Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1217. doi: 10.1107/S1600536811013778

(E)-1-{4-[(E)-3-Chloro­benzyl­idene­amino]­phen­yl}-3-(3-chloro­phen­yl)prop-2-en-1-one

Jian-Ming Cheng a,*, Yun-Feng Zheng a, Guo-Ping Peng a
PMCID: PMC3089170  PMID: 21754515

Abstract

In the title mol­ecule, C22H15Cl2NO, the dihedral angles between the central aromatic ring and the N- and C=O-bonded rings are 43.13 (13) and 0.80 (14)°, respectively. The dihedral angle between the terminal rings is 43.15 (14)°. The major twist occurs about the Car—N bond [Car—Car—N=C = 42.3 (4)°; ar is aromatic].

Related literature

For background to Schiff bases, see: Chimenti et al. (2009); Shi et al. (2007). For reference bond lengths, see: Allen et al. (1987).graphic file with name e-67-o1217-scheme1.jpg

Experimental

Crystal data

  • C22H15Cl2NO

  • M r = 380.25

  • Monoclinic, Inline graphic

  • a = 17.454 (4) Å

  • b = 6.1110 (12) Å

  • c = 17.179 (3) Å

  • β = 100.32 (3)°

  • V = 1802.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.866, T max = 0.964

  • 3659 measured reflections

  • 3539 independent reflections

  • 2367 reflections with I > 2σ(I)

  • R int = 0.021

  • 200 standard reflections every 3 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.145

  • S = 1.06

  • 3539 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013778/hb5842sup1.cif

e-67-o1217-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013778/hb5842Isup2.hkl

e-67-o1217-Isup2.hkl (173.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

There has been much research interest in Schiff base and chalcone compounds due to their biological activities (Shi et al., 2007; Chimenti et al., 2009). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1).

Experimental

The title compound was prepared by stirring a mixture of 3-chlorobenzaldehyde (280 mg, 2 mmol) and 1-(4-aminophenyl)ethanone (135 mg, 1 mmol) in methanol (10 ml) for 4 h. After keeping the filtrate in air for 5 d, colorless block-shaped crystals of (I) were formed.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The structure of (I) showing 30% probability displacement ellipsoids.

Crystal data

C22H15Cl2NO F(000) = 784
Mr = 380.25 Dx = 1.401 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 17.454 (4) Å θ = 9–12°
b = 6.1110 (12) Å µ = 0.37 mm1
c = 17.179 (3) Å T = 293 K
β = 100.32 (3)° Block, colorless
V = 1802.7 (6) Å3 0.40 × 0.30 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 2367 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.021
graphite θmax = 26.0°, θmin = 1.2°
ω/2θ scans h = −21→0
Absorption correction: ψ scan (North et al., 1968) k = 0→7
Tmin = 0.866, Tmax = 0.964 l = −20→21
3659 measured reflections 200 standard reflections every 3 reflections
3539 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.6746P] where P = (Fo2 + 2Fc2)/3
3539 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.82827 (15) −0.0032 (5) −0.05196 (15) 0.0486 (7)
C2 0.87296 (15) −0.1135 (5) −0.09848 (16) 0.0524 (7)
H2 0.8585 −0.2535 −0.1167 0.063*
C3 0.93831 (17) −0.0187 (6) −0.11798 (18) 0.0617 (8)
C4 0.96089 (19) 0.1871 (6) −0.0928 (2) 0.0732 (9)
H4 1.0054 0.2501 −0.1058 0.088*
C5 0.9159 (2) 0.2994 (6) −0.0476 (2) 0.0802 (10)
H5 0.9301 0.4405 −0.0307 0.096*
C6 0.85060 (18) 0.2070 (5) −0.02714 (19) 0.0652 (8)
H6 0.8213 0.2855 0.0035 0.078*
C7 0.76114 (15) −0.1165 (5) −0.03071 (15) 0.0515 (7)
H7 0.7557 −0.2622 −0.0462 0.062*
C8 0.70704 (15) −0.0416 (5) 0.00740 (15) 0.0515 (7)
H8 0.7078 0.1040 0.0232 0.062*
C9 0.64549 (16) −0.1899 (5) 0.02472 (15) 0.0498 (7)
C10 0.58642 (15) −0.1109 (4) 0.07094 (14) 0.0428 (6)
C11 0.58854 (15) 0.0934 (4) 0.10662 (15) 0.0488 (7)
H11 0.6285 0.1902 0.1017 0.059*
C12 0.53180 (15) 0.1548 (5) 0.14945 (15) 0.0475 (6)
H12 0.5344 0.2910 0.1740 0.057*
C13 0.47135 (15) 0.0137 (4) 0.15568 (14) 0.0429 (6)
C14 0.46980 (17) −0.1910 (4) 0.12070 (17) 0.0551 (7)
H14 0.4299 −0.2884 0.1254 0.066*
C15 0.52654 (16) −0.2513 (5) 0.07917 (16) 0.0525 (7)
H15 0.5246 −0.3893 0.0561 0.063*
C16 0.37984 (14) 0.2508 (4) 0.18899 (14) 0.0441 (6)
H16 0.4007 0.3531 0.1586 0.053*
C17 0.31366 (15) 0.3162 (4) 0.22540 (14) 0.0435 (6)
C18 0.28087 (16) 0.5218 (5) 0.20967 (16) 0.0515 (7)
H18 0.3023 0.6187 0.1777 0.062*
C19 0.21688 (17) 0.5833 (5) 0.24099 (18) 0.0591 (8)
H19 0.1958 0.7223 0.2307 0.071*
C20 0.18380 (17) 0.4406 (5) 0.28750 (18) 0.0598 (8)
H20 0.1405 0.4819 0.3087 0.072*
C21 0.21605 (16) 0.2352 (5) 0.30206 (16) 0.0522 (7)
C22 0.28056 (15) 0.1702 (4) 0.27221 (14) 0.0456 (6)
H22 0.3017 0.0315 0.2831 0.055*
Cl1 0.99327 (5) −0.1679 (2) −0.17471 (6) 0.0968 (4)
Cl2 0.17205 (5) 0.05098 (15) 0.35786 (5) 0.0771 (3)
N1 0.40982 (12) 0.0634 (4) 0.19679 (12) 0.0468 (5)
O1 0.64304 (12) −0.3797 (4) 0.00131 (13) 0.0693 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0474 (15) 0.0542 (17) 0.0434 (14) −0.0010 (13) 0.0060 (12) −0.0006 (13)
C2 0.0494 (15) 0.0540 (17) 0.0555 (16) −0.0054 (13) 0.0142 (13) −0.0054 (14)
C3 0.0508 (17) 0.073 (2) 0.0626 (18) −0.0045 (16) 0.0147 (14) 0.0011 (16)
C4 0.0557 (18) 0.076 (2) 0.088 (2) −0.0150 (18) 0.0127 (17) 0.004 (2)
C5 0.080 (2) 0.056 (2) 0.101 (3) −0.0187 (19) 0.008 (2) −0.006 (2)
C6 0.0644 (19) 0.058 (2) 0.074 (2) −0.0058 (16) 0.0129 (16) −0.0152 (16)
C7 0.0545 (16) 0.0551 (17) 0.0463 (15) −0.0052 (14) 0.0128 (13) −0.0080 (13)
C8 0.0561 (16) 0.0539 (17) 0.0465 (15) −0.0015 (14) 0.0147 (13) −0.0061 (13)
C9 0.0544 (16) 0.0524 (18) 0.0433 (14) −0.0001 (14) 0.0105 (12) −0.0051 (13)
C10 0.0476 (14) 0.0451 (15) 0.0367 (13) 0.0012 (12) 0.0101 (11) −0.0005 (11)
C11 0.0463 (15) 0.0496 (17) 0.0521 (15) −0.0084 (13) 0.0134 (12) −0.0080 (13)
C12 0.0504 (15) 0.0467 (15) 0.0462 (15) −0.0026 (13) 0.0112 (12) −0.0085 (13)
C13 0.0509 (15) 0.0417 (15) 0.0379 (13) 0.0044 (12) 0.0127 (11) 0.0077 (12)
C14 0.0620 (17) 0.0414 (16) 0.0688 (18) −0.0072 (14) 0.0305 (15) 0.0025 (14)
C15 0.0658 (17) 0.0367 (15) 0.0588 (17) −0.0037 (13) 0.0216 (14) −0.0044 (13)
C16 0.0491 (14) 0.0444 (15) 0.0410 (14) −0.0059 (13) 0.0145 (11) 0.0018 (12)
C17 0.0463 (14) 0.0418 (15) 0.0432 (13) −0.0053 (12) 0.0102 (11) −0.0051 (12)
C18 0.0541 (16) 0.0446 (16) 0.0576 (17) −0.0030 (13) 0.0151 (13) −0.0005 (13)
C19 0.0590 (17) 0.0460 (17) 0.074 (2) 0.0038 (14) 0.0155 (15) −0.0092 (15)
C20 0.0563 (17) 0.059 (2) 0.070 (2) −0.0035 (15) 0.0259 (15) −0.0166 (16)
C21 0.0573 (17) 0.0535 (18) 0.0505 (16) −0.0132 (14) 0.0218 (13) −0.0090 (13)
C22 0.0502 (15) 0.0432 (15) 0.0455 (14) −0.0051 (12) 0.0141 (12) −0.0026 (12)
Cl1 0.0694 (6) 0.1239 (9) 0.1101 (8) −0.0134 (6) 0.0507 (5) −0.0227 (7)
Cl2 0.0919 (6) 0.0759 (6) 0.0763 (5) −0.0213 (5) 0.0496 (5) −0.0045 (4)
N1 0.0545 (13) 0.0444 (13) 0.0452 (12) 0.0037 (11) 0.0192 (10) 0.0070 (10)
O1 0.0787 (15) 0.0571 (13) 0.0810 (15) −0.0079 (11) 0.0379 (12) −0.0226 (11)

Geometric parameters (Å, °)

C1—C6 1.387 (4) C12—C13 1.382 (4)
C1—C2 1.387 (4) C12—H12 0.9300
C1—C7 1.462 (4) C13—C14 1.386 (4)
C2—C3 1.373 (4) C13—N1 1.420 (3)
C2—H2 0.9300 C14—C15 1.370 (4)
C3—C4 1.365 (5) C14—H14 0.9300
C3—Cl1 1.742 (3) C15—H15 0.9300
C4—C5 1.382 (5) C16—N1 1.256 (3)
C4—H4 0.9300 C16—C17 1.464 (3)
C5—C6 1.373 (4) C16—H16 0.9300
C5—H5 0.9300 C17—C18 1.387 (4)
C6—H6 0.9300 C17—C22 1.394 (3)
C7—C8 1.323 (4) C18—C19 1.376 (4)
C7—H7 0.9300 C18—H18 0.9300
C8—C9 1.476 (4) C19—C20 1.377 (4)
C8—H8 0.9300 C19—H19 0.9300
C9—O1 1.225 (3) C20—C21 1.380 (4)
C9—C10 1.490 (3) C20—H20 0.9300
C10—C15 1.379 (4) C21—C22 1.377 (4)
C10—C11 1.388 (4) C21—Cl2 1.743 (3)
C11—C12 1.387 (3) C22—H22 0.9300
C11—H11 0.9300
C6—C1—C2 118.1 (3) C13—C12—H12 120.0
C6—C1—C7 123.7 (3) C11—C12—H12 120.0
C2—C1—C7 118.2 (3) C12—C13—C14 119.1 (2)
C3—C2—C1 120.8 (3) C12—C13—N1 124.1 (2)
C3—C2—H2 119.6 C14—C13—N1 116.8 (2)
C1—C2—H2 119.6 C15—C14—C13 120.5 (3)
C4—C3—C2 121.1 (3) C15—C14—H14 119.7
C4—C3—Cl1 120.2 (2) C13—C14—H14 119.7
C2—C3—Cl1 118.7 (3) C14—C15—C10 121.2 (3)
C3—C4—C5 118.3 (3) C14—C15—H15 119.4
C3—C4—H4 120.8 C10—C15—H15 119.4
C5—C4—H4 120.8 N1—C16—C17 123.3 (2)
C6—C5—C4 121.4 (3) N1—C16—H16 118.4
C6—C5—H5 119.3 C17—C16—H16 118.4
C4—C5—H5 119.3 C18—C17—C22 119.5 (2)
C5—C6—C1 120.2 (3) C18—C17—C16 119.6 (2)
C5—C6—H6 119.9 C22—C17—C16 120.8 (2)
C1—C6—H6 119.9 C19—C18—C17 120.5 (3)
C8—C7—C1 129.4 (3) C19—C18—H18 119.8
C8—C7—H7 115.3 C17—C18—H18 119.8
C1—C7—H7 115.3 C18—C19—C20 120.5 (3)
C7—C8—C9 119.8 (3) C18—C19—H19 119.8
C7—C8—H8 120.1 C20—C19—H19 119.8
C9—C8—H8 120.1 C19—C20—C21 118.8 (3)
O1—C9—C8 119.9 (2) C19—C20—H20 120.6
O1—C9—C10 119.7 (3) C21—C20—H20 120.6
C8—C9—C10 120.4 (2) C22—C21—C20 121.9 (3)
C15—C10—C11 118.3 (2) C22—C21—Cl2 119.3 (2)
C15—C10—C9 117.6 (2) C20—C21—Cl2 118.8 (2)
C11—C10—C9 124.1 (2) C21—C22—C17 118.8 (3)
C12—C11—C10 120.8 (2) C21—C22—H22 120.6
C12—C11—H11 119.6 C17—C22—H22 120.6
C10—C11—H11 119.6 C16—N1—C13 118.7 (2)
C13—C12—C11 120.0 (2)
C6—C1—C2—C3 1.3 (4) C11—C12—C13—C14 1.9 (4)
C7—C1—C2—C3 −177.6 (3) C11—C12—C13—N1 −178.7 (2)
C1—C2—C3—C4 −0.6 (5) C12—C13—C14—C15 −1.3 (4)
C1—C2—C3—Cl1 178.6 (2) N1—C13—C14—C15 179.3 (3)
C2—C3—C4—C5 −0.6 (5) C13—C14—C15—C10 −0.1 (4)
Cl1—C3—C4—C5 −179.7 (3) C11—C10—C15—C14 0.7 (4)
C3—C4—C5—C6 0.9 (6) C9—C10—C15—C14 −179.9 (3)
C4—C5—C6—C1 −0.2 (5) N1—C16—C17—C18 −175.9 (3)
C2—C1—C6—C5 −0.9 (4) N1—C16—C17—C22 0.6 (4)
C7—C1—C6—C5 177.9 (3) C22—C17—C18—C19 1.1 (4)
C6—C1—C7—C8 6.8 (5) C16—C17—C18—C19 177.6 (3)
C2—C1—C7—C8 −174.4 (3) C17—C18—C19—C20 −0.9 (4)
C1—C7—C8—C9 −177.9 (3) C18—C19—C20—C21 0.0 (4)
C7—C8—C9—O1 −2.6 (4) C19—C20—C21—C22 0.7 (4)
C7—C8—C9—C10 177.1 (2) C19—C20—C21—Cl2 −177.7 (2)
O1—C9—C10—C15 −5.9 (4) C20—C21—C22—C17 −0.5 (4)
C8—C9—C10—C15 174.4 (2) Cl2—C21—C22—C17 177.81 (19)
O1—C9—C10—C11 173.4 (3) C18—C17—C22—C21 −0.4 (4)
C8—C9—C10—C11 −6.2 (4) C16—C17—C22—C21 −176.9 (2)
C15—C10—C11—C12 0.0 (4) C17—C16—N1—C13 176.9 (2)
C9—C10—C11—C12 −179.4 (2) C12—C13—N1—C16 42.3 (4)
C10—C11—C12—C13 −1.3 (4) C14—C13—N1—C16 −138.3 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5842).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Chimenti, F., Fioravanti, R., Bolasco, A., Chimenti, P., Secci, D., Rossi, F., Yanez, M., Orallo, F., Ortuso, F. & Alcaro, S. (2009). J. Med. Chem. 52, 2818–2824. [DOI] [PubMed]
  3. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shi, L., Ge, H.-M., Tan, S.-H., Li, H.-Q., Song, Y.-C., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem. 42, 558–564. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013778/hb5842sup1.cif

e-67-o1217-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013778/hb5842Isup2.hkl

e-67-o1217-Isup2.hkl (173.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES