Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1198. doi: 10.1107/S1600536811014152

3,4-Bis(4-bromo­phen­yl)-N-phenyl­maleimide

Yong Liu a, Shuai Zheng b, Jing Zhou b, Dongmei Gao b, Zhen-Ting Du b,*
PMCID: PMC3089159  PMID: 21754500

Abstract

In the title mol­ecule, C22H13Br2NO2, the three benzene rings are arranged in a propeller-like fashion around the central malemide ring, making dihedral angles of 48.2 (4), 30.2 (4) and 34.8 (4)° with the malemide ring. The C—C single-bond lengths connecting benzene groups and maleimide are significantly shorter [C—C = 1.468 (9) and 1.478 (9) Å] than a typical Csp 3—Csp 3 single bond, indicating partial conjugation between the benzene and the mal­eimide. A weak non­classical C—H⋯O hydrogen bond helps to stabilize the crystal structure.

Related literature

For general background to 3,4-diaryl-substituted maleimide derivatives, see: Fujii et al. (2001); Onimura et al. (2010); Shorunov et al. (2006).graphic file with name e-67-o1198-scheme1.jpg

Experimental

Crystal data

  • C22H13Br2NO2

  • M r = 483.13

  • Monoclinic, Inline graphic

  • a = 10.844 (5) Å

  • b = 18.594 (9) Å

  • c = 9.602 (5) Å

  • β = 102.760 (6)°

  • V = 1888.3 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.31 mm−1

  • T = 296 K

  • 0.32 × 0.30 × 0.24 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998) T min = 0.339, T max = 0.424

  • 8594 measured reflections

  • 3382 independent reflections

  • 1427 reflections with I > 2σ(I)

  • R int = 0.117

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.133

  • S = 0.94

  • 3382 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014152/rk2272sup1.cif

e-67-o1198-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014152/rk2272Isup2.hkl

e-67-o1198-Isup2.hkl (165.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O1i 0.93 2.41 3.267 (9) 153

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the Fundamental Research Funds for the Central Universities in NWSUAF (QN2009048) and the Excellent Young Funds 211020712 is greatly appreciated.

supplementary crystallographic information

Comment

3,4-Diaryl-substituted maleimide is a conjugated unit which has interesting optical and electronic properties. A number of 3,4-diaryl-substituted maleimide derivatives have been designed and synthesized to be used as monomer of some electro–optic polymers (Shorunov et al., 2006; Onimura et al., 2010). In the course of exploring new electro–optic compounds, we obtained a intermediate compound 3,4-bis(4-bromophenyl)-N-phenylmaleimide I. Here we report the structure and synthesis of title compound.

The molecule holds four rings. The maleimide ring locates the core position, and the other three benzene rings are arranged in a propeller–like fashion around the central malemide 5–membering ring with the dihedral angeles being 48.2 (4)° (C1–C6), 30.2 (4)° (C9–C14) and 34.8 (4)° (C17–C22). The C—C single bond lengths conecting benzene groups and maleimide unit are respectively 1.468 (9)Å (C4—C7) and 1.478 (9)Å (C17—C18), which are obviously shorter than typical Csp3—Csp3 single bond. This means that the bonding between the benzenes and the maleimide is quite conjugated.

The molecules of I are crystalized in P21/c space group which is different from that of N–3,4–triphenylmaleimide (Pbca, Fujii et al., 2001). There are no classic hydrogen bonds in this crystal structure. However, the weak intermolecular interaction C21—H21···O1i is helpful to the stabilization of the packing (Fig. 2). This intermolecular non–classical H–bond is characterized by the parameters: bond lengths of 0.93Å (C21—H21), 2.41Å (H21···O1i), 3.267 (9)Å (C21···O1i) and angle 153° (C21—H21···O1i). Symmetry code: (i) 1-x, -1/2+y, 1/2-z.

Experimental

3,4–Bis(4–bromophenyl)maleic anhydride (0.60 g, 1.47 mmol), 4–methylbenzenesulfonic acid (0.30 g, 3.26 mmol) and H2SO4 (2 ml) were dissolved in N,N–dimethylformamide (DMF, 1.0 ml) and toluene (20 ml) mixed solvent. After heating the mixture to refluxing, a toluene solution of anilin (0.20 g, 2.17 mmol) was slowly added. After stirring for 2 h, the mixture was cooled to 333 K and poured into 8% Na2CO3 solution and further stirred for 10 min. The solution was extracted with toluene and dried over Na2SO4. After removing the solvent, the crude product was purified by recrystallization from ethanol, affording the title compound, I, (0.51 g, 72%). Then the compound I was dissolved in THF, and yellow crystals were formed on slow evaporation at room temperature over one week.

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.93%A (for aromatic H) with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The molecular packing of I along b axis.

Crystal data

C22H13Br2NO2 F(000) = 952
Mr = 483.13 Dx = 1.699 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1226 reflections
a = 10.844 (5) Å θ = 2.2–20.8°
b = 18.594 (9) Å µ = 4.31 mm1
c = 9.602 (5) Å T = 296 K
β = 102.760 (6)° Block, yellow
V = 1888.3 (16) Å3 0.32 × 0.30 × 0.24 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3382 independent reflections
Radiation source: fine–focus sealed tube 1427 reflections with I > 2σ(I)
graphite Rint = 0.117
φ and ω scans θmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) h = −12→12
Tmin = 0.339, Tmax = 0.424 k = −22→21
8594 measured reflections l = −9→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0468P)2] where P = (Fo2 + 2Fc2)/3
3382 reflections (Δ/σ)max = 0.001
244 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.71 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero fornegative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.18239 (9) 1.08051 (4) −0.16015 (9) 0.0659 (4)
Br2 0.12170 (9) 0.59744 (5) −0.09998 (9) 0.0681 (4)
C1 0.2818 (7) 1.0177 (4) −0.0272 (8) 0.042 (2)
C2 0.3009 (7) 1.0324 (4) 0.1166 (8) 0.044 (2)
H2 0.2661 1.0735 0.1474 0.052*
C3 0.3718 (7) 0.9859 (4) 0.2152 (7) 0.046 (2)
H3 0.3854 0.9965 0.3121 0.055*
C4 0.4223 (7) 0.9244 (3) 0.1720 (7) 0.037 (2)
C5 0.4019 (7) 0.9103 (4) 0.0241 (7) 0.041 (2)
H5 0.4353 0.8689 −0.0080 0.050*
C6 0.3333 (8) 0.9573 (4) −0.0718 (7) 0.049 (2)
H6 0.3214 0.9480 −0.1690 0.058*
C7 0.4950 (7) 0.8740 (4) 0.2765 (7) 0.0317 (19)
C8 0.5979 (7) 0.8995 (4) 0.3949 (7) 0.037 (2)
C9 0.7668 (7) 0.8405 (4) 0.5799 (7) 0.0324 (19)
C10 0.8549 (8) 0.8948 (4) 0.5883 (8) 0.049 (2)
H10 0.8449 0.9299 0.5176 0.059*
C11 0.9570 (8) 0.8967 (5) 0.7012 (9) 0.064 (3)
H11 1.0169 0.9329 0.7067 0.077*
C12 0.9715 (9) 0.8455 (5) 0.8061 (8) 0.066 (3)
H12 1.0385 0.8483 0.8852 0.079*
C13 0.8877 (9) 0.7907 (5) 0.7936 (9) 0.067 (3)
H13 0.9013 0.7541 0.8612 0.080*
C14 0.7840 (8) 0.7881 (4) 0.6845 (8) 0.049 (2)
H14 0.7252 0.7513 0.6802 0.059*
C15 0.5930 (7) 0.7768 (4) 0.4054 (7) 0.038 (2)
C16 0.4904 (7) 0.8021 (4) 0.2827 (7) 0.0321 (19)
C17 0.3999 (8) 0.7505 (4) 0.1988 (7) 0.035 (2)
C18 0.2750 (8) 0.7690 (4) 0.1499 (8) 0.050 (2)
H18 0.2470 0.8136 0.1741 0.060*
C19 0.1900 (8) 0.7226 (4) 0.0653 (7) 0.052 (2)
H19 0.1053 0.7352 0.0353 0.063*
C20 0.2331 (8) 0.6571 (4) 0.0260 (7) 0.043 (2)
C21 0.3549 (8) 0.6361 (4) 0.0806 (7) 0.046 (2)
H21 0.3816 0.5905 0.0607 0.055*
C22 0.4388 (7) 0.6829 (4) 0.1659 (7) 0.036 (2)
H22 0.5221 0.6687 0.2014 0.044*
N1 0.6588 (6) 0.8394 (3) 0.4625 (6) 0.0341 (16)
O1 0.6229 (5) 0.9610 (3) 0.4283 (5) 0.0494 (15)
O2 0.6167 (5) 0.7165 (3) 0.4467 (5) 0.0480 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0834 (8) 0.0516 (6) 0.0525 (6) 0.0141 (5) −0.0068 (5) 0.0128 (4)
Br2 0.0699 (7) 0.0590 (6) 0.0689 (7) −0.0182 (5) 0.0015 (5) −0.0198 (5)
C1 0.056 (6) 0.032 (5) 0.034 (5) 0.004 (4) 0.002 (4) 0.000 (4)
C2 0.058 (6) 0.034 (5) 0.043 (5) 0.007 (4) 0.021 (5) −0.006 (4)
C3 0.073 (7) 0.030 (5) 0.031 (5) 0.008 (5) 0.005 (4) −0.006 (4)
C4 0.055 (6) 0.018 (4) 0.037 (5) −0.003 (4) 0.011 (4) −0.002 (4)
C5 0.064 (6) 0.027 (5) 0.033 (4) 0.012 (4) 0.011 (4) −0.008 (4)
C6 0.078 (7) 0.048 (5) 0.019 (4) 0.003 (5) 0.008 (4) −0.007 (4)
C7 0.043 (6) 0.025 (4) 0.027 (4) 0.002 (4) 0.009 (4) −0.006 (3)
C8 0.047 (6) 0.031 (5) 0.034 (5) 0.000 (4) 0.009 (4) 0.002 (4)
C9 0.039 (6) 0.030 (4) 0.029 (5) 0.000 (4) 0.010 (4) −0.011 (4)
C10 0.050 (6) 0.054 (6) 0.041 (5) 0.002 (5) 0.004 (5) 0.014 (4)
C11 0.060 (7) 0.055 (6) 0.072 (6) −0.007 (5) 0.003 (5) 0.008 (5)
C12 0.060 (7) 0.080 (7) 0.047 (6) 0.011 (6) −0.012 (5) 0.003 (5)
C13 0.072 (8) 0.064 (7) 0.054 (6) −0.008 (6) −0.010 (6) 0.021 (5)
C14 0.056 (7) 0.035 (5) 0.052 (6) 0.003 (4) 0.004 (5) 0.019 (4)
C15 0.055 (6) 0.035 (5) 0.025 (5) −0.003 (4) 0.014 (4) 0.002 (4)
C16 0.051 (6) 0.023 (4) 0.022 (4) 0.004 (4) 0.007 (4) −0.001 (3)
C17 0.058 (7) 0.024 (5) 0.023 (4) −0.001 (4) 0.011 (4) 0.003 (3)
C18 0.054 (7) 0.034 (5) 0.059 (6) 0.008 (5) 0.007 (5) −0.006 (4)
C19 0.058 (7) 0.038 (5) 0.053 (5) 0.003 (5) −0.004 (5) −0.010 (4)
C20 0.049 (7) 0.038 (5) 0.038 (5) −0.005 (4) 0.000 (4) −0.003 (4)
C21 0.075 (8) 0.029 (5) 0.041 (5) −0.006 (5) 0.027 (5) −0.004 (4)
C22 0.047 (6) 0.027 (5) 0.037 (5) −0.005 (4) 0.012 (4) −0.003 (4)
N1 0.039 (4) 0.030 (4) 0.031 (4) −0.008 (3) 0.004 (3) −0.001 (3)
O1 0.067 (4) 0.028 (3) 0.046 (3) −0.003 (3) −0.005 (3) −0.005 (3)
O2 0.066 (4) 0.028 (3) 0.043 (3) 0.000 (3) −0.004 (3) 0.004 (2)

Geometric parameters (Å, °)

Br1—C1 1.883 (7) C11—C12 1.369 (10)
Br2—C20 1.873 (7) C11—H11 0.9300
C1—C6 1.365 (9) C12—C13 1.352 (11)
C1—C2 1.378 (8) C12—H12 0.9300
C2—C3 1.384 (9) C13—C14 1.357 (9)
C2—H2 0.9300 C13—H13 0.9300
C3—C4 1.371 (9) C14—H14 0.9300
C3—H3 0.9300 C15—O2 1.198 (7)
C4—C5 1.414 (8) C15—N1 1.412 (8)
C4—C7 1.468 (9) C15—C16 1.506 (9)
C5—C6 1.365 (9) C16—C17 1.478 (9)
C5—H5 0.9300 C17—C18 1.375 (10)
C6—H6 0.9300 C17—C22 1.385 (9)
C7—C16 1.339 (9) C18—C19 1.387 (9)
C7—C8 1.484 (9) C18—H18 0.9300
C8—O1 1.202 (7) C19—C20 1.386 (9)
C8—N1 1.385 (8) C19—H19 0.9300
C9—C10 1.380 (9) C20—C21 1.366 (10)
C9—C14 1.383 (8) C21—C22 1.388 (9)
C9—N1 1.435 (8) C21—H21 0.9300
C10—C11 1.369 (10) C22—H22 0.9300
C10—H10 0.9300
C6—C1—C2 119.7 (6) C11—C12—H12 120.3
C6—C1—Br1 120.7 (6) C12—C13—C14 121.4 (8)
C2—C1—Br1 119.6 (6) C12—C13—H13 119.3
C1—C2—C3 120.0 (7) C14—C13—H13 119.3
C1—C2—H2 120.0 C13—C14—C9 119.4 (8)
C3—C2—H2 120.0 C13—C14—H14 120.3
C4—C3—C2 120.9 (7) C9—C14—H14 120.3
C4—C3—H3 119.6 O2—C15—N1 126.1 (7)
C2—C3—H3 119.6 O2—C15—C16 128.3 (7)
C3—C4—C5 118.3 (6) N1—C15—C16 105.6 (6)
C3—C4—C7 121.0 (6) C7—C16—C17 130.6 (7)
C5—C4—C7 120.6 (6) C7—C16—C15 108.6 (6)
C6—C5—C4 120.0 (7) C17—C16—C15 120.7 (6)
C6—C5—H5 120.0 C18—C17—C22 118.5 (7)
C4—C5—H5 120.0 C18—C17—C16 120.6 (7)
C5—C6—C1 121.1 (7) C22—C17—C16 121.0 (7)
C5—C6—H6 119.5 C17—C18—C19 121.4 (7)
C1—C6—H6 119.5 C17—C18—H18 119.3
C16—C7—C4 130.3 (6) C19—C18—H18 119.3
C16—C7—C8 108.3 (6) C18—C19—C20 119.0 (8)
C4—C7—C8 121.3 (6) C18—C19—H19 120.5
O1—C8—N1 125.9 (7) C20—C19—H19 120.5
O1—C8—C7 126.6 (7) C21—C20—C19 120.1 (7)
N1—C8—C7 107.5 (6) C21—C20—Br2 120.7 (6)
C10—C9—C14 119.5 (7) C19—C20—Br2 119.2 (6)
C10—C9—N1 119.4 (6) C20—C21—C22 120.0 (7)
C14—C9—N1 121.1 (7) C20—C21—H21 120.0
C11—C10—C9 119.6 (7) C22—C21—H21 120.0
C11—C10—H10 120.2 C17—C22—C21 120.6 (7)
C9—C10—H10 120.2 C17—C22—H22 119.7
C10—C11—C12 120.4 (9) C21—C22—H22 119.7
C10—C11—H11 119.8 C8—N1—C15 109.6 (6)
C12—C11—H11 119.8 C8—N1—C9 125.3 (6)
C13—C12—C11 119.5 (8) C15—N1—C9 124.9 (6)
C13—C12—H12 120.3
C6—C1—C2—C3 −0.1 (12) O2—C15—C16—C7 178.1 (8)
Br1—C1—C2—C3 178.8 (6) N1—C15—C16—C7 −2.8 (8)
C1—C2—C3—C4 −1.0 (12) O2—C15—C16—C17 2.3 (12)
C2—C3—C4—C5 1.0 (11) N1—C15—C16—C17 −178.6 (6)
C2—C3—C4—C7 −178.5 (7) C7—C16—C17—C18 −32.3 (12)
C3—C4—C5—C6 −0.1 (11) C15—C16—C17—C18 142.5 (7)
C7—C4—C5—C6 179.5 (7) C7—C16—C17—C22 146.8 (8)
C4—C5—C6—C1 −1.0 (12) C15—C16—C17—C22 −38.4 (10)
C2—C1—C6—C5 1.1 (12) C22—C17—C18—C19 −2.3 (11)
Br1—C1—C6—C5 −177.8 (6) C16—C17—C18—C19 176.9 (7)
C3—C4—C7—C16 135.2 (9) C17—C18—C19—C20 −1.9 (12)
C5—C4—C7—C16 −44.3 (12) C18—C19—C20—C21 5.8 (12)
C3—C4—C7—C8 −48.7 (10) C18—C19—C20—Br2 −175.2 (6)
C5—C4—C7—C8 131.7 (7) C19—C20—C21—C22 −5.5 (12)
C16—C7—C8—O1 −174.1 (8) Br2—C20—C21—C22 175.5 (5)
C4—C7—C8—O1 9.1 (12) C18—C17—C22—C21 2.7 (10)
C16—C7—C8—N1 4.7 (8) C16—C17—C22—C21 −176.5 (6)
C4—C7—C8—N1 −172.1 (6) C20—C21—C22—C17 1.2 (11)
C14—C9—C10—C11 −1.1 (11) O1—C8—N1—C15 172.3 (7)
N1—C9—C10—C11 179.0 (7) C7—C8—N1—C15 −6.5 (8)
C9—C10—C11—C12 −0.5 (13) O1—C8—N1—C9 −3.4 (12)
C10—C11—C12—C13 3.5 (14) C7—C8—N1—C9 177.8 (6)
C11—C12—C13—C14 −4.8 (15) O2—C15—N1—C8 −175.1 (7)
C12—C13—C14—C9 3.2 (14) C16—C15—N1—C8 5.8 (8)
C10—C9—C14—C13 −0.2 (11) O2—C15—N1—C9 0.6 (12)
N1—C9—C14—C13 179.7 (7) C16—C15—N1—C9 −178.5 (6)
C4—C7—C16—C17 −9.3 (14) C10—C9—N1—C8 −33.2 (10)
C8—C7—C16—C17 174.2 (7) C14—C9—N1—C8 146.9 (7)
C4—C7—C16—C15 175.3 (7) C10—C9—N1—C15 151.7 (7)
C8—C7—C16—C15 −1.1 (8) C14—C9—N1—C15 −28.2 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C21—H21···O1i 0.93 2.41 3.267 (9) 153

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2272).

References

  1. Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fujii, I., Ohtani, J., Kodama, K., Kunimoto, K. & Hirayama, N. (2001). Anal. Sci. A17, 1471–1472. [DOI] [PubMed]
  4. Onimura, K., Matsushima, M., Yamabuki, K. & Oishi, T. (2010). Polym. J. 42, 290–297.
  5. Sheldrick, G. M. (1998). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shorunov, S. V., Krayushkin, M. M., Stoyanovich, F. M. & Irie, M. (2006). Russ. J. Org. Chem. 42, 1490–1497.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014152/rk2272sup1.cif

e-67-o1198-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014152/rk2272Isup2.hkl

e-67-o1198-Isup2.hkl (165.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES