Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):o1072–o1073. doi: 10.1107/S1600536811012189

(E)-3-(2-{2-[1-(3-Hy­droxy­phen­yl)ethyl­idene]hydrazin­yl}-1,3-thia­zol-4-yl)-2H-chromen-2-one

Afsheen Arshad a, Hasnah Osman a,, Chan Kit Lam b, Madhukar Hemamalini c, Hoong-Kun Fun c,*,§
PMCID: PMC3089171  PMID: 21754396

Abstract

In the title compound, C20H15N3O3S, the thia­zole ring is approximately planar, with a maximum deviation of 0.003 (1) Å, and makes dihedral angles of 7.44 (6) and 1.88 (6)° with the hy­droxy-substituted phenyl ring and the pyran ring, respectively. The hydroxyl group is disordered over two sets of sites, with an occupancy ratio of 0.567 (3):0.433 (3). In the crystal, the major disorder component mol­ecules are connected via bifurcated (three-centre) O—H⋯O and C—H⋯O hydrogen bonds, generating R 1 2(6) motifs and resulting in supra­molecular chains along the a axis. In the minor occupancy component, however, mol­ecules are connected via C—H⋯O hydrogen bonds, forming supra­molecular chains along the b axis. Furthermore, the crystal structure is stabilized by π–π inter­actions between the thia­zole rings [centroid–centroid distance = 3.5476 (7) Å].

Related literature

For details of coumarin derivatives, see: Raghu et al. (2009); Gursoy & Karali (2003); Chimenti et al. (2010); Kamal et al. (2009); Kalkhambkar et al. (2007). For graph-set notation, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For the synthesis of (E)-2-(1-(3-hy­droxy­phen­yl)ethyl­idene)hydrazinecarbothio­amide, see: Greenbaum et al. (2004) and for that of 3-[ω-bromo­acetyl coumarin, see: Nadeem et al. (2009).graphic file with name e-67-o1072-scheme1.jpg

Experimental

Crystal data

  • C20H15N3O3S

  • M r = 377.41

  • Monoclinic, Inline graphic

  • a = 9.1569 (1) Å

  • b = 9.9070 (2) Å

  • c = 18.7478 (3) Å

  • β = 92.040 (1)°

  • V = 1699.67 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.34 × 0.32 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.929, T max = 0.979

  • 29914 measured reflections

  • 5400 independent reflections

  • 4641 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.105

  • S = 1.07

  • 5400 reflections

  • 271 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012189/wn2428sup1.cif

e-67-o1072-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012189/wn2428Isup2.hkl

e-67-o1072-Isup2.hkl (259.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1OA⋯O2i 0.89 (4) 1.89 (4) 2.7693 (19) 171 (4)
C19—H19A⋯O2i 0.93 2.59 3.3020 (17) 133

Symmetry code: (i) Inline graphic.

Acknowledgments

AA, HO, CKL thank the Malaysian Government and Universiti Sains Malaysia (USM) for a grant [1001/PKimia/811133] to conduct this work. AA also thanks USM for a fellowship. HKF and MH thank the Malaysian Government and USM for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks USM for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Coumarin derivatives containing the thiazolyl unit exhibit promising antimicrobial activities against different microbial strains (Raghu et al., 2009), including Mycobacterium tuberculosis (Gursoy et al., 2003) and Helicobacter pylori (Chimenti et al., 2010). These types of compounds are also reported to be good anticancer (Kamal et al., 2009), analgesic and anti-inflammatory agents (Kalkhambkar et al., 2007). The title compound is a new derivative of coumarin with the thiazole ring. We present here its crystal structure.

In the molecular structure of the compound, (Fig.1), the thiazole (S1/N1/C10–C12) ring is approximately planar, with a maximum deviation of 0.003 (1) Å for atom C11. The central thiazole (S1/N1/C10–C12) ring makes dihedral angles of 7.44 (6)° and 1.88 (6)° with the hydroxyl- substituted phenyl (C14–C19) ring and the pyran (O1/C1,C2/C7–C9) ring, respectively. The hydroxyl group is disordered over two sites, with an occupancy ratio 0.567 (3):0.433 (3).

In the crystal packing (Fig. 2), the major component molecules are connected via bifurcated O3—H1OA···O2 and C19—H19A···O2 hydrogen bonds, generating R12(6) motifs, (Bernstein et al., 1995), resulting in supramolecular chains along the a-axis. In the minor component, however, molecules are connected via C19—H19A···O2 hydrogen bonds, forming one-dimensional supramolecular chains along the b-axis (Fig. 3). Furthermore, the crystal structure is stabilized by π···π interactions between the thiazole (S1/N1/C10–C12) rings [centroid-centroid distance = 3.5476 (7) Å; -x, -y, 1-z].

Experimental

(E)-2-(1-(3-Hydroxyphenyl)ethylidene)hydrazinecarbothioamide (Greenbaum et al., 2004) and 3-[ω-bromoacetyl coumarin] (Nadeem et al., 2009) were synthesized as reported in the literature. The title compound was prepared by treating (E)-2-(1-(3-hydroxyphenyl)ethylidene)hydrazinecarbothioamide (2.5 mmol) with 3-ω-bromoacetylcoumarin (2.5 mmol) in a chloroform-ethanol (2:1) mixture. The reaction mixture was refluxed for 2–3 hours at 60°C to yield dense yellow precipitates. The precipitates were filtered and boiled with water containing sodium acetate. The title compound was recrystallized as golden crystals from ethanol:chloroform (3:1).

Refinement

Atoms H1N2, H1OA, H1OB and H11 were located in a difference Fourier map and refined freely [N—H = 0.85 (2) Å; O—H = 0.80 (5) and 0.89 (4) Å; C—H = 0.965 (17) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 Å for aromatic C and C—H = 0.96 Å for methyl C] and were refined using a riding model, with Uiso(H) = kUeq(C), where k = 1.2 for aromatic C and 1.5 for methyl C. A rotating group model was applied to the methyl groups. The hydroxyl group is disordered over two sites, with an occupancy ratio 0.567 (3):0.433 (3).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. The open bonds represents the minor disordered components.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, involving the major disorder components of the molecules. Dashed lines indicate hydrogen bonds.

Fig. 3.

Fig. 3.

The crystal packing of the title compound, involving the minor disorder components of the molecules. Dashed lines indicate hydrogen bonds.

Crystal data

C20H15N3O3S F(000) = 784
Mr = 377.41 Dx = 1.475 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9987 reflections
a = 9.1569 (1) Å θ = 3.0–30.8°
b = 9.9070 (2) Å µ = 0.22 mm1
c = 18.7478 (3) Å T = 100 K
β = 92.040 (1)° Plate, yellow
V = 1699.67 (5) Å3 0.34 × 0.32 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5400 independent reflections
Radiation source: fine-focus sealed tube 4641 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 31.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→13
Tmin = 0.929, Tmax = 0.979 k = −13→14
29914 measured reflections l = −27→27

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.8634P] where P = (Fo2 + 2Fc2)/3
5400 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.17023 (3) 0.06980 (3) 0.402397 (16) 0.02037 (8)
O1 −0.19100 (10) 0.47170 (9) 0.56457 (5) 0.01965 (18)
O2 −0.14551 (11) 0.40120 (11) 0.45684 (5) 0.0273 (2)
O3 0.75724 (18) −0.54395 (18) 0.31831 (9) 0.0234 (5) 0.567 (3)
H1OA 0.797 (4) −0.556 (4) 0.362 (2) 0.040 (10)* 0.567 (3)
O3A 0.4193 (3) −0.2752 (3) 0.18640 (12) 0.0273 (7) 0.433 (3)
H1OB 0.363 (5) −0.216 (5) 0.196 (2) 0.028 (11)* 0.433 (3)
N1 0.15618 (11) 0.10211 (11) 0.53942 (6) 0.0183 (2)
N2 0.31472 (13) −0.07177 (12) 0.50380 (6) 0.0227 (2)
N3 0.36764 (12) −0.13166 (12) 0.44404 (6) 0.0202 (2)
C1 −0.00034 (13) 0.28351 (13) 0.62488 (7) 0.0184 (2)
H1A 0.0626 0.2198 0.6456 0.022*
C2 −0.07700 (13) 0.37365 (13) 0.67004 (7) 0.0184 (2)
C3 −0.06263 (14) 0.37246 (14) 0.74487 (7) 0.0228 (3)
H3A −0.0011 0.3101 0.7677 0.027*
C4 −0.13980 (14) 0.46385 (14) 0.78482 (7) 0.0231 (3)
H4A −0.1304 0.4625 0.8344 0.028*
C5 −0.23196 (14) 0.55839 (14) 0.75060 (7) 0.0214 (2)
H5A −0.2831 0.6198 0.7778 0.026*
C6 −0.24800 (14) 0.56170 (13) 0.67707 (7) 0.0203 (2)
H6A −0.3089 0.6248 0.6544 0.024*
C7 −0.17091 (13) 0.46850 (13) 0.63785 (6) 0.0175 (2)
C8 −0.11845 (13) 0.38669 (13) 0.52030 (7) 0.0187 (2)
C9 −0.01694 (13) 0.28851 (12) 0.55271 (6) 0.0167 (2)
C10 0.06365 (13) 0.19757 (12) 0.50645 (6) 0.0169 (2)
C11 0.05871 (14) 0.19493 (13) 0.43358 (7) 0.0194 (2)
C12 0.21703 (13) 0.03050 (13) 0.49064 (7) 0.0183 (2)
C13 0.45893 (13) −0.23030 (13) 0.45086 (7) 0.0186 (2)
C14 0.50587 (13) −0.28993 (12) 0.38266 (7) 0.0179 (2)
C15 0.43761 (13) −0.25098 (13) 0.31754 (7) 0.0189 (2)
H15A 0.3632 −0.1871 0.3171 0.023*
C16 0.48063 (14) −0.30725 (13) 0.25395 (7) 0.0210 (2)
H16A 0.4359 −0.2796 0.2111 0.025* 0.567 (3)
C17 0.58993 (15) −0.40455 (14) 0.25351 (7) 0.0232 (3)
H17A 0.6179 −0.4426 0.2108 0.028*
C18 0.65664 (14) −0.44400 (14) 0.31770 (8) 0.0232 (3)
H18A 0.7292 −0.5097 0.3178 0.028* 0.433 (3)
C19 0.61671 (14) −0.38669 (13) 0.38209 (7) 0.0210 (2)
H19A 0.6639 −0.4129 0.4246 0.025*
C20 0.51371 (16) −0.28472 (15) 0.52150 (7) 0.0262 (3)
H20A 0.5374 −0.2111 0.5531 0.039*
H20B 0.5995 −0.3383 0.5148 0.039*
H20C 0.4394 −0.3396 0.5418 0.039*
H1N2 0.338 (2) −0.090 (2) 0.5468 (11) 0.038 (5)*
H11 0.0039 (18) 0.2534 (18) 0.4013 (9) 0.029 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02210 (15) 0.02380 (16) 0.01531 (14) 0.00190 (11) 0.00199 (11) −0.00074 (11)
O1 0.0222 (4) 0.0196 (4) 0.0170 (4) 0.0039 (3) −0.0006 (3) 0.0017 (3)
O2 0.0337 (5) 0.0307 (5) 0.0174 (4) 0.0105 (4) −0.0017 (4) 0.0032 (4)
O3 0.0226 (8) 0.0261 (9) 0.0213 (9) 0.0086 (6) 0.0010 (6) −0.0031 (7)
O3A 0.0396 (14) 0.0249 (13) 0.0179 (11) 0.0025 (10) 0.0077 (9) −0.0001 (9)
N1 0.0189 (5) 0.0191 (5) 0.0171 (5) 0.0013 (4) 0.0016 (4) 0.0008 (4)
N2 0.0244 (5) 0.0262 (6) 0.0176 (5) 0.0070 (4) 0.0024 (4) 0.0001 (4)
N3 0.0191 (5) 0.0224 (5) 0.0192 (5) 0.0025 (4) 0.0032 (4) −0.0006 (4)
C1 0.0187 (5) 0.0186 (6) 0.0178 (5) 0.0025 (4) −0.0005 (4) 0.0002 (4)
C2 0.0178 (5) 0.0197 (6) 0.0176 (5) 0.0012 (4) −0.0006 (4) −0.0014 (4)
C3 0.0225 (6) 0.0271 (7) 0.0186 (6) 0.0057 (5) −0.0026 (5) −0.0014 (5)
C4 0.0223 (6) 0.0289 (7) 0.0179 (6) 0.0029 (5) −0.0013 (5) −0.0045 (5)
C5 0.0193 (6) 0.0213 (6) 0.0236 (6) 0.0009 (5) 0.0018 (5) −0.0048 (5)
C6 0.0186 (5) 0.0182 (6) 0.0240 (6) 0.0015 (4) 0.0000 (5) −0.0001 (5)
C7 0.0178 (5) 0.0179 (5) 0.0167 (5) −0.0012 (4) −0.0004 (4) 0.0001 (4)
C8 0.0195 (5) 0.0176 (5) 0.0190 (6) 0.0007 (4) 0.0010 (4) 0.0011 (4)
C9 0.0167 (5) 0.0159 (5) 0.0174 (5) −0.0003 (4) 0.0000 (4) 0.0005 (4)
C10 0.0172 (5) 0.0166 (5) 0.0169 (5) −0.0009 (4) 0.0011 (4) 0.0010 (4)
C11 0.0219 (6) 0.0200 (6) 0.0164 (5) 0.0011 (4) 0.0003 (4) 0.0002 (4)
C12 0.0177 (5) 0.0199 (6) 0.0174 (5) −0.0007 (4) 0.0014 (4) 0.0009 (4)
C13 0.0169 (5) 0.0194 (6) 0.0197 (6) −0.0001 (4) 0.0015 (4) 0.0021 (4)
C14 0.0162 (5) 0.0175 (5) 0.0202 (6) −0.0017 (4) 0.0019 (4) 0.0018 (4)
C15 0.0188 (5) 0.0167 (5) 0.0213 (6) 0.0005 (4) 0.0021 (4) 0.0028 (4)
C16 0.0240 (6) 0.0191 (6) 0.0201 (6) −0.0022 (5) 0.0024 (5) 0.0026 (5)
C17 0.0266 (6) 0.0200 (6) 0.0234 (6) −0.0014 (5) 0.0071 (5) −0.0015 (5)
C18 0.0208 (6) 0.0192 (6) 0.0297 (7) 0.0026 (5) 0.0037 (5) −0.0004 (5)
C19 0.0183 (5) 0.0204 (6) 0.0244 (6) 0.0011 (4) 0.0002 (5) 0.0016 (5)
C20 0.0286 (7) 0.0286 (7) 0.0213 (6) 0.0041 (5) −0.0002 (5) 0.0043 (5)

Geometric parameters (Å, °)

S1—C11 1.7216 (13) C5—C6 1.3815 (18)
S1—C12 1.7382 (13) C5—H5A 0.9300
O1—C8 1.3706 (15) C6—C7 1.3887 (17)
O1—C7 1.3799 (15) C6—H6A 0.9300
O2—C8 1.2151 (15) C8—C9 1.4626 (17)
O3—C18 1.352 (2) C9—C10 1.4678 (17)
O3—H1OA 0.89 (4) C10—C11 1.3655 (17)
O3A—C16 1.403 (3) C11—H11 0.965 (17)
O3A—H1OB 0.80 (5) C13—C14 1.4858 (17)
N1—C12 1.2987 (16) C13—C20 1.4996 (18)
N1—C10 1.3990 (16) C14—C19 1.3964 (17)
N2—C12 1.3682 (16) C14—C15 1.4057 (17)
N2—N3 1.3713 (15) C15—C16 1.3858 (18)
N2—H1N2 0.85 (2) C15—H15A 0.9300
N3—C13 1.2894 (16) C16—C17 1.3898 (18)
C1—C9 1.3570 (17) C16—H16A 0.9300
C1—C2 1.4316 (17) C17—C18 1.386 (2)
C1—H1A 0.9300 C17—H17A 0.9300
C2—C7 1.3964 (17) C18—C19 1.3946 (19)
C2—C3 1.4044 (17) C18—H18A 0.9300
C3—C4 1.3849 (18) C19—H19A 0.9300
C3—H3A 0.9300 C20—H20A 0.9600
C4—C5 1.4009 (19) C20—H20B 0.9600
C4—H4A 0.9300 C20—H20C 0.9600
C11—S1—C12 88.13 (6) C10—C11—S1 110.77 (10)
C8—O1—C7 122.58 (10) C10—C11—H11 127.8 (10)
C18—O3—H1OA 111 (2) S1—C11—H11 121.4 (10)
C16—O3A—H1OB 102 (3) N1—C12—N2 124.87 (12)
C12—N1—C10 109.05 (10) N1—C12—S1 116.77 (10)
C12—N2—N3 114.89 (11) N2—C12—S1 118.36 (9)
C12—N2—H1N2 118.2 (13) N3—C13—C14 114.99 (11)
N3—N2—H1N2 126.9 (13) N3—C13—C20 123.73 (12)
C13—N3—N2 119.58 (11) C14—C13—C20 121.27 (11)
C9—C1—C2 121.80 (11) C19—C14—C15 118.86 (12)
C9—C1—H1A 119.1 C19—C14—C13 120.81 (11)
C2—C1—H1A 119.1 C15—C14—C13 120.33 (11)
C7—C2—C3 118.15 (11) C16—C15—C14 120.36 (12)
C7—C2—C1 118.13 (11) C16—C15—H15A 119.8
C3—C2—C1 123.71 (12) C14—C15—H15A 119.8
C4—C3—C2 120.22 (12) C15—C16—C17 120.73 (12)
C4—C3—H3A 119.9 C15—C16—O3A 124.63 (15)
C2—C3—H3A 119.9 C17—C16—O3A 114.63 (15)
C3—C4—C5 120.00 (12) C15—C16—H16A 119.6
C3—C4—H4A 120.0 C17—C16—H16A 119.6
C5—C4—H4A 120.0 O3A—C16—H16A 5.1
C6—C5—C4 120.91 (12) C18—C17—C16 119.04 (12)
C6—C5—H5A 119.5 C18—C17—H17A 120.5
C4—C5—H5A 119.5 C16—C17—H17A 120.5
C5—C6—C7 118.34 (12) O3—C18—C17 119.52 (14)
C5—C6—H6A 120.8 O3—C18—C19 119.37 (14)
C7—C6—H6A 120.8 C17—C18—C19 121.04 (12)
O1—C7—C6 117.37 (11) O3—C18—H18A 2.7
O1—C7—C2 120.27 (11) C17—C18—H18A 119.5
C6—C7—C2 122.37 (12) C19—C18—H18A 119.5
O2—C8—O1 115.71 (11) C18—C19—C14 119.94 (12)
O2—C8—C9 126.15 (12) C18—C19—H19A 120.0
O1—C8—C9 118.14 (11) C14—C19—H19A 120.0
C1—C9—C8 119.05 (11) C13—C20—H20A 109.5
C1—C9—C10 121.73 (11) C13—C20—H20B 109.5
C8—C9—C10 119.22 (11) H20A—C20—H20B 109.5
C11—C10—N1 115.28 (11) C13—C20—H20C 109.5
C11—C10—C9 127.12 (11) H20A—C20—H20C 109.5
N1—C10—C9 117.59 (10) H20B—C20—H20C 109.5
C12—N2—N3—C13 −179.10 (12) C8—C9—C10—N1 −177.98 (11)
C9—C1—C2—C7 0.02 (19) N1—C10—C11—S1 0.55 (14)
C9—C1—C2—C3 −179.70 (13) C9—C10—C11—S1 −179.34 (10)
C7—C2—C3—C4 −0.2 (2) C12—S1—C11—C10 −0.43 (10)
C1—C2—C3—C4 179.48 (13) C10—N1—C12—N2 179.60 (12)
C2—C3—C4—C5 −0.4 (2) C10—N1—C12—S1 0.00 (14)
C3—C4—C5—C6 0.3 (2) N3—N2—C12—N1 −178.57 (12)
C4—C5—C6—C7 0.28 (19) N3—N2—C12—S1 1.03 (15)
C8—O1—C7—C6 178.55 (11) C11—S1—C12—N1 0.26 (11)
C8—O1—C7—C2 −1.91 (17) C11—S1—C12—N2 −179.37 (11)
C5—C6—C7—O1 178.62 (11) N2—N3—C13—C14 178.40 (11)
C5—C6—C7—C2 −0.91 (19) N2—N3—C13—C20 −0.57 (19)
C3—C2—C7—O1 −178.63 (11) N3—C13—C14—C19 172.60 (12)
C1—C2—C7—O1 1.64 (18) C20—C13—C14—C19 −8.40 (18)
C3—C2—C7—C6 0.89 (19) N3—C13—C14—C15 −8.30 (17)
C1—C2—C7—C6 −178.84 (12) C20—C13—C14—C15 170.69 (12)
C7—O1—C8—O2 −179.37 (11) C19—C14—C15—C16 −0.43 (18)
C7—O1—C8—C9 0.49 (17) C13—C14—C15—C16 −179.54 (11)
C2—C1—C9—C8 −1.41 (18) C14—C15—C16—C17 1.10 (19)
C2—C1—C9—C10 178.93 (11) C14—C15—C16—O3A 179.92 (16)
O2—C8—C9—C1 −178.99 (13) C15—C16—C17—C18 −0.56 (19)
O1—C8—C9—C1 1.17 (17) O3A—C16—C17—C18 −179.49 (15)
O2—C8—C9—C10 0.7 (2) C16—C17—C18—O3 176.29 (14)
O1—C8—C9—C10 −179.16 (11) C16—C17—C18—C19 −0.7 (2)
C12—N1—C10—C11 −0.35 (15) O3—C18—C19—C14 −175.63 (14)
C12—N1—C10—C9 179.55 (11) C17—C18—C19—C14 1.3 (2)
C1—C9—C10—C11 −178.43 (13) C15—C14—C19—C18 −0.76 (18)
C8—C9—C10—C11 1.90 (19) C13—C14—C19—C18 178.35 (12)
C1—C9—C10—N1 1.68 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H1OA···O2i 0.89 (4) 1.89 (4) 2.7693 (19) 171 (4)
C19—H19A···O2i 0.93 2.59 3.3020 (17) 133

Symmetry codes: (i) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2428).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chimenti, F., Bizzarri, B., Bolasco, A., Secci, D., Chimenti, P., Granese, A., Carradori, S., D’Ascenzio, M., Scaltrito, M. M. & Sisto, F. (2010). J. Heterocycl. Chem. 47, 1269–1274.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Greenbaum, D. C., Mackey, Z., Hansell, E., Doyle, P., Gut, J., Caffrey, C. R., Lehrman, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2004). J. Med. Chem. 47, 3212–3219. [DOI] [PubMed]
  6. Gursoy, A. & Karali, N. (2003). Turk. J. Chem. 27, 545–552.
  7. Kalkhambkar, R., Kulkarni, G., Shivkumar, H. & Rao, R. (2007). Eur. J. Med. Chem. 42, 1272–1276. [DOI] [PubMed]
  8. Kamal, A., Adil, S., Tamboli, J., Siddardha, B. & Murthy, U. (2009). Lett. Drug Des. Discov. 6, 201–209.
  9. Nadeem, S., Faiz, M. A. & Khan, S. A. (2009). Acta Pol. Pharm. Drug Res. 66, 161–167.
  10. Raghu, M., Nagaraj, A. & Sanjeeva, R. C. (2009). J. Heterocycl. Chem. 46, 261–267.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012189/wn2428sup1.cif

e-67-o1072-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012189/wn2428Isup2.hkl

e-67-o1072-Isup2.hkl (259.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES