Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1202–o1203. doi: 10.1107/S1600536811014577

2-[2-(Benzyl­sulfan­yl)phen­yl]-1,1,3,3-tetra­methyl­guanidine

Adam Neuba a, Ulrich Flörke a,*, Gerald Henkel a
PMCID: PMC3089166  PMID: 21754503

Abstract

The mol­ecular structure of the title compound, C18H23N3S, shows it to be a derivative of an amino­thio­phenol possessing a tetra­methyl­guanidine group with a localized C=N double bond of 1.304 (2) Å and a protected thiol functional group as an S-benzyl thio­ether. The two aromatic ring planes make a dihedral angle of 67.69 (6)°.

Related literature

For synthesis, see: Neuba (2009); Lindoy & Livingstone (1968); Herres-Pawlis et al. (2005). For related structures, see: Neuba et al. (2007a ,b ,c ); Herres et al. (2004); Raab et al. (2003, 2002); Peters et al. (2008). For complexes of metal centres with bis­(tetra­methylguanidino)propyl­ene and amine guanidine hybrids, see: Harmjanz (1997); Waden (1999); Pohl et al. (2000); Schneider (2000); Wittmann (1999); Wittmann et al. (2001); Herres et al. (2005); Herres-Pawlis et al. (2009); Börner et al. (2007, 2009). For sulfur guanidine hybrids based on amino­thio­phenol and cysteamine, see: Neuba (2009); Neuba et al. (2008a ,b , 2010, 2011).graphic file with name e-67-o1202-scheme1.jpg

Experimental

Crystal data

  • C18H23N3S

  • M r = 313.45

  • Monoclinic, Inline graphic

  • a = 7.869 (2) Å

  • b = 26.850 (7) Å

  • c = 8.314 (2) Å

  • β = 106.959 (5)°

  • V = 1680.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 120 K

  • 0.42 × 0.33 × 0.29 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.923, T max = 0.946

  • 14278 measured reflections

  • 3988 independent reflections

  • 2816 reflections with I > 2σ(I)

  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.091

  • S = 0.92

  • 3988 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014577/bt5518sup1.cif

e-67-o1202-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014577/bt5518Isup2.hkl

e-67-o1202-Isup2.hkl (195.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the German Research Council (DFG) and the Federal Ministry of Education and Research (BMBF) for continuous support of their work. AN thanks the university of Paderborn for granting a doctorate scholarship.

supplementary crystallographic information

Comment

The synthesis and characterization of novel molecules containing nitrogen and sulfur as donor functions and their application in synthesis of sulfur copper complexes is important for biomimetic copper–sulfur chemistry. In search of multifunctional ligands we have extended our studies to guanidyl-type systems with N-donor functions. The first derivative, the ligand bis(tetramethyl-guanidino)propylene as well as amine guanidine hybrids and their complexes with Cu, Fe, Ni, Ag, Mn, Co and Zn have recently been investigated (Harmjanz, 1997; Waden, 1999; Pohl et al., 2000; Schneider, 2000; Wittmann, 1999; Wittmann et al., 2001; Herres-Pawlis et al., 2005, 2009; Herres et al., 2005; Neuba et al., 2008a,b; 2010; Börner et al. 2007, 2009). We have now developed several sulfur guanidine hybrids based on aminothiophenol and cysteamine (Neuba et al., 2007a,b,c; Neuba, 2009). The synthesized sulfur guanidine compounds possess aliphatic and aromatic thioethers or disulfide groups and were used in the synthesis of copper thiolate complexes to mimic active centres like the CuA in cytochrome-c oxidase and N2O-reductase (Neuba et al., 2011). The two aromatic ring planes make a dihedral angle of 67.69 (6)° and the N1—C6—C11—S1—C12—C13 moiety is mostly planar with largest deviation of 0.084 (1) Å for S1 from the best plane. The guanidine plane C1N3 makes an angle of 59.80 (5)° with the attached aromatic ring. The N1═C1 guanidine double bond measures 1.304 (2) Å and is clearly localized. Similar double-bond localization is observed in other guanidine compounds (e.g. Herres et al., 2004; Neuba et al., 2007a,b; Raab et al., 2002, 2003; Peters et al., 2008).

Experimental

The title compound was prepared as follows: a solution of tetramethylchloroformamidinium chlorid (Herres-Pawlis et al., 2005) (5.13 g, 30 mmol) in dry MeCN was added dropwise to an ice-cooled solution of 2-(benzylthio)aniline (Lindoy & Livingstone, 1968) (6.45 g, 30 mmol) and triethylamine (4.18 ml, 3.03 g, 30 mmol) in dry MeCN. After 3 h under reflux, a solution of NaOH (1.2 g, 30 mmol) in water was added. The solvents and NEt3 were then evaporated under vacuum. In order to deprotonate the mono-hydrochloride, 50 wt% KOH (aqueous, 15 ml) was added and the free base was extracted into the MeCN phase (3 × 80 ml). The organic phase was dried with Na2SO4. After filtration, the solvent was evaporated under reduced pressure. The title compound was obtained as white powder (yield 69%, 6.4 g). Colourless crystals suitable for X-ray diffraction were obtained by slow cooling of a hot saturated MeCN solution.

Spectroscopic analysis: 1H NMR (500 MHz, CDCl3, 25°C, δ, p.p.m.): 2.68 (s, 12H, CH3), 4.10 (s, 2H, CH2), 6.59 (d, 1H, CH), 6.80 (t, 1H, CH), 7.03 (t, 1H, CH), 7.15 (d, 1H, CH), 7.21 (t, 1H, CH), 7.28 (t, 2H, CH), 7.36 (d, 2H, CH); 13C NMR (125 MHz, CDCl3, 25°C, δ, p.p.m.): 37.3 (CH2), 39.5 (CH3), 120.5 (CH), 121.7 (CH), 126.1 (CH), 126.9 (CH), 127.2 (CH), 127.6 (CH), 128.4 (CH), 128.7 (Cquat), 129.1 (CH), 136.6 (Cquat), 137.8 (Cquat), 160.0 (Cgua); IR (KBr, ν, cm-1): 3053 (w), 3030 (w), 3003 (w), 2918 (m), 2848 (m), 2790 (w), 1589 (vs (C═N)), 1558 (s (C═N)), 1500 (m (C═N)), 1460 (m), 1425 (m), 1377 (s), 1279 (w), 1232 (w), 1207 (w), 1144 (m), 1066 (m), 1038 (m), 1020 (s), 914 (w), 850 (w), 806 (vw), 777 (m), 715 (s), 696 (m), 682 (w), 621 (w), 571 (w), 545 (w), 498 (vw), 484 (w), 461 (w), 445 (w). EI–MS (m/z (%)): 313.0 (100) [M+], 280.0 (31), 269.1 (8) [M+ - N(CH3)2], 242.0 (5), 237.0 (10) [M+ - Ph], 222.0 (14) [M+ - CH2Ph], 215.0 (20), 190.0 (12) [M+ - SCH2Ph], 179.0 (76), 148.9 (28), 135.9 (20), 124.0 (9) [SCH2Ph+], 91.0 (76), 72.0 (20).

Refinement

H atoms were clearly identified in difference syntheses, idealized and refined riding on the C atoms with C—H = 0.95 (aromatic) or 0.98–0.99 Å, and with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(–CH3 H atoms). All CH3 H atoms were allowed to rotate but not to tip.

Figures

Fig. 1.

Fig. 1.

Molecular structure with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C18H23N3S F(000) = 672
Mr = 313.45 Dx = 1.239 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 842 reflections
a = 7.869 (2) Å θ = 2.7–27.7°
b = 26.850 (7) Å µ = 0.19 mm1
c = 8.314 (2) Å T = 120 K
β = 106.959 (5)° Block, colourless
V = 1680.2 (8) Å3 0.42 × 0.33 × 0.29 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 3988 independent reflections
Radiation source: sealed tube 2816 reflections with I > 2σ(I)
graphite Rint = 0.066
φ and ω scans θmax = 27.9°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −10→9
Tmin = 0.923, Tmax = 0.946 k = −35→35
14278 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: difference Fourier map
wR(F2) = 0.091 H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0443P)2] where P = (Fo2 + 2Fc2)/3
3988 reflections (Δ/σ)max = 0.001
203 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.48274 (6) 0.392868 (13) 0.76377 (5) 0.02350 (11)
N1 0.64141 (18) 0.33140 (4) 0.56770 (16) 0.0214 (3)
N2 0.93294 (17) 0.29594 (4) 0.63993 (16) 0.0232 (3)
N3 0.68294 (18) 0.24922 (4) 0.50838 (17) 0.0239 (3)
C1 0.7516 (2) 0.29479 (5) 0.57258 (18) 0.0203 (3)
C2 1.0512 (2) 0.27118 (7) 0.5595 (2) 0.0362 (4)
H2A 0.9806 0.2524 0.4615 0.054*
H2B 1.1294 0.2483 0.6395 0.054*
H2C 1.1231 0.2961 0.5232 0.054*
C3 1.0191 (2) 0.33296 (6) 0.7646 (2) 0.0291 (4)
H3A 1.0587 0.3609 0.7089 0.044*
H3B 1.1220 0.3179 0.8466 0.044*
H3C 0.9349 0.3450 0.8225 0.044*
C4 0.4983 (2) 0.24676 (6) 0.4081 (2) 0.0311 (4)
H4A 0.4223 0.2445 0.4825 0.047*
H4B 0.4800 0.2173 0.3354 0.047*
H4C 0.4678 0.2768 0.3385 0.047*
C5 0.7491 (2) 0.20329 (5) 0.5999 (2) 0.0309 (4)
H5A 0.8732 0.2079 0.6666 0.046*
H5B 0.7414 0.1760 0.5196 0.046*
H5C 0.6772 0.1952 0.6746 0.046*
C6 0.6947 (2) 0.38116 (5) 0.56372 (19) 0.0192 (3)
C7 0.7988 (2) 0.39792 (5) 0.4653 (2) 0.0233 (3)
H7A 0.8470 0.3744 0.4052 0.028*
C8 0.8338 (2) 0.44823 (6) 0.4527 (2) 0.0252 (4)
H8A 0.9042 0.4589 0.3838 0.030*
C9 0.7656 (2) 0.48271 (5) 0.5412 (2) 0.0236 (3)
H9A 0.7905 0.5171 0.5343 0.028*
C10 0.6610 (2) 0.46705 (5) 0.63978 (19) 0.0220 (3)
H10A 0.6153 0.4908 0.7009 0.026*
C11 0.6223 (2) 0.41684 (5) 0.65010 (18) 0.0192 (3)
C12 0.4411 (2) 0.44748 (5) 0.8758 (2) 0.0243 (4)
H12A 0.5549 0.4615 0.9463 0.029*
H12B 0.3797 0.4733 0.7947 0.029*
C13 0.3272 (2) 0.43232 (5) 0.98479 (19) 0.0210 (3)
C14 0.4001 (2) 0.40508 (6) 1.1318 (2) 0.0274 (4)
H14A 0.5226 0.3966 1.1635 0.033*
C15 0.2967 (3) 0.39029 (6) 1.2317 (2) 0.0317 (4)
H15A 0.3480 0.3719 1.3316 0.038*
C16 0.1184 (3) 0.40237 (6) 1.1860 (2) 0.0332 (4)
H16A 0.0467 0.3919 1.2539 0.040*
C17 0.0442 (2) 0.42969 (6) 1.0417 (2) 0.0329 (4)
H17A −0.0781 0.4384 1.0113 0.039*
C18 0.1484 (2) 0.44444 (6) 0.9414 (2) 0.0266 (4)
H18A 0.0967 0.4630 0.8420 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0297 (2) 0.01664 (17) 0.0296 (2) −0.00079 (16) 0.01715 (18) −0.00202 (15)
N1 0.0224 (7) 0.0167 (6) 0.0277 (7) −0.0022 (5) 0.0116 (6) −0.0044 (5)
N2 0.0206 (7) 0.0215 (6) 0.0263 (7) −0.0002 (5) 0.0047 (6) −0.0055 (5)
N3 0.0234 (7) 0.0164 (6) 0.0296 (7) −0.0001 (5) 0.0043 (6) −0.0045 (5)
C1 0.0237 (9) 0.0187 (7) 0.0199 (8) −0.0011 (6) 0.0089 (7) −0.0020 (6)
C2 0.0267 (10) 0.0419 (10) 0.0414 (11) 0.0044 (8) 0.0121 (9) −0.0069 (8)
C3 0.0288 (10) 0.0255 (8) 0.0281 (9) −0.0054 (7) 0.0008 (8) −0.0025 (7)
C4 0.0253 (10) 0.0251 (8) 0.0400 (10) −0.0031 (7) 0.0049 (8) −0.0076 (7)
C5 0.0350 (10) 0.0193 (7) 0.0367 (10) 0.0001 (7) 0.0076 (9) −0.0016 (7)
C6 0.0175 (8) 0.0181 (7) 0.0219 (8) −0.0009 (6) 0.0058 (7) −0.0018 (6)
C7 0.0221 (9) 0.0230 (8) 0.0277 (8) 0.0002 (6) 0.0119 (7) −0.0037 (6)
C8 0.0228 (9) 0.0273 (8) 0.0279 (9) −0.0026 (7) 0.0111 (7) 0.0035 (7)
C9 0.0242 (9) 0.0168 (7) 0.0289 (9) −0.0020 (6) 0.0061 (7) 0.0020 (6)
C10 0.0228 (9) 0.0173 (7) 0.0252 (8) 0.0013 (6) 0.0059 (7) −0.0012 (6)
C11 0.0182 (8) 0.0195 (7) 0.0209 (8) −0.0004 (6) 0.0071 (7) −0.0002 (6)
C12 0.0305 (10) 0.0174 (7) 0.0280 (9) 0.0022 (6) 0.0131 (8) −0.0036 (6)
C13 0.0258 (9) 0.0169 (7) 0.0218 (8) 0.0007 (6) 0.0092 (7) −0.0061 (6)
C14 0.0259 (9) 0.0296 (8) 0.0267 (9) 0.0056 (7) 0.0076 (8) −0.0013 (7)
C15 0.0425 (11) 0.0296 (8) 0.0243 (9) 0.0015 (8) 0.0117 (8) 0.0015 (7)
C16 0.0423 (12) 0.0292 (9) 0.0372 (10) −0.0078 (8) 0.0260 (9) −0.0093 (7)
C17 0.0224 (10) 0.0332 (9) 0.0451 (11) 0.0010 (7) 0.0129 (9) −0.0113 (8)
C18 0.0282 (10) 0.0235 (8) 0.0281 (9) 0.0028 (7) 0.0082 (8) −0.0025 (6)

Geometric parameters (Å, °)

S1—C11 1.7661 (15) C6—C11 1.413 (2)
S1—C12 1.8175 (15) C7—C8 1.389 (2)
N1—C1 1.3035 (19) C7—H7A 0.9500
N1—C6 1.4033 (18) C8—C9 1.384 (2)
N2—C1 1.373 (2) C8—H8A 0.9500
N2—C3 1.4536 (19) C9—C10 1.386 (2)
N2—C2 1.455 (2) C9—H9A 0.9500
N3—C1 1.3804 (18) C10—C11 1.390 (2)
N3—C4 1.451 (2) C10—H10A 0.9500
N3—C5 1.4628 (19) C12—C13 1.505 (2)
C2—H2A 0.9800 C12—H12A 0.9900
C2—H2B 0.9800 C12—H12B 0.9900
C2—H2C 0.9800 C13—C18 1.385 (2)
C3—H3A 0.9800 C13—C14 1.396 (2)
C3—H3B 0.9800 C14—C15 1.380 (2)
C3—H3C 0.9800 C14—H14A 0.9500
C4—H4A 0.9800 C15—C16 1.381 (3)
C4—H4B 0.9800 C15—H15A 0.9500
C4—H4C 0.9800 C16—C17 1.382 (2)
C5—H5A 0.9800 C16—H16A 0.9500
C5—H5B 0.9800 C17—C18 1.387 (2)
C5—H5C 0.9800 C17—H17A 0.9500
C6—C7 1.391 (2) C18—H18A 0.9500
C11—S1—C12 102.33 (7) C8—C7—H7A 119.2
C1—N1—C6 121.20 (13) C6—C7—H7A 119.2
C1—N2—C3 121.30 (13) C9—C8—C7 119.62 (14)
C1—N2—C2 122.01 (13) C9—C8—H8A 120.2
C3—N2—C2 114.35 (14) C7—C8—H8A 120.2
C1—N3—C4 118.43 (13) C8—C9—C10 120.05 (14)
C1—N3—C5 120.43 (14) C8—C9—H9A 120.0
C4—N3—C5 113.92 (13) C10—C9—H9A 120.0
N1—C1—N2 126.77 (14) C9—C10—C11 120.61 (14)
N1—C1—N3 118.33 (15) C9—C10—H10A 119.7
N2—C1—N3 114.87 (13) C11—C10—H10A 119.7
N2—C2—H2A 109.5 C10—C11—C6 119.88 (14)
N2—C2—H2B 109.5 C10—C11—S1 124.60 (12)
H2A—C2—H2B 109.5 C6—C11—S1 115.51 (11)
N2—C2—H2C 109.5 C13—C12—S1 108.58 (10)
H2A—C2—H2C 109.5 C13—C12—H12A 110.0
H2B—C2—H2C 109.5 S1—C12—H12A 110.0
N2—C3—H3A 109.5 C13—C12—H12B 110.0
N2—C3—H3B 109.5 S1—C12—H12B 110.0
H3A—C3—H3B 109.5 H12A—C12—H12B 108.4
N2—C3—H3C 109.5 C18—C13—C14 118.55 (15)
H3A—C3—H3C 109.5 C18—C13—C12 121.19 (14)
H3B—C3—H3C 109.5 C14—C13—C12 120.25 (15)
N3—C4—H4A 109.5 C15—C14—C13 120.91 (16)
N3—C4—H4B 109.5 C15—C14—H14A 119.5
H4A—C4—H4B 109.5 C13—C14—H14A 119.5
N3—C4—H4C 109.5 C14—C15—C16 119.81 (16)
H4A—C4—H4C 109.5 C14—C15—H15A 120.1
H4B—C4—H4C 109.5 C16—C15—H15A 120.1
N3—C5—H5A 109.5 C15—C16—C17 120.10 (16)
N3—C5—H5B 109.5 C15—C16—H16A 120.0
H5A—C5—H5B 109.5 C17—C16—H16A 120.0
N3—C5—H5C 109.5 C16—C17—C18 119.97 (17)
H5A—C5—H5C 109.5 C16—C17—H17A 120.0
H5B—C5—H5C 109.5 C18—C17—H17A 120.0
C7—C6—N1 123.59 (13) C13—C18—C17 120.66 (16)
C7—C6—C11 118.26 (13) C13—C18—H18A 119.7
N1—C6—C11 117.77 (13) C17—C18—H18A 119.7
C8—C7—C6 121.54 (14)
C6—N1—C1—N2 28.2 (2) C9—C10—C11—S1 −177.01 (12)
C6—N1—C1—N3 −153.64 (14) C7—C6—C11—C10 −2.2 (2)
C3—N2—C1—N1 21.5 (2) N1—C6—C11—C10 −175.37 (14)
C2—N2—C1—N1 −140.14 (17) C7—C6—C11—S1 176.95 (12)
C3—N2—C1—N3 −156.70 (13) N1—C6—C11—S1 3.76 (18)
C2—N2—C1—N3 41.6 (2) C12—S1—C11—C10 −7.87 (16)
C4—N3—C1—N1 12.7 (2) C12—S1—C11—C6 173.05 (12)
C5—N3—C1—N1 −135.83 (16) C11—S1—C12—C13 −178.03 (11)
C4—N3—C1—N2 −168.95 (14) S1—C12—C13—C18 −105.18 (15)
C5—N3—C1—N2 42.6 (2) S1—C12—C13—C14 74.12 (16)
C1—N1—C6—C7 42.6 (2) C18—C13—C14—C15 0.3 (2)
C1—N1—C6—C11 −144.63 (15) C12—C13—C14—C15 −179.05 (14)
N1—C6—C7—C8 173.60 (15) C13—C14—C15—C16 0.2 (2)
C11—C6—C7—C8 0.8 (2) C14—C15—C16—C17 −0.8 (2)
C6—C7—C8—C9 0.7 (2) C15—C16—C17—C18 0.9 (2)
C7—C8—C9—C10 −0.9 (2) C14—C13—C18—C17 −0.2 (2)
C8—C9—C10—C11 −0.5 (2) C12—C13—C18—C17 179.14 (14)
C9—C10—C11—C6 2.0 (2) C16—C17—C18—C13 −0.4 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5518).

References

  1. Börner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362–2376. [DOI] [PubMed]
  2. Börner, J., Herres-Pawlis, S., Flörke, U. & Huber, K. (2007). Eur. J. Inorg. Chem. pp. 5645–5651.
  3. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Harmjanz, F. (1997). PhD thesis, University of Oldenburg, Germany.
  5. Herres, S., Flörke, U. & Henkel, G. (2004). Acta Cryst. C60, o358–o360. [DOI] [PubMed]
  6. Herres, S., Heuwing, A. J., Flörke, U., Schneider, J. & Henkel, G. (2005). Inorg. Chim. Acta, 358, 1089–1095.
  7. Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879–4890.
  8. Herres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154–1169. [DOI] [PMC free article] [PubMed]
  9. Lindoy, L. F. & Livingstone, S. E. (1968). Inorg. Chem. 7, 1149–1154.
  10. Neuba, A. (2009). PhD thesis, University of Paderborn, Germany.
  11. Neuba, A., Flörke, U. & Henkel, G. (2007a). Acta Cryst. E63, o3476–o3477.
  12. Neuba, A., Flörke, U. & Henkel, G. (2007b). Acta Cryst. E63, o4661.
  13. Neuba, A., Flörke, U. & Henkel, G. (2007c). Acta Cryst. E63, o4683.
  14. Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. In the press. [DOI] [PubMed]
  15. Neuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008b). Z. Anorg. Allg. Chem. 634, 2511–2517.
  16. Neuba, A., Herres-Pawlis, S., Flörke, U. & Henkel, G. (2008a). Z. Anorg. Allg. Chem. 634, 771–777.
  17. Neuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641–2649.
  18. Peters, A., Wild, U., Hubner, O., Kaifer, E. & Himmel, H.-J. (2008). Chem. Eur. J. 14, 7813–7821. [DOI] [PubMed]
  19. Pohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473–3479.
  20. Raab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790–8797. [DOI] [PubMed]
  21. Raab, V., Kipke, J., Gschwind, R. M. & Sundermeyer, J. (2002). Chem. Eur. J. 8, 1682–1693. [DOI] [PubMed]
  22. Schneider, J. (2000). PhD thesis, University of Duisburg, Germany.
  23. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  24. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  25. Waden, H. (1999). PhD thesis, University of Oldenburg, Germany.
  26. Wittmann, H. (1999). PhD thesis, University of Marburg, Germany.
  27. Wittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937–1948.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014577/bt5518sup1.cif

e-67-o1202-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014577/bt5518Isup2.hkl

e-67-o1202-Isup2.hkl (195.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES