Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):o1154. doi: 10.1107/S1600536811013766

2-Amino-4-phenyl-4H,10H-1,3,5-triazino[1,2-a]benzimidazol-3-ium chloride

Shaaban K Mohamed a, Mahmoud A A El-Remaily b, Ahmed M Soliman b, Hossam Abdel-Ghany b, Seik Weng Ng c,*
PMCID: PMC3089182  PMID: 21754462

Abstract

2-Guanidinobenzimidazole condenses with benzaldehyde in the presence of hydro­chloric acid to form 2-amino-3,4-dihydro-4-phenyl-1,3,5-triazino[1,2-a]benzimidazole, which was isolated as its hydro­chloride, C15H14N5 +·Cl. The positive charge of the cation is formally placed on the double-bonded N atom of the dihydro­triazine ring. The six-membered dihydro­triazine that is fused with the benzimidazole ring system is relatively flat (r.m.s. deviation = 0.106 Å), with the methine C atom deviating most [0.164 (1) Å] from the mean-square plane. The phenyl ring connected to the methine C atom is disordered over two positions in a 0.558 (1):0.442 (1) ratio; the two orientations are aligned at 85.1 (1) and 89.6 (1)° with respect to the dihydro­triazine ring. In the crystal, adjacent cations and anions are linked by N—H⋯N and N—H⋯Cl hydrogen bonds, generating a double chain running along the b axis.

Related literature

For the synthesis, see: Dolzhenko & Chui (2006); Martin et al. (1981); Nagarajan et al. (1970).graphic file with name e-67-o1154-scheme1.jpg

Experimental

Crystal data

  • C15H14N5 +·Cl

  • M r = 299.76

  • Triclinic, Inline graphic

  • a = 8.6454 (5) Å

  • b = 9.0440 (4) Å

  • c = 9.7182 (6) Å

  • α = 83.306 (4)°

  • β = 70.956 (5)°

  • γ = 81.523 (4)°

  • V = 708.51 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.39 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.02 mm

Data collection

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.647, T max = 0.954

  • 7924 measured reflections

  • 2818 independent reflections

  • 2667 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.106

  • S = 1.01

  • 2818 reflections

  • 237 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013766/bt5515sup1.cif

e-67-o1154-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013766/bt5515Isup2.hkl

e-67-o1154-Isup2.hkl (138.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.88 (1) 2.23 (1) 3.1033 (16) 172 (2)
N4—H4⋯Cl1i 0.88 (1) 2.25 (1) 3.1060 (14) 165 (2)
N5—H3⋯N3ii 0.89 (1) 2.08 (1) 2.9643 (19) 176 (2)
N5—H2⋯Cl1ii 0.88 (1) 2.66 (2) 3.3147 (14) 132 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank Manchester Metropolitan University, Sohag University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

2-Guanidinobenzimidazole and aromatic aldehydes readily condense to form 2-amino-[1,3,5]triazino[1,2-a]benzimidazoles (Nagarajan et al., 1970; Martin et al., 1981); such compounds exhibit dihydrofolate reductase inhibitory activity (Dolzhenko & Chui, 2006). We added acetylacetone in the synthesis as the resulting compound possesses an amino subsitutent that is capable of further condensation, but the hydrochloric acid we used in the synthesis protonated the compound. The positive charge of the salt (Scheme I) is formally placed on the double-bonded N atom of the dihydrotriazine ring. The six-memebered dihydrotriazine that is fused with the benzimidazole ring-system is relatively flat, with the methine C deviating most from the mean-square plane. The phenyl ring that is connected to the methine C atom is disordered over two positions; the two orientations are aligned at nearly 90 ° with respect to the dihydrotriazine ring (Fig. 1). Adjacent cations and anions are linked by N–H···N and N–H···Cl hydrogen bonds to generate a linear chain motif (Table 1).

Experimental

2-Guanidinobenzimidazole (1H-benzo[d]imidazol-2-yliminomethanediamine) (10 mmol), benzaldehyde (10 mmol) and excess of cyclohexanone (approx. 10 ml) along with few drops of concentrated hydrochloric acid was heated in N,N-dimethylformamide (50 ml) for 30 minutes. The product was collected and recrystallized from ethanol; m.p. 623 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 1.00 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01 Å; their displacement parameters were refined.

The phenyl ring is disordered over two positions, and was refined as a rigid hexagon of 1.39 Å; the two C–Cphenyl distances were restrained to 1.50±0.01 Å. The disorder refined to a 55.8 (1):44.2 (1) ratio.

Figures

Fig. 1.

Fig. 1.

Anisotropic displacement ellipsoid plot (Barbour, 2001) of the C15H14N5 Cl salt at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.

Crystal data

C15H14N5+·Cl Z = 2
Mr = 299.76 F(000) = 312
Triclinic, P1 Dx = 1.405 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 8.6454 (5) Å Cell parameters from 4762 reflections
b = 9.0440 (4) Å θ = 4.8–74.3°
c = 9.7182 (6) Å µ = 2.39 mm1
α = 83.306 (4)° T = 100 K
β = 70.956 (5)° Plate, colorless
γ = 81.523 (4)° 0.20 × 0.20 × 0.02 mm
V = 708.51 (7) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2818 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2667 reflections with I > 2σ(I)
Mirror Rint = 0.017
Detector resolution: 10.4041 pixels mm-1 θmax = 74.5°, θmin = 4.8°
ω scans h = −10→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −11→11
Tmin = 0.647, Tmax = 0.954 l = −12→11
7924 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.4089P] where P = (Fo2 + 2Fc2)/3
2818 reflections (Δ/σ)max = 0.001
237 parameters Δρmax = 0.33 e Å3
6 restraints Δρmin = −0.29 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.25096 (5) 0.91819 (4) 0.47166 (4) 0.03322 (14)
N1 0.33424 (18) 0.61809 (16) 0.63707 (17) 0.0319 (3)
N2 0.37251 (16) 0.37732 (15) 0.69693 (15) 0.0279 (3)
N3 0.16136 (17) 0.46368 (14) 0.58756 (15) 0.0274 (3)
N4 0.25040 (18) 0.20531 (15) 0.61885 (15) 0.0297 (3)
N5 0.03987 (18) 0.28598 (15) 0.52257 (16) 0.0305 (3)
C1 0.4578 (2) 0.5963 (2) 0.70333 (19) 0.0341 (4)
C2 0.5488 (2) 0.6965 (3) 0.7323 (2) 0.0464 (5)
H2A 0.5332 0.8008 0.7061 0.056*
C3 0.6639 (3) 0.6360 (3) 0.8014 (2) 0.0587 (7)
H3A 0.7280 0.7009 0.8236 0.070*
C4 0.6878 (3) 0.4836 (3) 0.8389 (3) 0.0588 (7)
H4A 0.7683 0.4470 0.8856 0.071*
C5 0.5980 (2) 0.3834 (3) 0.8102 (2) 0.0465 (5)
H5 0.6144 0.2790 0.8359 0.056*
C6 0.4827 (2) 0.4437 (2) 0.74177 (19) 0.0330 (4)
C7 0.28265 (19) 0.48468 (17) 0.63639 (17) 0.0269 (3)
C8 0.1501 (2) 0.31762 (17) 0.57848 (17) 0.0263 (3)
C9 0.3386 (2) 0.22131 (18) 0.71937 (17) 0.0281 (3)
H9 0.4466 0.1566 0.6891 0.034* 0.558 (7)
H9' 0.4436 0.1519 0.6980 0.034* 0.442 (7)
C10 0.2434 (3) 0.1680 (4) 0.8782 (2) 0.0294 (11) 0.558 (7)
C11 0.0806 (3) 0.2263 (7) 0.9423 (3) 0.0475 (12) 0.558 (7)
H11 0.0253 0.2947 0.8871 0.057* 0.558 (7)
C12 −0.0012 (4) 0.1844 (7) 1.0873 (3) 0.0679 (19) 0.558 (7)
H12 −0.1124 0.2242 1.1311 0.081* 0.558 (7)
C13 0.0798 (7) 0.0843 (5) 1.1681 (2) 0.075 (2) 0.558 (7)
H13 0.0239 0.0557 1.2671 0.090* 0.558 (7)
C14 0.2426 (7) 0.0261 (3) 1.1039 (3) 0.0643 (19) 0.558 (7)
H14 0.2979 −0.0423 1.1591 0.077* 0.558 (7)
C15 0.3244 (5) 0.0679 (3) 0.9590 (3) 0.0408 (12) 0.558 (7)
H15 0.4356 0.0281 0.9151 0.049* 0.558 (7)
C10' 0.2393 (3) 0.1996 (4) 0.8737 (3) 0.0296 (14) 0.442 (7)
C11' 0.1106 (5) 0.3042 (4) 0.9424 (3) 0.0293 (11) 0.442 (7)
H11' 0.0941 0.4001 0.8945 0.035* 0.442 (7)
C12' 0.0060 (4) 0.2685 (4) 1.0813 (3) 0.0397 (13) 0.442 (7)
H12' −0.0820 0.3400 1.1283 0.048* 0.442 (7)
C13' 0.0302 (4) 0.1282 (4) 1.1515 (3) 0.0356 (13) 0.442 (7)
H13' −0.0413 0.1038 1.2464 0.043* 0.442 (7)
C14' 0.1589 (5) 0.0236 (3) 1.0827 (5) 0.0375 (12) 0.442 (7)
H14' 0.1755 −0.0723 1.1307 0.045* 0.442 (7)
C15' 0.2635 (4) 0.0592 (3) 0.9438 (4) 0.0342 (12) 0.442 (7)
H15' 0.3515 −0.0123 0.8968 0.041* 0.442 (7)
H1 0.300 (3) 0.7021 (17) 0.594 (2) 0.049 (6)*
H4 0.251 (3) 0.1148 (14) 0.593 (2) 0.042 (6)*
H2 0.020 (3) 0.1933 (13) 0.521 (2) 0.040 (5)*
H3 −0.016 (2) 0.3623 (18) 0.486 (2) 0.043 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0303 (2) 0.0217 (2) 0.0453 (3) −0.00372 (15) −0.00500 (17) −0.01220 (16)
N1 0.0319 (7) 0.0235 (7) 0.0438 (8) −0.0042 (6) −0.0128 (6) −0.0120 (6)
N2 0.0253 (7) 0.0266 (7) 0.0345 (7) 0.0015 (5) −0.0125 (6) −0.0097 (5)
N3 0.0302 (7) 0.0172 (6) 0.0394 (7) −0.0005 (5) −0.0166 (6) −0.0060 (5)
N4 0.0415 (8) 0.0186 (6) 0.0338 (7) 0.0019 (6) −0.0192 (6) −0.0065 (5)
N5 0.0364 (8) 0.0192 (6) 0.0432 (8) −0.0051 (6) −0.0213 (6) −0.0033 (6)
C1 0.0256 (8) 0.0413 (9) 0.0361 (9) −0.0060 (7) −0.0040 (7) −0.0195 (7)
C2 0.0350 (10) 0.0598 (13) 0.0451 (11) −0.0182 (9) 0.0006 (8) −0.0293 (9)
C3 0.0324 (10) 0.100 (2) 0.0505 (12) −0.0253 (11) −0.0044 (9) −0.0371 (13)
C4 0.0336 (11) 0.097 (2) 0.0547 (13) −0.0087 (11) −0.0189 (10) −0.0272 (13)
C5 0.0307 (9) 0.0688 (14) 0.0447 (10) 0.0017 (9) −0.0170 (8) −0.0173 (10)
C6 0.0228 (8) 0.0433 (10) 0.0345 (8) −0.0015 (7) −0.0071 (7) −0.0174 (7)
C7 0.0258 (8) 0.0219 (7) 0.0335 (8) 0.0003 (6) −0.0089 (6) −0.0099 (6)
C8 0.0304 (8) 0.0191 (7) 0.0308 (8) −0.0016 (6) −0.0113 (6) −0.0038 (6)
C9 0.0282 (8) 0.0274 (8) 0.0285 (8) 0.0023 (6) −0.0099 (6) −0.0052 (6)
C10 0.038 (3) 0.031 (2) 0.018 (2) −0.0146 (15) −0.0014 (18) −0.0055 (13)
C11 0.0361 (19) 0.069 (4) 0.0365 (19) −0.0140 (19) −0.0019 (15) −0.0186 (19)
C12 0.064 (3) 0.096 (6) 0.041 (3) −0.050 (4) 0.010 (2) −0.018 (3)
C13 0.126 (6) 0.074 (4) 0.028 (2) −0.071 (4) −0.003 (3) −0.003 (3)
C14 0.131 (6) 0.038 (2) 0.0330 (19) −0.045 (3) −0.026 (3) 0.0075 (16)
C15 0.073 (3) 0.0228 (16) 0.0333 (17) −0.0187 (19) −0.021 (2) 0.0012 (13)
C10' 0.028 (3) 0.027 (2) 0.042 (3) −0.0030 (17) −0.019 (3) −0.0078 (18)
C11' 0.032 (2) 0.029 (2) 0.0245 (18) 0.0022 (18) −0.0072 (15) −0.0058 (15)
C12' 0.035 (2) 0.042 (3) 0.035 (2) 0.000 (2) −0.0032 (18) −0.007 (2)
C13' 0.032 (2) 0.038 (3) 0.032 (3) −0.009 (2) −0.002 (2) −0.001 (2)
C14' 0.035 (3) 0.029 (2) 0.045 (3) −0.0102 (18) −0.010 (2) 0.0078 (19)
C15' 0.027 (2) 0.031 (2) 0.043 (3) −0.0072 (18) −0.0083 (19) 0.0000 (19)

Geometric parameters (Å, °)

N1—C7 1.348 (2) C9—C10 1.551 (2)
N1—C1 1.397 (2) C9—H9 1.0000
N1—H1 0.88 (1) C9—H9' 1.0000
N2—C7 1.355 (2) C10—C11 1.3900
N2—C6 1.400 (2) C10—C15 1.3900
N2—C9 1.460 (2) C11—C12 1.3900
N3—C7 1.329 (2) C11—H11 0.9500
N3—C8 1.3538 (19) C12—C13 1.3900
N4—C8 1.344 (2) C12—H12 0.9500
N4—C9 1.452 (2) C13—C14 1.3900
N4—H4 0.882 (10) C13—H13 0.9500
N5—C8 1.319 (2) C14—C15 1.3900
N5—H2 0.88 (1) C14—H14 0.9500
N5—H3 0.89 (1) C15—H15 0.9500
C1—C2 1.390 (2) C10'—C11' 1.3900
C1—C6 1.391 (3) C10'—C15' 1.3900
C2—C3 1.389 (3) C11'—C12' 1.3900
C2—H2A 0.9500 C11'—H11' 0.9500
C3—C4 1.387 (4) C12'—C13' 1.3900
C3—H3A 0.9500 C12'—H12' 0.9500
C4—C5 1.382 (3) C13'—C14' 1.3900
C4—H4A 0.9500 C13'—H13' 0.9500
C5—C6 1.386 (3) C14'—C15' 1.3900
C5—H5 0.9500 C14'—H14' 0.9500
C9—C10' 1.471 (3) C15'—H15' 0.9500
C7—N1—C1 108.78 (14) N2—C9—H9 107.9
C7—N1—H1 123.8 (16) C10'—C9—H9 115.7
C1—N1—H1 127.2 (16) C10—C9—H9 107.9
C7—N2—C6 109.45 (14) N4—C9—H9' 110.6
C7—N2—C9 121.34 (13) N2—C9—H9' 110.7
C6—N2—C9 128.97 (14) C10'—C9—H9' 110.6
C7—N3—C8 113.66 (13) C10—C9—H9' 102.7
C8—N4—C9 123.13 (13) C11—C10—C15 120.0
C8—N4—H4 117.9 (14) C11—C10—C9 120.27 (17)
C9—N4—H4 118.3 (14) C15—C10—C9 119.63 (17)
C8—N5—H2 122.4 (14) C12—C11—C10 120.0
C8—N5—H3 117.3 (14) C12—C11—H11 120.0
H2—N5—H3 120 (2) C10—C11—H11 120.0
C2—C1—C6 121.02 (19) C11—C12—C13 120.0
C2—C1—N1 131.53 (19) C11—C12—H12 120.0
C6—C1—N1 107.46 (14) C13—C12—H12 120.0
C1—C2—C3 116.5 (2) C14—C13—C12 120.0
C1—C2—H2A 121.7 C14—C13—H13 120.0
C3—C2—H2A 121.7 C12—C13—H13 120.0
C4—C3—C2 121.9 (2) C15—C14—C13 120.0
C4—C3—H3A 119.1 C15—C14—H14 120.0
C2—C3—H3A 119.1 C13—C14—H14 120.0
C5—C4—C3 121.9 (2) C14—C15—C10 120.0
C5—C4—H4A 119.1 C14—C15—H15 120.0
C3—C4—H4A 119.1 C10—C15—H15 120.0
C4—C5—C6 116.2 (2) C11'—C10'—C15' 120.0
C4—C5—H5 121.9 C11'—C10'—C9 122.6 (2)
C6—C5—H5 121.9 C15'—C10'—C9 116.8 (2)
C1—C6—C5 122.43 (18) C12'—C11'—C10' 120.0
C1—C6—N2 105.86 (15) C12'—C11'—H11' 120.0
C5—C6—N2 131.71 (18) C10'—C11'—H11' 120.0
N3—C7—N1 125.39 (15) C11'—C12'—C13' 120.0
N3—C7—N2 126.15 (14) C11'—C12'—H12' 120.0
N1—C7—N2 108.44 (14) C13'—C12'—H12' 120.0
N5—C8—N4 119.28 (14) C14'—C13'—C12' 120.0
N5—C8—N3 118.04 (14) C14'—C13'—H13' 120.0
N4—C8—N3 122.63 (14) C12'—C13'—H13' 120.0
N4—C9—N2 105.74 (12) C15'—C14'—C13' 120.0
N4—C9—C10' 113.24 (18) C15'—C14'—H14' 120.0
N2—C9—C10' 105.86 (18) C13'—C14'—H14' 120.0
N4—C9—C10 111.64 (16) C14'—C15'—C10' 120.0
N2—C9—C10 115.56 (18) C14'—C15'—H15' 120.0
N4—C9—H9 107.9 C10'—C15'—H15' 120.0
C7—N1—C1—C2 −179.19 (18) C6—N2—C9—N4 −164.88 (15)
C7—N1—C1—C6 0.91 (19) C7—N2—C9—C10' −99.0 (2)
C6—C1—C2—C3 −0.3 (3) C6—N2—C9—C10' 74.7 (2)
N1—C1—C2—C3 179.83 (18) C7—N2—C9—C10 −102.57 (19)
C1—C2—C3—C4 0.4 (3) C6—N2—C9—C10 71.1 (2)
C2—C3—C4—C5 −0.3 (3) N4—C9—C10—C11 −53.8 (2)
C3—C4—C5—C6 0.0 (3) N2—C9—C10—C11 67.1 (2)
C2—C1—C6—C5 0.0 (3) C10'—C9—C10—C11 47.2 (10)
N1—C1—C6—C5 179.93 (16) N4—C9—C10—C15 129.8 (2)
C2—C1—C6—N2 −179.84 (15) N2—C9—C10—C15 −109.3 (3)
N1—C1—C6—N2 0.07 (18) C10'—C9—C10—C15 −129.2 (11)
C4—C5—C6—C1 0.1 (3) C15—C10—C11—C12 0.0
C4—C5—C6—N2 179.93 (18) C9—C10—C11—C12 −176.4 (3)
C7—N2—C6—C1 −1.03 (18) C10—C11—C12—C13 0.0
C9—N2—C6—C1 −175.29 (15) C11—C12—C13—C14 0.0
C7—N2—C6—C5 179.13 (18) C12—C13—C14—C15 0.0
C9—N2—C6—C5 4.9 (3) C13—C14—C15—C10 0.0
C8—N3—C7—N1 170.54 (15) C11—C10—C15—C14 0.0
C8—N3—C7—N2 −11.2 (2) C9—C10—C15—C14 176.4 (3)
C1—N1—C7—N3 176.97 (15) N4—C9—C10'—C11' −72.3 (3)
C1—N1—C7—N2 −1.56 (18) N2—C9—C10'—C11' 43.1 (3)
C6—N2—C7—N3 −176.89 (15) C10—C9—C10'—C11' −155.5 (11)
C9—N2—C7—N3 −2.1 (2) N4—C9—C10'—C15' 98.6 (3)
C6—N2—C7—N1 1.62 (18) N2—C9—C10'—C15' −146.0 (3)
C9—N2—C7—N1 176.39 (13) C10—C9—C10'—C15' 15.5 (9)
C9—N4—C8—N5 −160.68 (15) C15'—C10'—C11'—C12' 0.0
C9—N4—C8—N3 21.9 (2) C9—C10'—C11'—C12' 170.6 (3)
C7—N3—C8—N5 −175.88 (15) C10'—C11'—C12'—C13' 0.0
C7—N3—C8—N4 1.6 (2) C11'—C12'—C13'—C14' 0.0
C8—N4—C9—N2 −31.2 (2) C12'—C13'—C14'—C15' 0.0
C8—N4—C9—C10' 84.3 (2) C13'—C14'—C15'—C10' 0.0
C8—N4—C9—C10 95.3 (2) C11'—C10'—C15'—C14' 0.0
C7—N2—C9—N4 21.46 (19) C9—C10'—C15'—C14' −171.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl1 0.88 (1) 2.23 (1) 3.1033 (16) 172 (2)
N4—H4···Cl1i 0.88 (1) 2.25 (1) 3.1060 (14) 165 (2)
N5—H3···N3ii 0.89 (1) 2.08 (1) 2.9643 (19) 176 (2)
N5—H2···Cl1ii 0.88 (1) 2.66 (2) 3.3147 (14) 132 (2)

Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5515).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Dolzhenko, A. V. & Chui, W.-K. (2006). J. Heterocycl. Chem. 43, 95–100.
  4. Martin, D., Graubaum, H., Kempter, G. & Ehrlichmann, W. (1981). J. Prakt. Chem. 323, 303–310.
  5. Nagarajan, K., Rao, V. R. & Venkateswarlu, A. (1970). Indian J. Chem. 8, 126–129.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013766/bt5515sup1.cif

e-67-o1154-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013766/bt5515Isup2.hkl

e-67-o1154-Isup2.hkl (138.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES