Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1119–o1120. doi: 10.1107/S1600536811012955

4,4′-Oxybis{N-[(E)-quinolin-2-yl­methyl­idene]aniline}

Daoud Djamel a,*, Douadi Tahar a, Haffar Djahida a, Hammani Hanane a, Chafaa Salah a
PMCID: PMC3089181  PMID: 21754434

Abstract

The title Schiff base compound, C32H22N4O, was prepared by a reaction of 4,4′-diamino­diphenyl ether and 2-quinoline­carboxaldehyde. The mol­ecule consists of two 4-{N-[(E)-quinolin-2-yl­methyl­idene]amino}­phenyl units linked by an oxygen bridge. The dihedral angles between two benzene rings and between the two quinoline ring systems are 53.81 (7) and 42.56 (4)°, respectively. Inter­molecular C—H⋯N hydrogen bonding is present in the crystal structure.

Related literature

For the biological and pharmacological activity of quinolines and their derivatives, see: Kidwai et al. (2000); Souza (2005); Musiol et al. (2006); Gómez-Barrio et al. (2006); Vinsova et al. (2008); Jain et al. (2005); Chen et al. (2006). For applications of Schiff base compounds formed by aromatic diamine and a quinoline­aldehyde, see: Izatt et al. (1995); Kalcher et al. (1995); Gilmartin & Hart (1995); Ahamad et al. (2010); Negm et al. (2010). For related structures, see: Girija et al. (2004); Gowda et al. (2007). For the synthesis, see: Issaadi et al. (2005); Ghames et al. (2006); Kaabi et al. (2007).graphic file with name e-67-o1119-scheme1.jpg

Experimental

Crystal data

  • C32H22N4O

  • M r = 478.54

  • Monoclinic, Inline graphic

  • a = 17.4533 (7) Å

  • b = 5.0836 (2) Å

  • c = 26.817 (1) Å

  • β = 92.839 (1)°

  • V = 2376.43 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.05 × 0.05 mm

Data collection

  • Bruker APEXII diffractometer

  • 20425 measured reflections

  • 5473 independent reflections

  • 4143 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.150

  • S = 1.1

  • 5473 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012955/xu5181sup1.cif

e-67-o1119-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012955/xu5181Isup2.hkl

e-67-o1119-Isup2.hkl (262.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28⋯N3i 0.93 2.57 3.434 (2) 156

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Dr Lahcène Ouahab for the data collection at the Centre de Diffractomtétrie de l’Université de Rennes 1 CDiFX.

supplementary crystallographic information

Comment

Quinolines and their derivatives are often used for designing of many synthetic compounds with diverse pharmacological and medicinal proprieties. Literature survey reveled that substituted quinolines possess diverse chemotherapeutic activities such as antibacterial (Kidwai et al., 2000), antimalarial (Souza et al., 2005), antifungal (Musiol et al., 2006), antiparasitical (Gómez-Barrio et al., 2006), antimycobacterial (Vinsova et al., 2008), antileishmanial (Jain et al., 2005), and anti-inflammatory behavior (Chen et al., 2006). Schiff base compounds are typically formed by condensation of an aromatic diamine and a quinolinealdehyde. These kinds of compounds have a wide variety of applications in many fields. For example in water treatment, they have a great capacity for complexation of transition metals (Izatt et al., 1995; Kalcher et al., 1995; Gilmartin et al., 1995). They also serve as intermediates in certain enzymatic reactions and their use as corrosion inhibitors, (Ahamad et al., 2010; Negm et al., 2010) reveal their importance.

The compound, C32H22N4O prepared is a condensation product of quinolinealdehyde with bifunctional aromatic diamine as shown in Fig (1). All the molecule is found in a single asymmetric unit although, the two 4-{N-[(E) -quinolin-2-ylmethylidene] amino}phenyl moieties are related by a pseudo mirror plane. A dihedral angle of 53.15° is found between the planes defined as (O(1)—C(17)—C(18)—C(19)—C(20)—C(21)—C(22) and O(1)—C(11)—C(12)—C(13)—C(14)—C(15)—C(16). Whereas the dihedral angle between each imine phenyl plane and the attached quinolinecarboxy plane are 8.33° for C(10)—N(2)—C(11) and 17.74° for C(25)—N(1)—C(20). The bond lengths N(2)—C(10), N(2)—C(11), O(1)—C(14).. and bond angles C(10)—N(2)—C(11), C(16)—C(11)—N(2), C(9)—N(3)—C(1), N(3)—C(1)—C(2) of one 4-{N-[(E) -quinolin-2-ylmethylidene] amino}phenyl moiety are similar the corresponding ones N(1)—C(25), N(1)—C20), O(1)—C(17).. and C(25)—N(1)—C(20), C(19)—C(20)—N(1), C(26)—N(4)—C(30, N(4)—C(30)—C(31)..of the second 4-{N-[(E) -quinolin-2-ylmethylidene] amino}phenyl. The bond distances shown in table 3 indicate that the N(1)—C(25) imine (C=N) bond length of 1.268 (17) A agree with similar double bond usually observed in related compounds (Girija et al., 2004) but much shorter than single C—N 1.4175 (16) A of N(1)—C(20) (Gowda et al., 2007).

Experimental

The studied Schiff base compound was synthesized in proper literature (Issaadi et al., 2005; Ghames et al., 2006; Kaabi et al., 2007). by reacting the mixture of 4,4'-diaminodiphenyl ether (0.4 mg, 0.002 mol) and 2-quinolinecarboxaldehyde (0.64 mg, 0.004 mol) in 20 ml of boiling ethanol for 5 h, after completion of the reaction the separated solid was filtered, washed with alcohol, and finally recrystallized from ethanol and dried under vacuum. The single crystals suitable for X-ray analysis were obtained by slow evaporation from ethanol-dichloromethane (1:1).

Refinement

H atoms were included in geometric positions C—H = 0.93 Å and refined by using a riding model [Uiso (H) = 1.2 Ueq (C)].

Figures

Fig. 1.

Fig. 1.

The title molecule with displacement ellipsoids for non–H atoms drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing of the molecules along the b–axis.

Crystal data

C32H22N4O Dx = 1.338 Mg m3
Mr = 478.54 Melting point: 491 K
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 17.4533 (7) Å Cell parameters from 5947 reflections
b = 5.0836 (2) Å θ = 2.3–27.4°
c = 26.817 (1) Å µ = 0.08 mm1
β = 92.839 (1)° T = 293 K
V = 2376.43 (16) Å3 Needle, colourless
Z = 4 0.25 × 0.05 × 0.05 mm
F(000) = 1000

Data collection

Bruker APEXII diffractometer 4143 reflections with I > 2σ(I)
Radiation source: Enraf–Nonius FR590 Rint = 0.035
graphite θmax = 27.5°, θmin = 1.4°
CCD rotation images, thick slices scans h = −22→22
20425 measured reflections k = −6→6
5473 independent reflections l = −34→34

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H-atom parameters constrained
S = 1.1 w = 1/[σ2(Fo2) + (0.0834P)2 + 0.4121P] where P = (Fo2 + 2Fc2)/3
5473 reflections (Δ/σ)max < 0.001
334 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.44063 (7) 0.2230 (2) 0.11249 (4) 0.0237 (3)
N4 0.57723 (7) −0.2658 (2) 0.14573 (4) 0.0227 (3)
O1 0.32016 (6) 0.7878 (2) −0.05150 (4) 0.0302 (3)
C25 0.49844 (8) 0.0726 (3) 0.11071 (5) 0.0239 (3)
H25 0.5257 0.0662 0.0818 0.029*
N3 −0.04347 (7) 1.8407 (3) −0.14217 (5) 0.0282 (3)
C26 0.52279 (8) −0.0916 (3) 0.15378 (5) 0.0221 (3)
N2 0.04205 (8) 1.3301 (3) −0.06988 (5) 0.0294 (3)
C30 0.60189 (8) −0.4232 (3) 0.18480 (5) 0.0220 (3)
C14 0.25109 (8) 0.9214 (3) −0.05263 (5) 0.0242 (3)
C22 0.39182 (8) 0.4332 (3) −0.01897 (5) 0.0250 (3)
H22 0.3994 0.382 −0.0517 0.03*
C21 0.42483 (8) 0.2911 (3) 0.02053 (5) 0.0250 (3)
H21 0.4545 0.144 0.0143 0.03*
C18 0.33675 (9) 0.7328 (3) 0.03893 (6) 0.0259 (3)
H18 0.3079 0.8823 0.045 0.031*
C11 0.11440 (9) 1.2017 (3) −0.06541 (5) 0.0258 (3)
C9 −0.04232 (9) 1.6533 (3) −0.10785 (5) 0.0263 (3)
C13 0.24528 (9) 1.1256 (3) −0.08705 (6) 0.0271 (3)
H13 0.2869 1.1686 −0.1058 0.033*
C6 −0.18146 (9) 1.8825 (3) −0.13310 (6) 0.0269 (3)
C12 0.17775 (9) 1.2639 (3) −0.09323 (6) 0.0304 (4)
H12 0.1741 1.4008 −0.1162 0.036*
C20 0.41394 (8) 0.3668 (3) 0.06980 (5) 0.0216 (3)
C16 0.12138 (9) 0.9950 (3) −0.03153 (6) 0.0281 (3)
H16 0.0798 0.9508 −0.0128 0.034*
C17 0.34752 (8) 0.6517 (3) −0.00961 (5) 0.0234 (3)
C29 0.57228 (8) −0.4008 (3) 0.23301 (5) 0.0235 (3)
C10 0.03217 (9) 1.5231 (3) −0.09934 (6) 0.0298 (3)
H10 0.0738 1.5847 −0.1163 0.036*
C31 0.65914 (9) −0.6133 (3) 0.17642 (6) 0.0264 (3)
H31 0.6786 −0.6303 0.1449 0.032*
C19 0.36957 (8) 0.5879 (3) 0.07820 (5) 0.0247 (3)
H19 0.3618 0.6396 0.1108 0.03*
C34 0.60200 (9) −0.5671 (3) 0.27190 (6) 0.0278 (3)
H34 0.5836 −0.5531 0.3038 0.033*
C28 0.51373 (9) −0.2130 (3) 0.23956 (6) 0.0269 (3)
H28 0.4925 −0.1939 0.2705 0.032*
C1 −0.11244 (9) 1.9575 (3) −0.15479 (5) 0.0260 (3)
C33 0.65745 (9) −0.7475 (3) 0.26262 (6) 0.0311 (4)
H33 0.6767 −0.8554 0.2883 0.037*
C27 0.48872 (9) −0.0606 (3) 0.20035 (5) 0.0258 (3)
H27 0.4499 0.062 0.204 0.031*
C15 0.18910 (9) 0.8532 (3) −0.02517 (6) 0.0290 (3)
H15 0.1928 0.7139 −0.0027 0.035*
C5 −0.25113 (9) 2.0034 (3) −0.15027 (6) 0.0315 (4)
H5 −0.2971 1.9519 −0.1371 0.038*
C32 0.68574 (9) −0.7717 (3) 0.21458 (6) 0.0300 (4)
H32 0.723 −0.8972 0.2088 0.036*
C7 −0.17651 (9) 1.6876 (3) −0.09530 (6) 0.0345 (4)
H7 −0.2201 1.6375 −0.0792 0.041*
C8 −0.10793 (10) 1.5743 (3) −0.08275 (6) 0.0337 (4)
H8 −0.1041 1.4464 −0.058 0.04*
C4 −0.25106 (10) 2.1942 (4) −0.18585 (6) 0.0369 (4)
H4 −0.297 2.2737 −0.1966 0.044*
C2 −0.11438 (10) 2.1559 (3) −0.19178 (6) 0.0364 (4)
H2 −0.0692 2.207 −0.2061 0.044*
C3 −0.18194 (11) 2.2725 (4) −0.20663 (6) 0.0400 (4)
H3 −0.1825 2.4047 −0.2306 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0243 (6) 0.0236 (6) 0.0232 (6) 0.0024 (5) −0.0005 (5) 0.0004 (5)
N4 0.0221 (6) 0.0231 (6) 0.0229 (6) 0.0018 (5) 0.0005 (5) 0.0003 (5)
O1 0.0309 (6) 0.0349 (6) 0.0252 (5) 0.0122 (5) 0.0048 (4) 0.0085 (5)
C25 0.0242 (7) 0.0250 (7) 0.0226 (7) 0.0017 (6) 0.0025 (6) 0.0008 (6)
N3 0.0258 (7) 0.0310 (7) 0.0280 (7) 0.0043 (5) 0.0030 (5) 0.0047 (5)
C26 0.0203 (7) 0.0224 (7) 0.0234 (7) −0.0010 (6) 0.0000 (5) 0.0003 (6)
N2 0.0285 (7) 0.0292 (7) 0.0304 (7) 0.0052 (6) 0.0017 (5) 0.0042 (6)
C30 0.0205 (7) 0.0206 (7) 0.0247 (7) −0.0018 (6) −0.0021 (5) 0.0005 (5)
C14 0.0255 (7) 0.0241 (7) 0.0228 (7) 0.0043 (6) −0.0008 (6) −0.0010 (6)
C22 0.0237 (7) 0.0290 (8) 0.0224 (7) 0.0025 (6) 0.0027 (6) −0.0012 (6)
C21 0.0235 (7) 0.0236 (7) 0.0279 (7) 0.0065 (6) 0.0022 (6) −0.0018 (6)
C18 0.0273 (8) 0.0205 (7) 0.0299 (8) 0.0053 (6) 0.0031 (6) −0.0003 (6)
C11 0.0259 (8) 0.0257 (7) 0.0255 (7) 0.0023 (6) −0.0012 (6) 0.0002 (6)
C9 0.0282 (8) 0.0269 (8) 0.0239 (7) 0.0035 (6) 0.0017 (6) 0.0011 (6)
C13 0.0269 (8) 0.0304 (8) 0.0243 (7) 0.0027 (6) 0.0038 (6) 0.0042 (6)
C6 0.0275 (8) 0.0260 (7) 0.0273 (7) 0.0022 (6) 0.0017 (6) −0.0055 (6)
C12 0.0334 (9) 0.0290 (8) 0.0288 (8) 0.0052 (7) 0.0020 (6) 0.0085 (6)
C20 0.0195 (7) 0.0211 (7) 0.0242 (7) 0.0004 (6) 0.0009 (5) 0.0016 (5)
C16 0.0270 (8) 0.0285 (8) 0.0289 (8) 0.0007 (6) 0.0032 (6) 0.0040 (6)
C17 0.0216 (7) 0.0238 (7) 0.0248 (7) 0.0011 (6) 0.0007 (5) 0.0051 (6)
C29 0.0234 (7) 0.0222 (7) 0.0246 (7) −0.0041 (6) −0.0015 (6) 0.0002 (6)
C10 0.0263 (8) 0.0336 (8) 0.0297 (8) 0.0025 (7) 0.0027 (6) 0.0050 (7)
C31 0.0260 (7) 0.0262 (7) 0.0271 (7) 0.0012 (6) 0.0014 (6) −0.0007 (6)
C19 0.0262 (7) 0.0245 (7) 0.0235 (7) 0.0018 (6) 0.0024 (6) −0.0025 (6)
C34 0.0302 (8) 0.0290 (8) 0.0237 (7) −0.0046 (6) −0.0030 (6) 0.0028 (6)
C28 0.0291 (8) 0.0295 (8) 0.0223 (7) 0.0003 (6) 0.0043 (6) −0.0020 (6)
C1 0.0280 (8) 0.0276 (7) 0.0226 (7) 0.0038 (6) 0.0015 (6) −0.0011 (6)
C33 0.0318 (8) 0.0283 (8) 0.0322 (8) −0.0019 (7) −0.0090 (6) 0.0072 (6)
C27 0.0246 (7) 0.0260 (7) 0.0269 (7) 0.0036 (6) 0.0025 (6) −0.0019 (6)
C15 0.0299 (8) 0.0271 (8) 0.0301 (8) 0.0029 (7) 0.0019 (6) 0.0092 (6)
C5 0.0255 (8) 0.0334 (8) 0.0359 (8) 0.0066 (7) 0.0033 (6) −0.0085 (7)
C32 0.0261 (8) 0.0252 (8) 0.0380 (9) 0.0036 (6) −0.0047 (7) 0.0002 (6)
C7 0.0284 (8) 0.0351 (9) 0.0410 (9) 0.0015 (7) 0.0128 (7) 0.0036 (7)
C8 0.0348 (9) 0.0325 (8) 0.0345 (8) 0.0055 (7) 0.0088 (7) 0.0111 (7)
C4 0.0349 (9) 0.0431 (10) 0.0317 (8) 0.0172 (8) −0.0071 (7) −0.0092 (7)
C2 0.0368 (9) 0.0402 (9) 0.0328 (8) 0.0088 (8) 0.0081 (7) 0.0092 (7)
C3 0.0486 (11) 0.0412 (10) 0.0302 (8) 0.0152 (8) 0.0012 (7) 0.0089 (7)

Geometric parameters (Å, °)

N1—C25 1.2686 (18) C6—C7 1.417 (2)
N1—C20 1.4177 (18) C6—C5 1.419 (2)
N4—C26 1.3241 (18) C12—H12 0.93
N4—C30 1.3706 (18) C20—C19 1.389 (2)
O1—C14 1.3828 (18) C16—C15 1.388 (2)
O1—C17 1.3841 (17) C16—H16 0.93
C25—C26 1.471 (2) C29—C28 1.416 (2)
C25—H25 0.93 C29—C34 1.421 (2)
N3—C9 1.3240 (19) C10—H10 0.93
N3—C1 1.3697 (19) C31—C32 1.365 (2)
C26—C27 1.418 (2) C31—H31 0.93
N2—C10 1.266 (2) C19—H19 0.93
N2—C11 1.4213 (19) C34—C33 1.365 (2)
C30—C31 1.416 (2) C34—H34 0.93
C30—C29 1.420 (2) C28—C27 1.361 (2)
C14—C15 1.383 (2) C28—H28 0.93
C14—C13 1.389 (2) C1—C2 1.414 (2)
C22—C17 1.384 (2) C33—C32 1.408 (2)
C22—C21 1.384 (2) C33—H33 0.93
C22—H22 0.93 C27—H27 0.93
C21—C20 1.398 (2) C15—H15 0.93
C21—H21 0.93 C5—C4 1.361 (2)
C18—C19 1.386 (2) C5—H5 0.93
C18—C17 1.387 (2) C32—H32 0.93
C18—H18 0.93 C7—C8 1.355 (2)
C11—C16 1.391 (2) C7—H7 0.93
C11—C12 1.400 (2) C8—H8 0.93
C9—C8 1.415 (2) C4—C3 1.411 (3)
C9—C10 1.467 (2) C4—H4 0.93
C13—C12 1.375 (2) C2—C3 1.362 (2)
C13—H13 0.93 C2—H2 0.93
C6—C1 1.416 (2) C3—H3 0.93
C25—N1—C20 120.70 (13) C28—C29—C34 123.35 (14)
C26—N4—C30 117.80 (12) C30—C29—C34 118.97 (14)
C14—O1—C17 121.91 (11) N2—C10—C9 122.63 (15)
N1—C25—C26 120.80 (13) N2—C10—H10 118.7
N1—C25—H25 119.6 C9—C10—H10 118.7
C26—C25—H25 119.6 C32—C31—C30 120.01 (14)
C9—N3—C1 117.82 (13) C32—C31—H31 120
N4—C26—C27 123.60 (13) C30—C31—H31 120
N4—C26—C25 115.68 (13) C18—C19—C20 121.29 (13)
C27—C26—C25 120.72 (13) C18—C19—H19 119.4
C10—N2—C11 120.10 (14) C20—C19—H19 119.4
N4—C30—C31 118.33 (13) C33—C34—C29 120.17 (14)
N4—C30—C29 122.30 (13) C33—C34—H34 119.9
C31—C30—C29 119.37 (13) C29—C34—H34 119.9
C15—C14—O1 124.71 (13) C27—C28—C29 119.59 (14)
C15—C14—C13 120.53 (14) C27—C28—H28 120.2
O1—C14—C13 114.60 (13) C29—C28—H28 120.2
C17—C22—C21 119.69 (13) N3—C1—C2 118.23 (14)
C17—C22—H22 120.2 N3—C1—C6 122.47 (14)
C21—C22—H22 120.2 C2—C1—C6 119.28 (14)
C22—C21—C20 120.59 (13) C34—C33—C32 120.64 (14)
C22—C21—H21 119.7 C34—C33—H33 119.7
C20—C21—H21 119.7 C32—C33—H33 119.7
C19—C18—C17 119.01 (13) C28—C27—C26 119.00 (14)
C19—C18—H18 120.5 C28—C27—H27 120.5
C17—C18—H18 120.5 C26—C27—H27 120.5
C16—C11—C12 118.21 (14) C14—C15—C16 119.23 (14)
C16—C11—N2 116.80 (14) C14—C15—H15 120.4
C12—C11—N2 124.97 (14) C16—C15—H15 120.4
N3—C9—C8 123.37 (14) C4—C5—C6 120.38 (16)
N3—C9—C10 114.56 (14) C4—C5—H5 119.8
C8—C9—C10 122.00 (14) C6—C5—H5 119.8
C12—C13—C14 119.72 (14) C31—C32—C33 120.83 (15)
C12—C13—H13 120.1 C31—C32—H32 119.6
C14—C13—H13 120.1 C33—C32—H32 119.6
C1—C6—C7 117.34 (14) C8—C7—C6 119.76 (15)
C1—C6—C5 118.88 (14) C8—C7—H7 120.1
C7—C6—C5 123.78 (15) C6—C7—H7 120.1
C13—C12—C11 121.00 (14) C7—C8—C9 119.14 (15)
C13—C12—H12 119.5 C7—C8—H8 120.4
C11—C12—H12 119.5 C9—C8—H8 120.4
C19—C20—C21 118.61 (13) C5—C4—C3 120.57 (15)
C19—C20—N1 116.72 (13) C5—C4—H4 119.7
C21—C20—N1 124.52 (13) C3—C4—H4 119.7
C15—C16—C11 121.29 (14) C3—C2—C1 120.41 (16)
C15—C16—H16 119.4 C3—C2—H2 119.8
C11—C16—H16 119.4 C1—C2—H2 119.8
C22—C17—O1 115.31 (13) C2—C3—C4 120.44 (16)
C22—C17—C18 120.79 (13) C2—C3—H3 119.8
O1—C17—C18 123.77 (13) C4—C3—H3 119.8
C28—C29—C30 117.68 (13)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C28—H28···N3i 0.93 2.57 3.434 (2) 156

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5181).

References

  1. Ahamad, I., Prasad, R. & Quraishi, M. A. (2010). Corros. Sci. 52, 933–942.
  2. Bruker. (2002). APEX2 and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem. 14, 4373–4378. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Ghames, A., Douadi, T., Haffar, D., Chafaa, S., Allain, M., Khan, M. A. & Bouet, G. M. (2006). Polyhedron, 25, 3201–3208.
  7. Gilmartin, M. A. T. & Hart, J. P. (1995). Analyst, 120, 1029–1045. [DOI] [PubMed]
  8. Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. & Prasad, J. S. (2004). Acta Cryst. E60, o586–o588.
  9. Gómez-Barrio, A., Montero-Pereira, D., Nogal-Ruiz, J. J., Escario, J. A., uelas-Serrano, S., Kouznetsov, V. V., Vargas Mendez, L. Y., Urbina González, J. M. & Ochoa, C. (2006). Acta Parasitol. 51, 73–78.
  10. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3087.
  11. Issaadi, S., Haffar, D., Douadi, T., Chafaa, S., Séraphin, D., Khan, M. A. & Boue, G. M. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 875–882.
  12. Izatt, R. M., Pawlak, M. K. & Bardshaw, I. S. (1995). Chem. Rev. 95, 2529–2586.
  13. Jain, M., Khan, S., Tekwani, B., Jacob, M., Singh, S., Singh, B. & Jain, R. (2005). Bioorg. Med. Chem. 13, 4458–4466. [DOI] [PubMed]
  14. Kaabi, I., Haffar, D., Douadi, T., Chafaa, S., Allain, M., Khan, M. A. & Bouet, G. M. (2007). Transition Met. Chem. 32, 666–673.
  15. Kalcher, K., Kauffman, J. M., Wank, J., Vaneare, I. S., Vitras, K., Neuhal, C. & Yang, Z. (1995). Electroanalysis, 7, 5–22.
  16. Kidwai, M., Bhushan, K., Sapra, P., Saxena, R. & Gupta, R. (2000). Bioorg. Med. Chem. 8, 69–72. [DOI] [PubMed]
  17. Musiol, R., Jampilek, J., Buchta, V., Silva, L., Niebala, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598. [DOI] [PubMed]
  18. Negm, N. A., Elkholy, Y. M., Zahran, M. K. & Tawfik, S. M. (2010). Corros. Sci. 52, 3523–3536.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Souza, M. V. N. (2005). Mini Rev. Med. Chem. 5, 1009–1017.
  21. Vinsova, J., Imramovsky, A., Jampilek, J., Monreal-Ferriz, J. & Dolezal, M. (2008). Anti-Infec. Agents Med. Chem. 7, 12–31.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012955/xu5181sup1.cif

e-67-o1119-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012955/xu5181Isup2.hkl

e-67-o1119-Isup2.hkl (262.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES