3860 (7) 0.106 (3)
H8A 0.2501 0.6346 0.4484 0.127*
H8B 0.4221 0.6121 0.3886 0.127*
C9 0.2308 (9) 0.2503 (3) 0.1306 (5) 0.0560 (17)
H9 0.2728 0.2687 0.1983 0.067*
C10 0.2513 (9) 0.1950 (3) 0.1235 (6) 0.0627 (19)
H10 0.3066 0.1762 0.1866 0.075*
C11 0.1908 (10) 0.1675 (3) 0.0243 (7) 0.069 (2)
H11 0.2044 0.1301 0.0198 0.083*
C12 0.1107 (10) 0.1951 (3) −0.0676 (6) 0.067 (2)
H12 0.0702 0.1763 −0.1353 0.080*
C13 0.0887 (9) 0.2501 (3) −0.0622 (5) 0.0608 (18)
H13 0.0334 0.2684 −0.1260 0.073*
C14 0.1485 (9) 0.2788 (3) 0.0380 (6) 0.0562 (17)
C15 0.1166 (11) 0.3392 (3) 0.0449 (7) 0.086 (2)
H15A 0.0752 0.3519 −0.0331 0.103*
H15B 0.0215 0.3458 0.1002 0.103*
C16 0.2724 (11) 0.3707 (3) 0.0826 (7) 0.085 (2)
H16A 0.3704 0.3625 0.0307 0.102*
H16B 0.3088 0.3602 0.1632 0.102*
N1 0.2316 (11) 0.5540 (3) 0.4099 (6) 0.115 (3)
H1A 0.1329 0.5469 0.3661 0.172*
H1B 0.2083 0.5505 0.4870 0.172*
H1C 0.3177 0.5309 0.3909 0.172*
N2 0.2383 (8) 0.4300 (2) 0.0799 (5) 0.0758 (18)
H2A 0.2107 0.4403 0.0053 0.114*
H2B 0.3362 0.4475 0.1059 0.114*
H2C 0.1476 0.4378 0.1267 0.114*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0607 (6) 0.0511 (5) 0.0628 (6) 0.0000 (5) 0.0052 (4) −0.0041 (5)
Cl1 0.0673 (13) 0.1124 (17) 0.0931 (14) 0.0206 (13) −0.0035 (11) 0.0131 (12)
Cl2 0.135 (2) 0.0655 (12) 0.0702 (12) 0.0041 (13) 0.0055 (13) −0.0163 (10)
Cl3 0.0707 (13) 0.1058 (16) 0.0931 (14) −0.0135 (13) 0.0222 (11) −0.0084 (12)
Cl4 0.225 (3) 0.0497 (11) 0.0914 (15) −0.0165 (16) 0.0130 (18) −0.0131 (10)
C1 0.060 (5) 0.098 (6) 0.066 (5) 0.007 (5) 0.001 (4) −0.013 (4)
C2 0.048 (5) 0.140 (8) 0.055 (4) 0.009 (6) 0.004 (4) 0.020 (5)
C3 0.068 (6) 0.082 (6) 0.097 (6) −0.007 (5) −0.017 (5) 0.030 (5)
C4 0.068 (6) 0.099 (7) 0.076 (5) 0.006 (5) −0.005 (4) −0.017 (5)
C5 0.059 (5) 0.104 (6) 0.043 (4) 0.009 (5) 0.007 (3) 0.006 (4)
C6 0.057 (5) 0.077 (5) 0.065 (5) 0.006 (4) 0.000 (4) 0.009 (4)
C7 0.101 (7) 0.099 (7) 0.095 (6) −0.012 (6) −0.019 (6) 0.013 (5)
C8 0.130 (9) 0.090 (7) 0.097 (6) −0.034 (6) −0.008 (6) 0.013 (5)
C9 0.056 (4) 0.063 (4) 0.049 (4) −0.012 (4) 0.003 (3) 0.000 (3)
C10 0.062 (5) 0.060 (5) 0.065 (4) −0.007 (4) −0.007 (4) 0.019 (4)
C11 0.071 (5) 0.052 (4) 0.085 (5) −0.007 (4) 0.002 (4) −0.002 (4)
C12 0.066 (5) 0.083 (6) 0.050 (4) −0.009 (4) 0.001 (4) −0.016 (4)
C13 0.061 (5) 0.072 (5) 0.049 (4) 0.000 (4) −0.009 (3) 0.014 (4)
C14 0.053 (4) 0.051 (4) 0.064 (4) 0.000 (4) 0.001 (4) 0.008 (3)
C15 0.077 (6) 0.066 (5) 0.115 (6) −0.001 (5) −0.010 (5) 0.007 (5)
C16 0.089 (6) 0.054 (5) 0.112 (6) 0.003 (5) −0.011 (5) −0.003 (4)
N1 0.177 (8) 0.066 (4) 0.103 (5) −0.025 (5) 0.033 (5) −0.003 (4)
N2 0.099 (5) 0.050 (4) 0.079 (4) 0.002 (3) 0.005 (4) 0.003 (3)

Geometric parameters (Å, °)

Co1—Cl4 2.229 (2) C15—C16 1.451 (9)
Co1—Cl2 2.251 (2) C16—N2 1.485 (8)
Co1—Cl1 2.272 (2) C1—H1 0.931
Co1—Cl3 2.276 (2) C2—H31 0.931
C1—C6 1.358 (9) C3—H3 0.931
C1—C2 1.363 (10) C4—H4 0.929
C2—C3 1.376 (10) C5—H5 0.929
C3—C4 1.374 (10) C7—H7A 0.970
C4—C5 1.377 (10) C7—H7B 0.970
C5—C6 1.379 (10) C8—H8A 0.968
C6—C7 1.519 (10) C8—H8B 0.969
C7—C8 1.405 (9) C9—H9 0.930
C8—N1 1.502 (9) C10—H10 0.930
C9—C10 1.376 (8) C11—H11 0.929
C9—C14 1.380 (8) C12—H12 0.929
C10—C11 1.367 (9) C13—H13 0.930
C11—C12 1.358 (9) C15—H15A 0.970
C12—C13 1.368 (9) C15—H15B 0.970
C13—C14 1.389 (8) C16—H16A 0.970
C14—C15 1.510 (9) C16—H16B 0.970
Cl4—Co1—Cl2 108.41 (8) C16—C15—C14 114.6 (6)
Cl4—Co1—Cl1 107.67 (11) C15—C16—N2 112.8 (7)
Cl2—Co1—Cl1 111.10 (9) H5—C5—C4 119.6
Cl4—Co1—Cl3 110.19 (10) H2A—N2—H2C 109.5
Cl2—Co1—Cl3 111.65 (9) H2C—N2—H2B 109.4
Cl1—Co1—Cl3 107.75 (9) H2A—N2—H2B 109.4
C6—C1—C2 122.0 (7) C16—N2—H2A 109.4
C1—C2—C3 120.0 (7) C16—N2—H2A 109.4
C4—C3—C2 119.1 (8) C16—N2—H2B 109.5
C3—C4—C5 119.9 (8) H1A—N1—C8 109.3
C4—C5—C6 120.9 (7) H1B—N1—C8 109.4
C1—C6—C5 118.1 (7) H1C—N1—C8 109.4
C1—C6—C7 118.9 (7) H1A—N1—H1B 109.5
C5—C6—C7 123.0 (7) H1B—N1—H1C 109.5
C8—C7—C6 114.3 (7) H1A—N1—H1C 109.6
C7—C8—N1 112.5 (7) C3—C4—H4 119.9
C10—C9—C14 120.6 (6) C2—C3—H3 120.5
C11—C10—C9 120.3 (6) C2—C1—H1 119.0
C12—C11—C10 119.6 (7) H1—C1—C6 118.8
C11—C12—C13 121.0 (6) C6—C7—H7B 108.5
C12—C13—C14 120.3 (6) C6—C7—H7A 108.4
C9—C14—C13 118.2 (6) C7—C8—H8B 108.9
C9—C14—C15 122.0 (6) C7—C8—H8A 109.0
C13—C14—C15 119.7 (6)
C6—C1—C2—C3 −2.5 (12) C14—C9—C10—C11 0.2 (11)
C1—C2—C3—C4 2.6 (12) C9—C10—C11—C12 0.2 (11)
C2—C3—C4—C5 −2.0 (11) C10—C11—C12—C13 −0.4 (11)
C3—C4—C5—C6 1.1 (11) C11—C12—C13—C14 0.1 (11)
C2—C1—C6—C5 1.7 (11) C10—C9—C14—C13 −0.5 (10)
C2—C1—C6—C7 178.3 (7) C10—C9—C14—C15 177.3 (6)
C4—C5—C6—C1 −0.9 (11) C12—C13—C14—C9 0.4 (10)
C4—C5—C6—C7 −177.4 (7) C12—C13—C14—C15 −177.5 (7)
C1—C6—C7—C8 125.0 (9) C9—C14—C15—C16 49.4 (10)
C5—C6—C7—C8 −58.6 (11) C13—C14—C15—C16 −132.8 (8)
C6—C7—C8—N1 179.3 (7) C14—C15—C16—N2 176.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2C···Cl1i 0.89 2.62 3.445 (6) 156.
N2—H2A···Cl4ii 0.89 2.51 3.321 (6) 152.
N1—H1C···Cl3iii 0.89 2.42 3.291 (8) 167.
N1—H1B···Cl1 0.89 2.55 3.382 (7) 156.

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2347).

References

  1. Abdi, M., Zouari, F., Chniba-Boudjada, N., Bordet, P. & Salah, A. B. (2005). Acta Cryst. E61, m240–m241.
  2. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (1996). XSCANS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Depmeier, W. (2009). Z. Kristallogr. 224, 287–294.
  5. Huh, Y. D., Kim, J. H., Kweon, S. S., Kuk, W. K., Hwang, C. S., Hyun, J. W., Kim, Y. J. & Park, Y. (2006). Curr. Appl. Phys. 6, 219–223.
  6. Jongh, L. J. de (1986). In Magnetic Properties of Layered Transition Metal Compounds. Dordrecht: Kluwer.
  7. Mitzi, D. B. (1999). Prog. Inorg. Chem. 48, 1–121.
  8. Park, S.-H. & Lee, C. E. (2005). J. Phys. Chem. B, 109, 1118–1124. [DOI] [PubMed]
  9. Park, S.-H. & Lee, C. E. (2006). Bull. Kor. Chem. Soc. 27, 1587–1591.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Steiner, T. (1998). Acta Cryst. B54, 456–463.
  14. Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.
  15. Zouari, F. & Ben Salah, A. (2004). Solid State Sci. 6, 847–851.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011603/si2347sup1.cif

e-67-0m522-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011603/si2347Isup2.hkl

e-67-0m522-Isup2.hkl (172.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES