Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1195. doi: 10.1107/S1600536811014553

N-Benzyl­aniline

Richard Betz a,*, Cedric McCleland a, Harold Marchand a
PMCID: PMC3089167  PMID: 21754497

Abstract

The title compound, C13H13N, is an N-alkyl­ated derivative of aniline. The N atom is present in a nearly planar mol­ecular geometry (angles sums at the N atom are 358 and 359° in the two molecules of the asymmetric unit). The planes defined by the aromatic rings intersect at angles of 80.76 (4) and 81.40 (4)° in the two molecules. In the crystal, N—H⋯Cg inter­actions connect the two mol­ecules of the asymmetric unit to form infinite homodromic chains along the crystallographic b axis [N⋯π = 3.4782 (12) and 3.4642 (13) Å].

Related literature

For the crystal structure analysis of a ruthenium coordination compound featuring the title compound as a ligand, see: Casey et al. (2006). For the crystal structure analysis of a rhodium coordination compound containing the title compound as a ligand, see: Marcazzan et al. (2003).graphic file with name e-67-o1195-scheme1.jpg

Experimental

Crystal data

  • C13H13N

  • M r = 183.24

  • Monoclinic, Inline graphic

  • a = 18.8185 (6) Å

  • b = 5.7911 (2) Å

  • c = 19.3911 (7) Å

  • β = 103.338 (1)°

  • V = 2056.24 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 200 K

  • 0.60 × 0.33 × 0.13 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • 18958 measured reflections

  • 4929 independent reflections

  • 4088 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.118

  • S = 1.04

  • 4929 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014553/ds2106sup1.cif

e-67-o1195-sup1.cif (20KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811014553/ds2106Isup2.cdx

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014553/ds2106Isup3.hkl

e-67-o1195-Isup3.hkl (241.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C21–C26 ring and Cg2 is the centroid of the C41–C46 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H71⋯Cg1i 0.889 (17) 2.608 (17) 3.4782 (12) 166.0 (14)
N2—H72⋯Cg2i 0.858 (17) 2.625 (17) 3.4642 (13) 165.5 (15)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Mrs Anna vom Kernpoint for helpful discussions.

supplementary crystallographic information

Comment

The coordination behaviour of monodentate ligands is influenced by electronic as well as steric factors. In this aspect, derivatives of aniline are particularily interesting and promising compounds due to a series of reasons: first, they can act as neutral or – upon deprotonation – as anionic ligands. Second, the derivatization of the aromatic system of aniline allows for the fine-tuning of the basicity and nucleophilicity of the N atom and thus its coordination behaviour in terms of Lewis basicity. Third, the steric pretense of the ligand can be varied by applying different patterns of substituents among the aromatic regime as well as by endowing the N atom itself with sterically more demanding groups. In our continuous efforts to elucidate the coordination behaviour of N donor ligands, it seemed necessary to determine the crystal structure of the title compound to enable comparative studies with the coordination compounds obtained. So far, only two structure determinations involving the title compound as a ligand are present in the literature (Casey et al., 2006; Marcazzan et al., 2003).

The molecular geometry around both molecules of the asymmetric unit is essentially planar with X—N—Y angles ranging from 117.0 (10)° to 124.54 (11)°. The biggest of these angles in the title compound is found for both molecules for the C—N—C angle. The phenyl rings within one molecule of the asymmetric unit are nearly orientated perpendicular to each other, the least-squares planes defined by the aromatic rings within one molecule enclose angles of 80.76 (4)° and 81.40 (4)°, respectively (Fig. 1).

The N—H groups do not interact with each other. Instead, the formation of N—H···Cg contacts is observed in the crystal structure. These contacts exclusively use the aromatic moiety of the benzyl substituent as acceptor and are present only between one of the molecules of the asymmetric unit and its translation symmetry-generated equivalents (Fig. 2). In total, the formation of two one-dimensional chains of molecules along the crystallographic b axis is observed.

The packing of the title compound is shown in Fig. 3.

Experimental

The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were taken directly from the provided compound.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic C atoms, C—H 0.99 Å for aliphatic C atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Intermolecular N–H···Cg contacts, viewed along [00\=1]. Symmetry operators: ix, y + 1, z; iix, y - 1, z.

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along [010] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C13H13N F(000) = 784
Mr = 183.24 Dx = 1.184 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9996 reflections
a = 18.8185 (6) Å θ = 2.2–28.3°
b = 5.7911 (2) Å µ = 0.07 mm1
c = 19.3911 (7) Å T = 200 K
β = 103.338 (1)° Block, colourless
V = 2056.24 (12) Å3 0.60 × 0.33 × 0.13 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer 4088 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.038
graphite θmax = 28.0°, θmin = 1.1°
φ and ω scans h = −24→24
18958 measured reflections k = −7→7
4929 independent reflections l = −24→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.4031P] where P = (Fo2 + 2Fc2)/3
4929 reflections (Δ/σ)max < 0.001
261 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.15 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.03311 (6) 0.97897 (19) 0.16847 (6) 0.0493 (2)
H71 0.0550 (9) 1.099 (3) 0.1535 (9) 0.070 (5)*
N2 0.46883 (6) 0.44222 (19) 0.15115 (6) 0.0540 (3)
H72 0.4494 (9) 0.561 (3) 0.1275 (9) 0.068 (5)*
C1 0.07935 (7) 0.8108 (2) 0.21148 (6) 0.0479 (3)
H1A 0.0513 0.7377 0.2430 0.058*
H1B 0.1209 0.8935 0.2421 0.058*
C2 0.42036 (7) 0.2780 (2) 0.17124 (7) 0.0503 (3)
H2A 0.3776 0.3629 0.1800 0.060*
H2B 0.4458 0.2073 0.2167 0.060*
C11 −0.03932 (6) 0.94047 (18) 0.13574 (6) 0.0385 (2)
C12 −0.07788 (7) 1.1118 (2) 0.09194 (7) 0.0493 (3)
H12 −0.0535 1.2488 0.0835 0.059*
C13 −0.15091 (7) 1.0841 (2) 0.06090 (7) 0.0560 (3)
H13 −0.1763 1.2029 0.0314 0.067*
C14 −0.18771 (7) 0.8866 (2) 0.07191 (7) 0.0529 (3)
H14 −0.2382 0.8690 0.0508 0.063*
C15 −0.14974 (7) 0.7155 (2) 0.11411 (7) 0.0501 (3)
H15 −0.1744 0.5781 0.1217 0.060*
C16 −0.07616 (6) 0.7395 (2) 0.14580 (6) 0.0436 (3)
H16 −0.0509 0.6186 0.1744 0.052*
C21 0.10986 (5) 0.62091 (19) 0.17312 (6) 0.0386 (2)
C22 0.15966 (6) 0.4669 (2) 0.21269 (6) 0.0442 (3)
H22 0.1728 0.4813 0.2628 0.053*
C23 0.19021 (7) 0.2936 (2) 0.18036 (7) 0.0522 (3)
H23 0.2249 0.1917 0.2081 0.063*
C24 0.17031 (7) 0.2678 (2) 0.10746 (7) 0.0546 (3)
H24 0.1910 0.1478 0.0850 0.066*
C25 0.12036 (7) 0.4171 (2) 0.06781 (7) 0.0536 (3)
H25 0.1062 0.3987 0.0178 0.064*
C26 0.09050 (6) 0.5938 (2) 0.09998 (6) 0.0464 (3)
H26 0.0566 0.6972 0.0719 0.056*
C31 0.54218 (6) 0.40591 (19) 0.15682 (6) 0.0412 (2)
C32 0.57707 (6) 0.2029 (2) 0.18503 (6) 0.0431 (3)
H32 0.5496 0.0818 0.1994 0.052*
C33 0.65154 (7) 0.1774 (2) 0.19213 (6) 0.0489 (3)
H33 0.6747 0.0386 0.2116 0.059*
C34 0.69271 (7) 0.3490 (2) 0.17147 (7) 0.0545 (3)
H34 0.7438 0.3300 0.1766 0.065*
C35 0.65833 (8) 0.5495 (2) 0.14311 (8) 0.0568 (3)
H35 0.6861 0.6695 0.1287 0.068*
C36 0.58427 (7) 0.5778 (2) 0.13539 (7) 0.0508 (3)
H36 0.5616 0.7163 0.1152 0.061*
C41 0.39244 (6) 0.0851 (2) 0.11933 (6) 0.0414 (2)
C42 0.34291 (6) −0.0710 (2) 0.13551 (7) 0.0495 (3)
H42 0.3284 −0.0566 0.1791 0.059*
C43 0.31429 (7) −0.2472 (3) 0.08936 (8) 0.0606 (4)
H43 0.2796 −0.3509 0.1008 0.073*
C44 0.33613 (8) −0.2722 (3) 0.02670 (8) 0.0645 (4)
H44 0.3169 −0.3940 −0.0050 0.077*
C45 0.38576 (7) −0.1206 (3) 0.01009 (7) 0.0620 (4)
H45 0.4011 −0.1385 −0.0330 0.074*
C46 0.41358 (7) 0.0583 (2) 0.05581 (6) 0.0506 (3)
H46 0.4474 0.1635 0.0436 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0465 (5) 0.0416 (5) 0.0569 (6) −0.0028 (4) 0.0063 (5) 0.0007 (5)
N2 0.0498 (6) 0.0445 (6) 0.0672 (7) 0.0091 (5) 0.0125 (5) 0.0067 (5)
C1 0.0479 (6) 0.0532 (7) 0.0393 (6) 0.0025 (5) 0.0030 (5) −0.0033 (5)
C2 0.0487 (6) 0.0567 (7) 0.0475 (6) 0.0072 (5) 0.0154 (5) −0.0017 (5)
C11 0.0435 (5) 0.0363 (5) 0.0368 (5) 0.0012 (4) 0.0117 (4) −0.0048 (4)
C12 0.0557 (7) 0.0366 (6) 0.0536 (7) −0.0013 (5) 0.0086 (5) 0.0023 (5)
C13 0.0558 (7) 0.0511 (7) 0.0559 (7) 0.0079 (6) 0.0020 (6) 0.0040 (6)
C14 0.0422 (6) 0.0648 (8) 0.0511 (7) −0.0004 (6) 0.0096 (5) −0.0066 (6)
C15 0.0502 (6) 0.0515 (7) 0.0535 (7) −0.0084 (5) 0.0223 (5) −0.0027 (6)
C16 0.0492 (6) 0.0408 (6) 0.0438 (6) 0.0015 (5) 0.0168 (5) 0.0043 (5)
C21 0.0346 (5) 0.0438 (6) 0.0367 (5) −0.0047 (4) 0.0071 (4) 0.0022 (4)
C22 0.0397 (5) 0.0501 (6) 0.0399 (5) −0.0035 (5) 0.0028 (4) 0.0052 (5)
C23 0.0435 (6) 0.0506 (7) 0.0597 (7) 0.0057 (5) 0.0062 (5) 0.0080 (6)
C24 0.0498 (7) 0.0556 (7) 0.0614 (8) 0.0044 (6) 0.0190 (6) −0.0047 (6)
C25 0.0536 (7) 0.0687 (8) 0.0400 (6) 0.0030 (6) 0.0143 (5) −0.0040 (6)
C26 0.0459 (6) 0.0560 (7) 0.0363 (5) 0.0054 (5) 0.0074 (5) 0.0049 (5)
C31 0.0474 (6) 0.0377 (5) 0.0370 (5) 0.0026 (4) 0.0070 (4) −0.0055 (4)
C32 0.0479 (6) 0.0394 (6) 0.0401 (5) −0.0001 (5) 0.0061 (5) 0.0004 (5)
C33 0.0486 (6) 0.0484 (7) 0.0452 (6) 0.0062 (5) 0.0017 (5) −0.0018 (5)
C34 0.0458 (6) 0.0604 (8) 0.0560 (7) −0.0031 (6) 0.0092 (5) −0.0094 (6)
C35 0.0614 (8) 0.0492 (7) 0.0636 (8) −0.0109 (6) 0.0222 (6) −0.0061 (6)
C36 0.0644 (8) 0.0354 (6) 0.0535 (7) 0.0016 (5) 0.0154 (6) −0.0007 (5)
C41 0.0346 (5) 0.0499 (6) 0.0393 (5) 0.0108 (4) 0.0078 (4) 0.0067 (5)
C42 0.0399 (6) 0.0585 (7) 0.0512 (6) 0.0106 (5) 0.0130 (5) 0.0139 (6)
C43 0.0415 (6) 0.0577 (8) 0.0776 (9) 0.0008 (6) 0.0037 (6) 0.0134 (7)
C44 0.0528 (7) 0.0674 (9) 0.0631 (8) 0.0030 (7) −0.0074 (6) −0.0091 (7)
C45 0.0552 (7) 0.0858 (10) 0.0419 (6) 0.0070 (7) 0.0047 (6) −0.0080 (7)
C46 0.0442 (6) 0.0679 (8) 0.0403 (6) 0.0015 (6) 0.0112 (5) 0.0028 (6)

Geometric parameters (Å, °)

N1—C11 1.3823 (14) C23—H23 0.9500
N1—C1 1.4375 (15) C24—C25 1.3743 (18)
N1—H71 0.889 (17) C24—H24 0.9500
N2—C31 1.3753 (15) C25—C26 1.3837 (18)
N2—C2 1.4327 (17) C25—H25 0.9500
N2—H72 0.858 (17) C26—H26 0.9500
C1—C21 1.5131 (16) C31—C36 1.3940 (17)
C1—H1A 0.9900 C31—C32 1.3953 (15)
C1—H1B 0.9900 C32—C33 1.3840 (16)
C2—C41 1.5141 (17) C32—H32 0.9500
C2—H2A 0.9900 C33—C34 1.3755 (19)
C2—H2B 0.9900 C33—H33 0.9500
C11—C16 1.3915 (15) C34—C35 1.380 (2)
C11—C12 1.3955 (16) C34—H34 0.9500
C12—C13 1.3766 (18) C35—C36 1.3768 (19)
C12—H12 0.9500 C35—H35 0.9500
C13—C14 1.3792 (19) C36—H36 0.9500
C13—H13 0.9500 C41—C42 1.3853 (17)
C14—C15 1.3757 (19) C41—C46 1.3877 (16)
C14—H14 0.9500 C42—C43 1.382 (2)
C15—C16 1.3863 (17) C42—H42 0.9500
C15—H15 0.9500 C43—C44 1.377 (2)
C16—H16 0.9500 C43—H43 0.9500
C21—C26 1.3894 (15) C44—C45 1.373 (2)
C21—C22 1.3895 (15) C44—H44 0.9500
C22—C23 1.3774 (18) C45—C46 1.3852 (19)
C22—H22 0.9500 C45—H45 0.9500
C23—C24 1.3844 (19) C46—H46 0.9500
C11—N1—C1 123.90 (10) C25—C24—C23 119.49 (12)
C11—N1—H71 117.2 (10) C25—C24—H24 120.3
C1—N1—H71 117.0 (10) C23—C24—H24 120.3
C31—N2—C2 124.54 (11) C24—C25—C26 120.64 (11)
C31—N2—H72 117.4 (11) C24—C25—H25 119.7
C2—N2—H72 117.1 (11) C26—C25—H25 119.7
N1—C1—C21 117.05 (10) C25—C26—C21 120.37 (11)
N1—C1—H1A 108.0 C25—C26—H26 119.8
C21—C1—H1A 108.0 C21—C26—H26 119.8
N1—C1—H1B 108.0 N2—C31—C36 119.72 (11)
C21—C1—H1B 108.0 N2—C31—C32 122.21 (11)
H1A—C1—H1B 107.3 C36—C31—C32 118.05 (11)
N2—C2—C41 117.01 (10) C33—C32—C31 120.21 (11)
N2—C2—H2A 108.0 C33—C32—H32 119.9
C41—C2—H2A 108.0 C31—C32—H32 119.9
N2—C2—H2B 108.0 C34—C33—C32 121.28 (12)
C41—C2—H2B 108.0 C34—C33—H33 119.4
H2A—C2—H2B 107.3 C32—C33—H33 119.4
N1—C11—C16 122.75 (10) C33—C34—C35 118.71 (12)
N1—C11—C12 118.95 (10) C33—C34—H34 120.6
C16—C11—C12 118.29 (11) C35—C34—H34 120.6
C13—C12—C11 120.67 (11) C36—C35—C34 120.88 (12)
C13—C12—H12 119.7 C36—C35—H35 119.6
C11—C12—H12 119.7 C34—C35—H35 119.6
C12—C13—C14 120.99 (12) C35—C36—C31 120.86 (12)
C12—C13—H13 119.5 C35—C36—H36 119.6
C14—C13—H13 119.5 C31—C36—H36 119.6
C15—C14—C13 118.63 (12) C42—C41—C46 118.27 (12)
C15—C14—H14 120.7 C42—C41—C2 118.63 (10)
C13—C14—H14 120.7 C46—C41—C2 123.09 (11)
C14—C15—C16 121.34 (11) C43—C42—C41 121.15 (12)
C14—C15—H15 119.3 C43—C42—H42 119.4
C16—C15—H15 119.3 C41—C42—H42 119.4
C15—C16—C11 120.05 (11) C44—C43—C42 119.85 (13)
C15—C16—H16 120.0 C44—C43—H43 120.1
C11—C16—H16 120.0 C42—C43—H43 120.1
C26—C21—C22 118.41 (11) C45—C44—C43 119.83 (14)
C26—C21—C1 122.95 (10) C45—C44—H44 120.1
C22—C21—C1 118.63 (10) C43—C44—H44 120.1
C23—C22—C21 121.03 (11) C44—C45—C46 120.34 (13)
C23—C22—H22 119.5 C44—C45—H45 119.8
C21—C22—H22 119.5 C46—C45—H45 119.8
C22—C23—C24 120.03 (11) C45—C46—C41 120.55 (12)
C22—C23—H23 120.0 C45—C46—H46 119.7
C24—C23—H23 120.0 C41—C46—H46 119.7
C11—N1—C1—C21 78.24 (15) C1—C21—C26—C25 179.85 (11)
C31—N2—C2—C41 −79.87 (15) C2—N2—C31—C36 179.76 (11)
C1—N1—C11—C16 5.02 (17) C2—N2—C31—C32 −1.69 (18)
C1—N1—C11—C12 −176.44 (11) N2—C31—C32—C33 −177.61 (11)
N1—C11—C12—C13 −177.14 (12) C36—C31—C32—C33 0.96 (16)
C16—C11—C12—C13 1.47 (18) C31—C32—C33—C34 −0.32 (18)
C11—C12—C13—C14 −0.3 (2) C32—C33—C34—C35 −0.12 (19)
C12—C13—C14—C15 −0.7 (2) C33—C34—C35—C36 −0.1 (2)
C13—C14—C15—C16 0.59 (19) C34—C35—C36—C31 0.8 (2)
C14—C15—C16—C11 0.56 (18) N2—C31—C36—C35 177.41 (12)
N1—C11—C16—C15 176.99 (11) C32—C31—C36—C35 −1.20 (17)
C12—C11—C16—C15 −1.57 (16) N2—C2—C41—C42 −177.15 (10)
N1—C1—C21—C26 −5.22 (17) N2—C2—C41—C46 2.21 (17)
N1—C1—C21—C22 174.60 (10) C46—C41—C42—C43 −0.91 (17)
C26—C21—C22—C23 1.09 (17) C2—C41—C42—C43 178.48 (11)
C1—C21—C22—C23 −178.73 (11) C41—C42—C43—C44 1.26 (18)
C21—C22—C23—C24 −1.32 (18) C42—C43—C44—C45 −0.6 (2)
C22—C23—C24—C25 0.4 (2) C43—C44—C45—C46 −0.5 (2)
C23—C24—C25—C26 0.7 (2) C44—C45—C46—C41 0.8 (2)
C24—C25—C26—C21 −0.9 (2) C42—C41—C46—C45 −0.13 (17)
C22—C21—C26—C25 0.04 (17) C2—C41—C46—C45 −179.48 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H71···Cg1i 0.889 (17) 2.608 (17) 3.4782 (12) 166.0 (14)
N2—H72···Cg2i 0.858 (17) 2.625 (17) 3.4642 (13) 165.5 (15)

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2106).

References

  1. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Casey, C. P., Bikzhanova, G. A. & Guzei, I. A. (2006). J. Am. Chem. Soc. 128, 2286–2293. [DOI] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  5. Marcazzan, P., Patrick, B. O. & James, B. R. (2003). Organometallics, 22, 1177–1179.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014553/ds2106sup1.cif

e-67-o1195-sup1.cif (20KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811014553/ds2106Isup2.cdx

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014553/ds2106Isup3.hkl

e-67-o1195-Isup3.hkl (241.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES