Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1083. doi: 10.1107/S1600536811012256

3-[2-(1H-1,3-Benzodiazol-2-yl)eth­yl]-1,3-oxazolidin-2-one

Giovanna Brancatelli a,*, Francesco Nicoló a, Sara De Grazia b, Anna Maria Monforte b, Alba Chimirri b
PMCID: PMC3089160  PMID: 21754405

Abstract

In the title compound, C12H13N3O2, the dihedral angle between the oxazolone ring and the benzimidazole unit is 45.0 (5)°, exhibiting a staggered conformation at the Cα—Cβ bond. In the crystal, a strong N—H⋯N hydrogen bond links the mol­ecules into a C(4) chain along the c axis while a C—H⋯O hydrogen-bonding inter­action generates a C(5) chain along the a axis, i.e. perpendicular to the other chain.

Related literature

For the therapeutic activity of benzimidazole and oxazolid­in­one derivatives, see: Niño et al. 2001; Siva Kumar et al. 2010; Zappia et al. 2007. For the drug linezolid [systematic name (S)-N-({3-[3-fluoro-4-(morpholin-4-yl)phen­yl]-2-oxo-1,3-oxazolidin-5-yl}meth­yl)acetamide], see: Brickner et al. (2008). For asymmetry of the exocyclic angles in oxazolone rings, see: Grassi et al. (2001). For the structures of benzimidazole and oxazolidine, see: Totsatitpaisan et al. (2008); Wouters et al. (1997).graphic file with name e-67-o1083-scheme1.jpg

Experimental

Crystal data

  • C12H13N3O2

  • M r = 231.25

  • Monoclinic, Inline graphic

  • a = 6.0940 (2) Å

  • b = 18.1570 (6) Å

  • c = 10.0740 (3) Å

  • β = 90.696 (1)°

  • V = 1114.59 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.51 × 0.43 × 0.21 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 34135 measured reflections

  • 1951 independent reflections

  • 1830 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.089

  • S = 1.05

  • 1951 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012256/bh2341sup1.cif

e-67-o1083-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012256/bh2341Isup2.hkl

e-67-o1083-Isup2.hkl (94KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N8i 0.86 2.08 2.8959 (13) 158
C11—H11A⋯O14ii 0.97 2.53 3.2876 (16) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the University of Messina and the MIUR (Ministero dell’Istruzione, dell’Universitá e della Ricerca) for financial support.

supplementary crystallographic information

Comment

Heterocyclic compounds containing 5- or 6-membered rings are important for their diverse biological activities. In particular, the chemistry of oxazolidinone and benzimidazole has received considerable attention owing to their synthetic and biological importance.

Benzimidazole and oxazolidinone derivatives have been studied for the treatment of different pathologies. Their scaffold has been incorporated into a wide variety of therapeutically interesting compounds that show antibacterial, antifungal, antiviral, antineoplastics and cholinergic activity among others (Niño et al., 2001; Siva Kumar et al., 2010; Zappia et al., 2007). Furthermore, the introduction in the pharmaceutical market of Linezolid, an oxazolidin-2-one-based antibacterial drug, attracted the interest of the scientists on this scaffold (Brickner et al., 2008). On the basis of some common properties, such as antibacterial activity, of these two classes of heterocyclic compounds, in this study we synthesized the title molecule, in which the benzimidazole ring is linked to an oxazolidinone scaffold, with the aim to obtain a compound having two different moieties in the same molecular entity, and then a synergism of activity.

The one-pot synthetic route employed to obtain the title compound is depicted in Figure 1. Treatment of the commercially available 2-(2-aminoethyl)-benzimidazole dihydrochloride with dibromoethane and potassium carbonate gave the desired product. The proposed mechanism for the synthesis is shown in Figure 2. The nucleophilic attack of the 2-(2-aminoethyl)-benzimidazole primary amine function on the dibromoethane is followed by oxazolidinone ring formation. An excess of potassium carbonate is necessary both to create the basic medium for the N-alkylation and for the formation of the oxazolidinone moiety.

The molecule crystallizes in the centrosymmetric P21/c space group. The asymmetric unit contains one molecule, shown in Figure 3. The dihedral angle between the oxazolone ring and the benzimidazole unit is 45.0 (5)°, exhibiting a staggered conformation at the Cα—Cβ bond. The carbonyl fragment displays pronounced asymmetry at the exo-cyclic angles, being N12—C13—O14 and O14—C13—O15 of 128.4 (1)° and 121.9 (1)°, respectively, because of both electronic and steric factors due to the presence of different atoms bound to C13 (Grassi et al., 2001). The dimensions within the benzimidazole and the oxazolidine moieties are in excellent agreement with those found in the benzimidazole and oxazolidine crystal structures (Totsatitpaisan et al., 2008; Wouters et al., 1997).

Packing analysis of the crystal lattice indicates that the tridimensional molecular arrangement is ruled by many H-bonding interactions. A strong H-bond N1—H1···N8 gives rise to a molecular chain [C(4)] along the c axis (Figure 4). Another H-bonding interaction C11—H11···O14 generates a chain [C(5)] along the a axis, perpendicular to the previous one.

Experimental

A solution of dibromoethane (3 mmol, 0.258 ml) in ethyl acetate (2 ml) was added over 10 minutes to a stirred mixture of 2-(2-aminoethyl)-benzimidazole dihydrochloride (1 mmol, 0.234 g), potassium carbonate (10 mmol, 1.38 g), ethyl acetate (5 ml) and water (2 ml). After the reaction mixture was refluxed for 36 h, the two phases were separated and the aqueous layer was extracted with ethyl acetate (2 x 5 ml). The combined organic phases were dried over anhydrous Na2SO4, filtered and concentrated. Elution with a mixture of chloroform and methanol (99:1) gave the title molecule as colourless crystals (yield: 30%). 1H-NMR (CDCl3, 300 MHz) δ 3.30 (t, J = 6.59, 2H, CH2), 3.61 (t, J = 6.71, 2H, CH2), 3.83 (t, J = 6.59, 2H, CH2), 4.28–4.34 (t, J = 6.71, 2H, CH2), 7.22–7.25 (m, 4H, Ar), 7.56 (bs, 1H, NH).

Refinement

H atoms were located in a difference Fourier map and placed in idealized positions using the riding-model technique, with C—H = 0.93 and 0.97Å for aromatic H and methylene H, respectively, and N—H = 0.86Å, and with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

Synthesis reaction scheme of the title compound.

Fig. 2.

Fig. 2.

Mechanism proposed for the synthesis of the title compound.

Fig. 3.

Fig. 3.

ORTEP drawing of the title molecule. Non H-atoms represented as displacement ellipsoids are plotted at the 50% probability level, while H atoms are shown as small spheres of arbitrary radius. In this view the staggered conformation around the Cα—Cβ bond is visible.

Fig. 4.

Fig. 4.

Arrangement of the molecules in perpendicular chains. The chain [C(5)] ruled by the C11—H11A···O14 interaction prolongs the crystal packing along the a axis; the other one [C(4)] generated by the N1—H1···N8 interaction is extended along the c axis. Dotted lines indicate H-bonding interactions.

Crystal data

C12H13N3O2 F(000) = 488
Mr = 231.25 Dx = 1.378 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9799 reflections
a = 6.0940 (2) Å θ = 2.3–30.0°
b = 18.1570 (6) Å µ = 0.10 mm1
c = 10.0740 (3) Å T = 296 K
β = 90.696 (1)° Prism, colourless
V = 1114.59 (6) Å3 0.51 × 0.43 × 0.21 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer Rint = 0.021
graphite θmax = 25°, θmin = 3.0°
φ and ω scans h = −7→7
34135 measured reflections k = −21→21
1951 independent reflections l = −11→11
1830 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.2758P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1951 reflections Δρmax = 0.21 e Å3
155 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008)
0 constraints Extinction coefficient: 0.031 (3)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.68193 (19) 0.18737 (6) 0.48419 (11) 0.0360 (3)
C3 0.8441 (2) 0.14478 (8) 0.54393 (13) 0.0495 (3)
H3 0.8494 0.1375 0.6353 0.059*
C4 0.9971 (2) 0.11369 (8) 0.46129 (15) 0.0556 (4)
H4 1.1078 0.0845 0.4978 0.067*
C5 0.9903 (2) 0.12476 (8) 0.32465 (15) 0.0523 (4)
H5 1.0971 0.1032 0.2722 0.063*
C6 0.8292 (2) 0.16686 (7) 0.26555 (12) 0.0452 (3)
H6 0.825 0.1739 0.1741 0.054*
C7 0.67213 (19) 0.19869 (6) 0.34697 (11) 0.0350 (3)
C9 0.40064 (19) 0.25761 (6) 0.42951 (11) 0.0352 (3)
C10 0.2094 (2) 0.30701 (7) 0.44963 (13) 0.0439 (3)
H10A 0.1152 0.286 0.5167 0.053*
H10B 0.1252 0.3104 0.3675 0.053*
C11 0.2802 (2) 0.38413 (7) 0.49276 (13) 0.0439 (3)
H11A 0.1517 0.4119 0.5187 0.053*
H11B 0.3766 0.3802 0.5698 0.053*
C13 0.6099 (2) 0.43147 (7) 0.38402 (14) 0.0457 (3)
C16 0.4669 (3) 0.49106 (10) 0.20459 (17) 0.0682 (5)
H16A 0.4673 0.4673 0.1184 0.082*
H16B 0.455 0.5439 0.1917 0.082*
C17 0.2788 (3) 0.46309 (11) 0.28639 (17) 0.0693 (5)
H17A 0.193 0.5033 0.3221 0.083*
H17B 0.1835 0.4308 0.235 0.083*
N1 0.50576 (16) 0.22534 (6) 0.53358 (9) 0.0379 (3)
H1 0.4689 0.2281 0.6156 0.045*
N8 0.49276 (16) 0.24297 (6) 0.31510 (9) 0.0376 (3)
N12 0.39262 (16) 0.42375 (6) 0.38915 (11) 0.0440 (3)
O14 0.74742 (17) 0.40717 (7) 0.45882 (13) 0.0730 (4)
O15 0.66295 (17) 0.47348 (6) 0.27768 (11) 0.0606 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0400 (6) 0.0367 (6) 0.0314 (6) −0.0057 (5) 0.0019 (5) −0.0004 (5)
C3 0.0553 (8) 0.0536 (8) 0.0394 (7) 0.0006 (6) −0.0045 (6) 0.0092 (6)
C4 0.0496 (8) 0.0541 (8) 0.0630 (9) 0.0100 (6) −0.0035 (7) 0.0054 (7)
C5 0.0466 (7) 0.0547 (8) 0.0558 (8) 0.0051 (6) 0.0086 (6) −0.0087 (6)
C6 0.0471 (7) 0.0533 (8) 0.0352 (6) −0.0018 (6) 0.0067 (5) −0.0050 (5)
C7 0.0379 (6) 0.0370 (6) 0.0300 (6) −0.0057 (5) 0.0017 (5) −0.0015 (4)
C9 0.0360 (6) 0.0383 (6) 0.0315 (6) −0.0071 (5) 0.0025 (5) −0.0013 (5)
C10 0.0346 (6) 0.0494 (7) 0.0478 (7) −0.0031 (5) 0.0067 (5) −0.0006 (6)
C11 0.0395 (7) 0.0483 (7) 0.0440 (7) 0.0040 (5) 0.0050 (5) −0.0045 (5)
C13 0.0392 (7) 0.0457 (7) 0.0521 (7) −0.0010 (5) 0.0014 (6) −0.0063 (6)
C16 0.0762 (11) 0.0666 (10) 0.0618 (10) 0.0016 (8) 0.0012 (8) 0.0156 (8)
C17 0.0548 (9) 0.0894 (12) 0.0634 (10) −0.0038 (8) −0.0136 (7) 0.0212 (9)
N1 0.0433 (6) 0.0459 (6) 0.0246 (5) −0.0031 (4) 0.0056 (4) −0.0011 (4)
N8 0.0386 (5) 0.0459 (6) 0.0283 (5) −0.0023 (4) 0.0020 (4) 0.0011 (4)
N12 0.0341 (5) 0.0451 (6) 0.0527 (6) 0.0013 (4) −0.0023 (5) 0.0048 (5)
O14 0.0389 (6) 0.0963 (9) 0.0835 (8) 0.0045 (5) −0.0103 (5) 0.0128 (7)
O15 0.0534 (6) 0.0681 (7) 0.0605 (6) −0.0114 (5) 0.0104 (5) 0.0016 (5)

Geometric parameters (Å, °)

C2—N1 1.374 (2) C10—H10A 0.97
C2—C3 1.387 (2) C10—H10B 0.97
C2—C7 1.398 (2) C11—N12 1.447 (2)
C3—C4 1.378 (2) C11—H11A 0.97
C3—H3 0.93 C11—H11B 0.97
C4—C5 1.391 (2) C13—O14 1.204 (2)
C4—H4 0.93 C13—N12 1.333 (2)
C5—C6 1.374 (2) C13—O15 1.357 (2)
C5—H5 0.93 C16—O15 1.432 (2)
C6—C7 1.3934 (17) C16—C17 1.508 (2)
C6—H6 0.93 C16—H16A 0.97
C7—N8 1.391 (2) C16—H16B 0.97
C9—N8 1.315 (2) C17—N12 1.430 (2)
C9—N1 1.355 (2) C17—H17A 0.97
C9—C10 1.487 (2) C17—H17B 0.97
C10—C11 1.5269 (19) N1—H1 0.86
N1—C2—C3 132.72 (11) N12—C11—H11A 109.1
N1—C2—C7 105.08 (10) C10—C11—H11A 109.1
C3—C2—C7 122.20 (12) N12—C11—H11B 109.1
C4—C3—C2 116.75 (12) C10—C11—H11B 109.1
C4—C3—H3 121.6 H11A—C11—H11B 107.8
C2—C3—H3 121.6 O14—C13—N12 128.4 (1)
C3—C4—C5 121.75 (13) O14—C13—O15 121.9 (1)
C3—C4—H4 119.1 N12—C13—O15 109.6 (1)
C5—C4—H4 119.1 O15—C16—C17 106.2 (1)
C6—C5—C4 121.43 (13) O15—C16—H16A 110.5
C6—C5—H5 119.3 C17—C16—H16A 110.5
C4—C5—H5 119.3 O15—C16—H16B 110.5
C5—C6—C7 117.89 (12) C17—C16—H16B 110.5
C5—C6—H6 121.1 H16A—C16—H16B 108.7
C7—C6—H6 121.1 N12—C17—C16 101.45 (13)
N8—C7—C6 130.32 (11) N12—C17—H17A 111.5
N8—C7—C2 109.70 (10) C16—C17—H17A 111.5
C6—C7—C2 119.98 (11) N12—C17—H17B 111.5
N8—C9—N1 112.8 (1) C16—C17—H17B 111.5
N8—C9—C10 125.8 (1) H17A—C17—H17B 109.3
N1—C9—C10 121.3 (1) C9—N1—C2 107.50 (9)
C9—C10—C11 111.88 (10) C9—N1—H1 126.2
C9—C10—H10A 109.2 C2—N1—H1 126.2
C11—C10—H10A 109.2 C9—N8—C7 104.90 (10)
C9—C10—H10B 109.2 C13—N12—C17 113.11 (12)
C11—C10—H10B 109.2 C13—N12—C11 124.01 (11)
H10A—C10—H10B 107.9 C17—N12—C11 122.74 (11)
N12—C11—C10 112.67 (10) C13—O15—C16 109.01 (11)
N1—C2—C3—C4 179.30 (13) C3—C2—N1—C9 −179.94 (13)
C7—C2—C3—C4 −0.01 (19) C7—C2—N1—C9 −0.55 (12)
C2—C3—C4—C5 0.4 (2) N1—C9—N8—C7 −0.69 (13)
C3—C4—C5—C6 −0.5 (2) C10—C9—N8—C7 176.10 (11)
C4—C5—C6—C7 0.3 (2) C6—C7—N8—C9 −179.88 (12)
C5—C6—C7—N8 −179.73 (12) C2—C7—N8—C9 0.32 (13)
C5—C6—C7—C2 0.05 (18) O14—C13—N12—C17 177.42 (16)
N1—C2—C7—N8 0.15 (13) O15—C13—N12—C17 −2.03 (17)
C3—C2—C7—N8 179.62 (11) O14—C13—N12—C11 1.5 (2)
N1—C2—C7—C6 −179.68 (11) O15—C13—N12—C11 −177.92 (11)
C3—C2—C7—C6 −0.20 (18) C16—C17—N12—C13 5.96 (19)
N8—C9—C10—C11 −97.20 (14) C16—C17—N12—C11 −178.09 (13)
N1—C9—C10—C11 79.34 (14) C10—C11—N12—C13 −101.12 (15)
C9—C10—C11—N12 68.0 (1) C10—C11—N12—C17 83.38 (16)
O15—C16—C17—N12 −7.44 (18) O14—C13—O15—C16 177.27 (14)
N8—C9—N1—C2 0.81 (13) N12—C13—O15—C16 −3.24 (16)
C10—C9—N1—C2 −176.15 (10) C17—C16—O15—C13 6.84 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N8i 0.86 2.08 2.8959 (13) 158.
C11—H11A···O14ii 0.97 2.53 3.2876 (16) 135.
C11—H11B···O14 0.97 2.58 2.9019 (16) 100.
C3—H3···O15i 0.93 2.73 3.3820 (17) 128.
C5—H5···O15iii 0.93 2.82 3.6229 (17) 145.
C6—H6···O14iv 0.93 2.66 3.4008 (17) 137.

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x−1, y, z; (iii) −x+2, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2341).

References

  1. Brickner, S. J., Barbachyn, M. R., Hutchinson, D. K. & Manninen, P. R. (2008). J. Med. Chem. 51, 1981–1990. [DOI] [PubMed]
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Grassi, G., Bruno, G., Risitano, F., Foti, F., Caruso, F. & Nicolò, F. (2001). Eur. J. Org. Chem. pp. 4671–4678.
  4. Niño, V. M., Daza, C. E. & Tello, M. (2001). J. Chem. Inf. Comput. Sci. 41, 495–504. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Siva Kumar, R., Kumarnallasivan, P., Vijai Anand, P. R., Pradeepchandran, R., Jayaveera, K. N. & Venkatnarayanan, R. (2010). Pharma Chem. 2, 100–108.
  7. Totsatitpaisan, P., Tashiro, K. & Chirachanchai, S. (2008). J. Phys. Chem. A, 112, 10348–10358. [DOI] [PubMed]
  8. Wouters, J., Ooms, F. & Durant, F. (1997). Acta Cryst. C53, 895–897.
  9. Zappia, G., Gacs-Baitz, E., Delle Monache, G., Misiti, D., Nevola, L. & Botta, B. (2007). Curr. Org. Synth. 4, 81–135.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012256/bh2341sup1.cif

e-67-o1083-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012256/bh2341Isup2.hkl

e-67-o1083-Isup2.hkl (94KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES