Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1219. doi: 10.1107/S160053681101470X

4-Chloro-N-(3,5-dichloro­phenyl)benzene­sulfonamide

K Shakuntala a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3089164  PMID: 21754517

Abstract

In the title compound, C12H8Cl3NO2S, the dihedral angle between the aromatic rings is 87.9 (1)° and the C—S—N—C torsion angle is 77.8 (2)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur.

Related literature

For hydrogen-bonding preferences of sulfonamides, see; Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2004); on the structures of N-(ar­yl)aryl­sulfonamides, see: Shakuntala et al. (2011a ,b ); and on the oxidative strengths of N-chloro-N-aryl­sulfonamides, see: Gowda & Kumar (2003).graphic file with name e-67-o1219-scheme1.jpg

Experimental

Crystal data

  • C12H8Cl3NO2S

  • M r = 336.60

  • Triclinic, Inline graphic

  • a = 4.935 (1) Å

  • b = 11.630 (2) Å

  • c = 13.115 (2) Å

  • α = 113.52 (2)°

  • β = 90.49 (1)°

  • γ = 96.50 (1)°

  • V = 684.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 293 K

  • 0.32 × 0.20 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.780, T max = 0.923

  • 4440 measured reflections

  • 2785 independent reflections

  • 2236 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.086

  • S = 1.03

  • 2785 reflections

  • 175 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681101470X/bq2298sup1.cif

e-67-o1219-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101470X/bq2298Isup2.hkl

e-67-o1219-Isup2.hkl (136.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (2) 2.08 (2) 2.917 (2) 170 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement programme.

supplementary crystallographic information

Comment

The amide and sulfonamide moieties are important constituents of many biologically important compounds. As a part of studying the substituent effects on the structures and other aspects of this class of compounds (Gowda & Kumar, 2003; Gowda et al., 2004; Shakuntala et al., 2011a,b), in the present work, the crystal structure of 4-chloro-N-(3,5-dichlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1). The molecule is twisted at the S atom with the C—SO2—NH—C torsion angle of 77.8 (2)°, compared to the values of -58.4 (3)° in 4-chloro-N-(3-chlorophenyl)benzenesulfonamide (II) (Shakuntala et al., 2011b) and -56.7 (2)° in 4-chloro-N-(2,3-dichlorophenyl)-benzenesulfonamide (III) (Shakuntala et al., 2011a). The conformation of the N—H bond is anti to one of the meta-chloro group in the anilino benzene ring and syn to the other.

The sulfonyl and the anilino benzene rings in (I) are tilted relative to each other by 87.9 (1)°, compared to the values of 77.1 (1)° in (II) and 56.5 (1)° in (III).

Intermolecular N—H···O(S) hydrogen bonding interactions generate inversion related dimers which are further packed via van der Waals interactions in the crystal structure (Fig. 2).

Experimental

The solution of chlorobenzene (10 ml) in chloroform (40 ml) was added dropwise with chlorosulfonic acid (25 ml) at 0° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with 3,5-dichloroaniline in the stoichiometric ratio and boiled for 15 min. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant 4-chloro-N-(3,5-dichlorophenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The compound was characterized by FT–IR and NMR spectra.

Prism like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C12H8Cl3NO2S Z = 2
Mr = 336.60 F(000) = 340
Triclinic, P1 Dx = 1.633 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.935 (1) Å Cell parameters from 1578 reflections
b = 11.630 (2) Å θ = 3.0–27.8°
c = 13.115 (2) Å µ = 0.82 mm1
α = 113.52 (2)° T = 293 K
β = 90.49 (1)° Prism, colourless
γ = 96.50 (1)° 0.32 × 0.20 × 0.10 mm
V = 684.6 (2) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 2785 independent reflections
Radiation source: fine-focus sealed tube 2236 reflections with I > 2σ(I)
graphite Rint = 0.013
Rotation method data acquisition using ω and φ scans θmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −6→4
Tmin = 0.780, Tmax = 0.923 k = −14→14
4440 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.3103P] where P = (Fo2 + 2Fc2)/3
2785 reflections (Δ/σ)max = 0.005
175 parameters Δρmax = 0.36 e Å3
1 restraint Δρmin = −0.33 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7071 (4) 0.7199 (2) 0.24024 (17) 0.0357 (5)
C2 0.8325 (5) 0.7573 (2) 0.34566 (19) 0.0443 (5)
H2 0.7746 0.7164 0.3913 0.053*
C3 1.0431 (5) 0.8552 (2) 0.3823 (2) 0.0506 (6)
H3 1.1295 0.8807 0.4525 0.061*
C4 1.1242 (5) 0.9149 (2) 0.3139 (2) 0.0466 (6)
C5 0.9996 (5) 0.8800 (2) 0.2095 (2) 0.0507 (6)
H5 1.0565 0.9221 0.1648 0.061*
C6 0.7896 (5) 0.7817 (2) 0.17258 (19) 0.0454 (5)
H6 0.7035 0.7569 0.1024 0.055*
C7 0.7357 (4) 0.39831 (19) 0.18639 (16) 0.0330 (4)
C8 0.6937 (4) 0.4095 (2) 0.29448 (17) 0.0388 (5)
H8 0.5776 0.4644 0.3387 0.047*
C9 0.8290 (5) 0.3369 (2) 0.33442 (18) 0.0416 (5)
C10 1.0005 (5) 0.2536 (2) 0.27211 (19) 0.0463 (6)
H10 1.0892 0.2057 0.3010 0.056*
C11 1.0357 (4) 0.2439 (2) 0.16442 (19) 0.0400 (5)
C12 0.9083 (4) 0.3151 (2) 0.12094 (18) 0.0365 (5)
H12 0.9373 0.3077 0.0487 0.044*
N1 0.5991 (4) 0.46264 (17) 0.13400 (14) 0.0382 (4)
H1N 0.645 (5) 0.452 (2) 0.0694 (15) 0.046*
O1 0.3111 (3) 0.58358 (15) 0.28347 (12) 0.0442 (4)
O2 0.2996 (3) 0.59558 (15) 0.09918 (12) 0.0442 (4)
Cl1 1.39180 (14) 1.03860 (7) 0.36017 (7) 0.0681 (2)
Cl2 0.77531 (16) 0.35067 (7) 0.46970 (5) 0.0603 (2)
Cl3 1.24838 (13) 0.13818 (6) 0.08193 (6) 0.05370 (18)
S1 0.45009 (11) 0.58943 (5) 0.19092 (4) 0.03502 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0393 (11) 0.0375 (11) 0.0312 (10) 0.0088 (9) 0.0033 (9) 0.0137 (9)
C2 0.0567 (14) 0.0441 (13) 0.0365 (12) 0.0058 (11) −0.0029 (10) 0.0210 (10)
C3 0.0594 (15) 0.0460 (13) 0.0460 (14) 0.0057 (11) −0.0123 (11) 0.0187 (11)
C4 0.0438 (13) 0.0368 (12) 0.0563 (15) 0.0068 (10) −0.0006 (11) 0.0154 (11)
C5 0.0588 (15) 0.0504 (14) 0.0501 (14) 0.0054 (12) 0.0082 (12) 0.0279 (12)
C6 0.0553 (14) 0.0514 (14) 0.0321 (11) 0.0054 (11) 0.0030 (10) 0.0197 (10)
C7 0.0362 (11) 0.0341 (11) 0.0301 (10) −0.0015 (8) −0.0025 (8) 0.0159 (8)
C8 0.0454 (12) 0.0407 (12) 0.0311 (11) 0.0013 (9) 0.0002 (9) 0.0164 (9)
C9 0.0505 (13) 0.0444 (12) 0.0329 (11) −0.0039 (10) −0.0028 (10) 0.0212 (10)
C10 0.0528 (14) 0.0444 (13) 0.0480 (14) 0.0032 (11) −0.0076 (11) 0.0263 (11)
C11 0.0390 (12) 0.0362 (11) 0.0423 (12) 0.0001 (9) −0.0002 (9) 0.0145 (10)
C12 0.0388 (11) 0.0382 (11) 0.0327 (11) −0.0005 (9) 0.0000 (9) 0.0160 (9)
N1 0.0495 (11) 0.0440 (10) 0.0249 (9) 0.0105 (8) 0.0057 (8) 0.0166 (8)
O1 0.0453 (9) 0.0560 (10) 0.0342 (8) 0.0078 (7) 0.0101 (7) 0.0206 (7)
O2 0.0448 (9) 0.0574 (10) 0.0330 (8) 0.0125 (7) −0.0027 (7) 0.0194 (7)
Cl1 0.0579 (4) 0.0520 (4) 0.0911 (6) −0.0058 (3) −0.0129 (4) 0.0292 (4)
Cl2 0.0874 (5) 0.0668 (4) 0.0378 (3) 0.0071 (3) 0.0023 (3) 0.0333 (3)
Cl3 0.0543 (4) 0.0469 (3) 0.0610 (4) 0.0135 (3) 0.0063 (3) 0.0209 (3)
S1 0.0375 (3) 0.0434 (3) 0.0262 (3) 0.0081 (2) 0.0021 (2) 0.0154 (2)

Geometric parameters (Å, °)

C1—C6 1.385 (3) C7—N1 1.415 (3)
C1—C2 1.389 (3) C8—C9 1.381 (3)
C1—S1 1.760 (2) C8—H8 0.9300
C2—C3 1.376 (3) C9—C10 1.375 (3)
C2—H2 0.9300 C9—Cl2 1.742 (2)
C3—C4 1.373 (4) C10—C11 1.385 (3)
C3—H3 0.9300 C10—H10 0.9300
C4—C5 1.379 (3) C11—C12 1.377 (3)
C4—Cl1 1.744 (2) C11—Cl3 1.742 (2)
C5—C6 1.376 (3) C12—H12 0.9300
C5—H5 0.9300 N1—S1 1.6274 (19)
C6—H6 0.9300 N1—H1N 0.844 (16)
C7—C12 1.391 (3) O1—S1 1.4207 (16)
C7—C8 1.390 (3) O2—S1 1.4387 (15)
C6—C1—C2 120.5 (2) C7—C8—H8 120.9
C6—C1—S1 120.01 (17) C10—C9—C8 123.1 (2)
C2—C1—S1 119.48 (17) C10—C9—Cl2 118.69 (17)
C3—C2—C1 119.6 (2) C8—C9—Cl2 118.17 (19)
C3—C2—H2 120.2 C9—C10—C11 117.1 (2)
C1—C2—H2 120.2 C9—C10—H10 121.4
C2—C3—C4 119.2 (2) C11—C10—H10 121.4
C2—C3—H3 120.4 C12—C11—C10 122.1 (2)
C4—C3—H3 120.4 C12—C11—Cl3 119.20 (18)
C3—C4—C5 121.8 (2) C10—C11—Cl3 118.70 (18)
C3—C4—Cl1 119.2 (2) C11—C12—C7 119.2 (2)
C5—C4—Cl1 119.0 (2) C11—C12—H12 120.4
C6—C5—C4 119.0 (2) C7—C12—H12 120.4
C6—C5—H5 120.5 C7—N1—S1 128.77 (14)
C4—C5—H5 120.5 C7—N1—H1N 116.4 (17)
C5—C6—C1 119.8 (2) S1—N1—H1N 111.1 (17)
C5—C6—H6 120.1 O1—S1—O2 120.01 (10)
C1—C6—H6 120.1 O1—S1—N1 108.60 (10)
C12—C7—C8 120.25 (19) O2—S1—N1 104.03 (9)
C12—C7—N1 116.01 (18) O1—S1—C1 108.36 (10)
C8—C7—N1 123.65 (19) O2—S1—C1 107.64 (10)
C9—C8—C7 118.2 (2) N1—S1—C1 107.59 (10)
C9—C8—H8 120.9
C6—C1—C2—C3 −1.0 (3) C9—C10—C11—Cl3 −179.32 (18)
S1—C1—C2—C3 176.71 (18) C10—C11—C12—C7 −0.9 (3)
C1—C2—C3—C4 0.5 (4) Cl3—C11—C12—C7 179.18 (16)
C2—C3—C4—C5 0.4 (4) C8—C7—C12—C11 0.3 (3)
C2—C3—C4—Cl1 −179.78 (18) N1—C7—C12—C11 −176.30 (19)
C3—C4—C5—C6 −0.6 (4) C12—C7—N1—S1 −162.46 (16)
Cl1—C4—C5—C6 179.53 (18) C8—C7—N1—S1 21.1 (3)
C4—C5—C6—C1 0.0 (4) C7—N1—S1—O1 −39.3 (2)
C2—C1—C6—C5 0.8 (3) C7—N1—S1—O2 −168.24 (18)
S1—C1—C6—C5 −176.95 (18) C7—N1—S1—C1 77.8 (2)
C12—C7—C8—C9 0.5 (3) C6—C1—S1—O1 −151.25 (18)
N1—C7—C8—C9 176.8 (2) C2—C1—S1—O1 31.0 (2)
C7—C8—C9—C10 −0.6 (3) C6—C1—S1—O2 −20.1 (2)
C7—C8—C9—Cl2 −179.79 (16) C2—C1—S1—O2 162.20 (17)
C8—C9—C10—C11 0.0 (4) C6—C1—S1—N1 91.51 (19)
Cl2—C9—C10—C11 179.18 (17) C2—C1—S1—N1 −86.23 (19)
C9—C10—C11—C12 0.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.84 (2) 2.08 (2) 2.917 (2) 170 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2298).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.
  3. Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.
  4. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  5. Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o232. [DOI] [PMC free article] [PubMed]
  6. Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1017. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681101470X/bq2298sup1.cif

e-67-o1219-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101470X/bq2298Isup2.hkl

e-67-o1219-Isup2.hkl (136.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES