Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1187. doi: 10.1107/S1600536811014164

N-(2-Methyl­phenyl­sulfon­yl)propanamide

K Shakuntala a, Sabine Foro b, B Thimme Gowda a,*
PMCID: PMC3089174  PMID: 21754489

Abstract

In the title compound, C10H13NO3S, the conformations of the N—H and C=O bonds of the SO2—NH—CO—C segment are anti to each other, while the amide H atom is syn with respect to the ortho-methyl group in the benzene ring. The C—S—N—C torsion angle is −66.7 (2)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O(S) hydrogen bonds.

Related literature

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001). For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2004); on the structures of N-(substitutedphenyl­sulfon­yl)-substitutedamides, see: Shakuntala et al. (2011a,b ) and on the oxidative strengths of N-chloro, N-aryl­sulfonamides, see: Gowda & Kumar (2003).graphic file with name e-67-o1187-scheme1.jpg

Experimental

Crystal data

  • C10H13NO3S

  • M r = 227.27

  • Monoclinic, Inline graphic

  • a = 8.3050 (8) Å

  • b = 13.339 (1) Å

  • c = 9.9948 (9) Å

  • β = 97.876 (9)°

  • V = 1096.78 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.44 × 0.32 × 0.16 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.886, T max = 0.956

  • 4277 measured reflections

  • 2241 independent reflections

  • 1607 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.108

  • S = 1.04

  • 2241 reflections

  • 140 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014164/ds2108sup1.cif

e-67-o1187-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014164/ds2108Isup2.hkl

e-67-o1187-Isup2.hkl (110.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.82 (2) 2.08 (2) 2.901 (2) 173 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

supplementary crystallographic information

Comment

The hydrogen bonding preferences of sulfonamides has been investigated (Adsmond & Grant, 2001). The nature and position of substituents play a significant role on the crystal structures and other aspects of N-(aryl)-amides and N-(aryl)-sulfonamides (Gowda et al., 2003, 2004; Shakuntala et al., 2011a,b). As a part of studying the effects of substituents on the structures of this class of compounds, the structure of N-(2-methylphenylsulfonyl)-2-methylacetamide (I) has been determined (Fig. 1). The conformations of the N—H and C=O bonds of this segment in the structure are anti to each other, similar to that observed in N-(2-methylphenylsulfonyl)-acetamide (II) (Shakuntala et al., 2011b) and N-(2-methylphenylsulfonyl)-2,2,2-trimethylacetamide (III) (Shakuntala et al., 2011a). Further, the conformation of the amide H atom is syn to the ortho-methyl group in the benzene ring, similar to that observed between the amide H atom and the ortho-methyl group in (II) and (III).

The molecules in (I) are bent at the S-atom with a C—S—N—C torsion angle of -66.7 (2)°, compared to the values of -58.2 (2)° in (II) and -65.4 (2)° in (III).

In the crystal structure, the pairs of intermolecular N–H···O hydrogen bonds (Table 1) link the molecules through inversion-related dimers into chains running in the direction of b-axis. Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing 2-methylbenzenesulfonamide (0.10 mole) with an excess of propanoyl chloride (0.20 mole) for one hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution. The title compound was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of an ethanolic solution of the compound.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H distance = 0.93 Å, methyl C—H = 0.96 Å, methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H13NO3S F(000) = 480
Mr = 227.27 Dx = 1.376 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1271 reflections
a = 8.3050 (8) Å θ = 2.6–27.8°
b = 13.339 (1) Å µ = 0.28 mm1
c = 9.9948 (9) Å T = 293 K
β = 97.876 (9)° Prism, colourless
V = 1096.78 (17) Å3 0.44 × 0.32 × 0.16 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 2241 independent reflections
Radiation source: fine-focus sealed tube 1607 reflections with I > 2σ(I)
graphite Rint = 0.017
Rotation method data acquisition using ω and φ scans θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −10→10
Tmin = 0.886, Tmax = 0.956 k = −11→16
4277 measured reflections l = −12→7

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.5309P] where P = (Fo2 + 2Fc2)/3
2241 reflections (Δ/σ)max < 0.001
140 parameters Δρmax = 0.20 e Å3
1 restraint Δρmin = −0.35 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6604 (2) 0.45905 (16) 0.3478 (2) 0.0403 (5)
C2 0.5397 (3) 0.38655 (18) 0.3512 (2) 0.0456 (6)
C3 0.5387 (3) 0.3371 (2) 0.4736 (3) 0.0586 (7)
H3 0.4597 0.2886 0.4800 0.070*
C4 0.6499 (3) 0.3571 (2) 0.5856 (3) 0.0622 (7)
H4 0.6454 0.3221 0.6655 0.075*
C5 0.7679 (3) 0.4288 (2) 0.5794 (2) 0.0584 (7)
H5 0.8431 0.4427 0.6550 0.070*
C6 0.7736 (3) 0.47990 (19) 0.4607 (2) 0.0484 (6)
H6 0.8530 0.5284 0.4557 0.058*
C7 0.8782 (3) 0.40395 (18) 0.0980 (2) 0.0461 (6)
C8 0.9020 (3) 0.34442 (19) −0.0249 (2) 0.0501 (6)
H8A 0.9198 0.3903 −0.0967 0.060*
H8B 0.8032 0.3072 −0.0548 0.060*
C9 1.0421 (3) 0.2722 (2) −0.0023 (3) 0.0646 (7)
H9A 1.0251 0.2259 0.0679 0.078*
H9B 1.1412 0.3086 0.0237 0.078*
H9C 1.0495 0.2359 −0.0843 0.078*
C10 0.4116 (3) 0.3615 (2) 0.2348 (3) 0.0633 (7)
H10A 0.4601 0.3585 0.1530 0.076*
H10B 0.3288 0.4122 0.2264 0.076*
H10C 0.3641 0.2977 0.2506 0.076*
N1 0.7295 (2) 0.45380 (16) 0.08882 (19) 0.0497 (5)
H1N 0.664 (3) 0.4451 (19) 0.020 (2) 0.060*
O1 0.5187 (2) 0.56595 (14) 0.14397 (17) 0.0616 (5)
O2 0.8011 (2) 0.60402 (13) 0.23614 (19) 0.0673 (5)
O3 0.9760 (2) 0.41109 (16) 0.19851 (18) 0.0681 (5)
S1 0.67655 (7) 0.53152 (5) 0.20265 (6) 0.04798 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0367 (11) 0.0465 (13) 0.0363 (11) 0.0061 (10) 0.0005 (9) −0.0056 (10)
C2 0.0397 (12) 0.0487 (14) 0.0474 (13) 0.0064 (10) 0.0020 (10) −0.0065 (11)
C3 0.0538 (14) 0.0620 (16) 0.0623 (17) 0.0026 (13) 0.0164 (12) 0.0013 (14)
C4 0.0675 (17) 0.0768 (19) 0.0443 (14) 0.0150 (15) 0.0145 (13) 0.0073 (14)
C5 0.0563 (15) 0.0782 (19) 0.0376 (13) 0.0161 (14) −0.0048 (11) −0.0056 (13)
C6 0.0405 (12) 0.0595 (15) 0.0426 (12) 0.0029 (11) −0.0034 (9) −0.0057 (11)
C7 0.0381 (11) 0.0577 (15) 0.0414 (12) −0.0047 (11) 0.0019 (10) 0.0041 (11)
C8 0.0447 (13) 0.0606 (16) 0.0448 (13) −0.0051 (11) 0.0055 (10) 0.0008 (12)
C9 0.0612 (16) 0.0646 (17) 0.0684 (18) 0.0062 (14) 0.0103 (14) −0.0021 (15)
C10 0.0477 (14) 0.0692 (17) 0.0695 (17) −0.0068 (13) −0.0049 (12) −0.0150 (14)
N1 0.0429 (11) 0.0684 (14) 0.0352 (10) 0.0068 (10) −0.0046 (8) −0.0063 (10)
O1 0.0666 (11) 0.0681 (11) 0.0458 (10) 0.0258 (9) −0.0083 (8) −0.0008 (8)
O2 0.0823 (13) 0.0584 (11) 0.0592 (11) −0.0211 (10) 0.0033 (9) −0.0005 (9)
O3 0.0474 (10) 0.0995 (15) 0.0524 (11) 0.0089 (10) −0.0105 (8) −0.0127 (10)
S1 0.0515 (3) 0.0502 (4) 0.0396 (3) 0.0034 (3) −0.0036 (2) 0.0002 (3)

Geometric parameters (Å, °)

C1—C6 1.394 (3) C7—C8 1.499 (3)
C1—C2 1.397 (3) C8—C9 1.504 (3)
C1—S1 1.763 (2) C8—H8A 0.9700
C2—C3 1.391 (3) C8—H8B 0.9700
C2—C10 1.503 (3) C9—H9A 0.9600
C3—C4 1.377 (4) C9—H9B 0.9600
C3—H3 0.9300 C9—H9C 0.9600
C4—C5 1.377 (4) C10—H10A 0.9600
C4—H4 0.9300 C10—H10B 0.9600
C5—C6 1.375 (3) C10—H10C 0.9600
C5—H5 0.9300 N1—S1 1.643 (2)
C6—H6 0.9300 N1—H1N 0.822 (16)
C7—O3 1.206 (3) O1—S1 1.4363 (17)
C7—N1 1.395 (3) O2—S1 1.4219 (18)
C6—C1—C2 121.7 (2) C7—C8—H8B 108.8
C6—C1—S1 115.96 (18) C9—C8—H8B 108.8
C2—C1—S1 122.38 (16) H8A—C8—H8B 107.7
C3—C2—C1 116.2 (2) C8—C9—H9A 109.5
C3—C2—C10 119.1 (2) C8—C9—H9B 109.5
C1—C2—C10 124.7 (2) H9A—C9—H9B 109.5
C4—C3—C2 122.6 (3) C8—C9—H9C 109.5
C4—C3—H3 118.7 H9A—C9—H9C 109.5
C2—C3—H3 118.7 H9B—C9—H9C 109.5
C3—C4—C5 120.0 (3) C2—C10—H10A 109.5
C3—C4—H4 120.0 C2—C10—H10B 109.5
C5—C4—H4 120.0 H10A—C10—H10B 109.5
C6—C5—C4 119.4 (2) C2—C10—H10C 109.5
C6—C5—H5 120.3 H10A—C10—H10C 109.5
C4—C5—H5 120.3 H10B—C10—H10C 109.5
C5—C6—C1 120.1 (2) C7—N1—S1 125.02 (16)
C5—C6—H6 120.0 C7—N1—H1N 117.6 (18)
C1—C6—H6 120.0 S1—N1—H1N 117.3 (18)
O3—C7—N1 120.4 (2) O2—S1—O1 118.19 (12)
O3—C7—C8 125.1 (2) O2—S1—N1 109.70 (11)
N1—C7—C8 114.42 (19) O1—S1—N1 103.59 (10)
C7—C8—C9 113.7 (2) O2—S1—C1 108.31 (11)
C7—C8—H8A 108.8 O1—S1—C1 110.06 (10)
C9—C8—H8A 108.8 N1—S1—C1 106.35 (11)
C6—C1—C2—C3 0.3 (3) N1—C7—C8—C9 −166.1 (2)
S1—C1—C2—C3 −178.22 (17) O3—C7—N1—S1 4.7 (4)
C6—C1—C2—C10 178.7 (2) C8—C7—N1—S1 −174.80 (17)
S1—C1—C2—C10 0.1 (3) C7—N1—S1—O2 50.2 (2)
C1—C2—C3—C4 −0.4 (4) C7—N1—S1—O1 177.3 (2)
C10—C2—C3—C4 −178.8 (2) C7—N1—S1—C1 −66.7 (2)
C2—C3—C4—C5 0.3 (4) C6—C1—S1—O2 −4.0 (2)
C3—C4—C5—C6 −0.1 (4) C2—C1—S1—O2 174.62 (18)
C4—C5—C6—C1 0.1 (4) C6—C1—S1—O1 −134.60 (17)
C2—C1—C6—C5 −0.2 (3) C2—C1—S1—O1 44.0 (2)
S1—C1—C6—C5 178.44 (18) C6—C1—S1—N1 113.82 (18)
O3—C7—C8—C9 14.4 (4) C2—C1—S1—N1 −67.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.82 (2) 2.08 (2) 2.901 (2) 173 (3)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2108).

References

  1. Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. [DOI] [PubMed]
  2. Gowda, B. T. & Kumar, B. H. A. (2003). Oxid. Commun. 26, 403–425.
  3. Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.
  4. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  5. Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o549. [DOI] [PMC free article] [PubMed]
  6. Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1188. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014164/ds2108sup1.cif

e-67-o1187-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014164/ds2108Isup2.hkl

e-67-o1187-Isup2.hkl (110.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES