Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1200–o1201. doi: 10.1107/S1600536811014383

(E)-1-(2,4-Dinitro­phen­yl)-2-(2-fluoro­benzyl­idene)hydrazine

Jerry P Jasinski a,*, Adam N Braley a, C S Chidan Kumar b, H S Yathirajan b, A N Mayekar c
PMCID: PMC3089184  PMID: 21754502

Abstract

In the title compound, C13H9FN4O4, the dihedral angle between the mean planes of the two benzene rings of the nearly planar mol­ecule is 6.6 (9)°. The dihedral angles between the mean planes of the benzene ring and its two attached nitro groups are 6.7 (7) and 7.2 (9)°. Crystal packing is stabilized by N—H⋯O hydrogen bonds, weak C—H⋯O and C—H⋯F inter­molecular inter­actions and centroid–centroid π-ring stacking inter­actions.

Related literature

For Schiff base propeties, see: Liang (2007). For nonlinear optical and crystalline properties, see: Baughman et al. (2004). For DNA-damaging and mutagenic agents, see: Okabe et al. (1993). For related structures, see: Bolte & Dill (1998); Shan et al. (2002); Fan et al. (2004); Motherwell & Ramsay, (2007); Shi et al. (2008); Ji et al. (2010); Kia et al. (2009); Jasinski et al. (2010).graphic file with name e-67-o1200-scheme1.jpg

Experimental

Crystal data

  • C13H9FN4O4

  • M r = 304.24

  • Triclinic, Inline graphic

  • a = 7.0961 (8) Å

  • b = 8.2714 (9) Å

  • c = 11.7230 (8) Å

  • α = 88.614 (7)°

  • β = 80.544 (8)°

  • γ = 71.368 (10)°

  • V = 642.86 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 173 K

  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.967, T max = 1.000

  • 6346 measured reflections

  • 3466 independent reflections

  • 2802 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.143

  • S = 1.09

  • 3466 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014383/ng5151sup1.cif

e-67-o1200-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014383/ng5151Isup2.hkl

e-67-o1200-Isup2.hkl (169.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.88 2.02 2.6317 (15) 126
N2—H2A⋯O1i 0.88 2.51 3.3424 (15) 158
C2—H2B⋯F1ii 0.95 2.45 3.3386 (17) 156
C3—H3A⋯O4iii 0.95 2.48 3.3177 (19) 148
C5—H5A⋯O3iv 0.95 2.43 3.2694 (17) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Table 2. CgCg π-ring stacking inter­actions.

Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13, respectively.

CgICgJ CgCg (Å) CgI_Perp (Å) CgJ_Perp (Å)
Cg1⋯Cg2i 3.6916 (10) −3.4632 (6) 3.3267 (5)
Cg2⋯Cg1ii 3.6916 (10) 3.3267 (5) −3.4632 (6)

Symmetry codes: (i) 1 + x, y, z; (ii) −1 + x, y, z.

Acknowledgments

CSCK and HSY thank the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Schiff bases and their complexes are widely used in the fields of biology, catalysis etc. (Liang, 2007). Especially, the dinitrophenyl hydrazones exhibit good nonlinear optical (NLO) and crystalline properties (Baughman et al., 2004) and are found to have versatile coordinating abilities towards different metal ions. In addition, some 2,4-dinitrophenyl hydrazone derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993). As a result of their significant molecular nonlinearities many x-ray structural studies of 2,4-dinitrophenylhydrazones have been reported. Among them, the most closely related structures are (E)-p-methoxy-acetophenone 2,4-dinitrophenylhydrazone (Bolte & Dill, 1998), acetophenone (2,4-dinitrophenyl)hydrazone (Shan et al., 2002), 3-chloroacetophenone 2,4-dintrophenyl- hydrazone (Fan et al., 2004), 2,4-dihydroxyacetophenone 2,4-dinitrophenylhydrazone (Baughman et al., 2004), syn-acetophenone (2,4-dinitrophenyl) hydrazone (Motherwell & Ramsay, 2007), 1-(2-chlorobenzylidene)-2-(2,4-dinitrophenyl)hydrazine (Shi et al., 2008), N-(2,4-dinitrophenyl)-N'-(1-p-tolylethylidene) hydrazine (Kia et al., 2009), N-(2,4-dinitrophenyl)-N'-(1-phenylethylidene)hydrazine (Ji et al., 2010) and (1E)-1-(3-bromophenyl)ethanone 2,4-dinitrophenylhydrazone (Jasinski et al., 2010). In view of the importance of 2,4-dinitrophenylhydrazones, this paper reports the crystal structure of the title compound, C13H9FN4O4, (I).

In the title compound the dihedral angle between the mean planes of the two benzene rings of a nearly planar molecule is 6.69°, (Fig. 2). The dihedral angle between the mean planes of the benzene ring and its two bonded nitro groups are 6.7 (7)° and 7.2 (9)°, respectively. Crystal packing is stabilized by N—H···O hydrogen bonds (Fig. 3), weak C—H···O intermolecular interactions and Cg—Cg π-ring stacking interactions (Table 2).

Experimental

A mixture of 2,4-dinitrophenylhydrazine (1.98 g) and 2-fluorobenzaldehyde (1.24 g) was dissolved in methanol and refluxed for about 6h. The precipitate formed was filtered, dried and recrystallized in ethlyacetate. X-ray quality crystals of the title compound (I), were obtained after three days by the slow evaporation of a 1:1 mixture of dimethylformamide and pyridine at room temperature. (mp: 502 - 505 K).

Refinement

The parameters of all the H atoms have been constrained within the riding atom approximation. C—H bond lengths were constrained to 0.95 Å for aryl atoms, Uiso(H) = 1.18–1.20Ueq(Caryl). N—H bond lengths were constrained to 0.88 Å, Uiso(H) = 1.20Ueq(N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the b axis. Dashed lines indicate N—H···O hydrogen bonds and weak N—H···O intermolecular interactions.

Crystal data

C13H9FN4O4 Z = 2
Mr = 304.24 F(000) = 312
Triclinic, P1 Dx = 1.572 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0961 (8) Å Cell parameters from 3528 reflections
b = 8.2714 (9) Å θ = 3.1–32.2°
c = 11.7230 (8) Å µ = 0.13 mm1
α = 88.614 (7)° T = 173 K
β = 80.544 (8)° Block, orange-red
γ = 71.368 (10)° 0.20 × 0.18 × 0.15 mm
V = 642.86 (11) Å3

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer 3466 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2802 reflections with I > 2σ(I)
graphite Rint = 0.016
Detector resolution: 16.1500 pixels mm-1 θmax = 29.1°, θmin = 3.1°
φ and ω scans h = −9→8
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −11→11
Tmin = 0.967, Tmax = 1.000 l = −16→15
6346 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.0845P] where P = (Fo2 + 2Fc2)/3
3466 reflections (Δ/σ)max < 0.001
199 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 1.25967 (13) 0.08268 (12) 0.46347 (7) 0.0542 (3)
O1 0.33061 (16) 0.49706 (16) 0.46244 (9) 0.0576 (3)
O2 0.04251 (15) 0.62057 (14) 0.41195 (9) 0.0539 (3)
O3 0.0526 (2) 0.21724 (19) −0.01824 (12) 0.0791 (4)
O4 −0.15820 (15) 0.42413 (15) 0.08977 (10) 0.0561 (3)
N1 0.79790 (15) 0.14775 (14) 0.28682 (9) 0.0377 (2)
N2 0.61603 (16) 0.26801 (15) 0.32453 (9) 0.0391 (3)
H2A 0.5959 0.3291 0.3884 0.047*
N3 0.00969 (19) 0.32023 (16) 0.06233 (11) 0.0443 (3)
N4 0.20937 (16) 0.51447 (14) 0.39505 (10) 0.0393 (3)
C1 1.2885 (2) −0.02327 (17) 0.37123 (11) 0.0381 (3)
C2 1.4763 (2) −0.1424 (2) 0.33969 (14) 0.0499 (3)
H2B 1.5823 −0.1511 0.3819 0.060*
C3 1.5057 (2) −0.2487 (2) 0.24485 (15) 0.0534 (4)
H3A 1.6336 −0.3321 0.2214 0.064*
C4 1.3510 (2) −0.23481 (18) 0.18385 (13) 0.0482 (3)
H4A 1.3727 −0.3086 0.1187 0.058*
C5 1.1651 (2) −0.11396 (17) 0.21735 (11) 0.0404 (3)
H5A 1.0595 −0.1052 0.1747 0.049*
C6 1.12930 (18) −0.00419 (15) 0.31287 (10) 0.0332 (3)
C7 0.93392 (18) 0.12582 (16) 0.34949 (11) 0.0358 (3)
H7A 0.9091 0.1924 0.4185 0.043*
C8 0.46749 (17) 0.29040 (15) 0.26058 (10) 0.0329 (3)
C9 0.26980 (18) 0.40469 (15) 0.29198 (10) 0.0324 (3)
C10 0.12047 (18) 0.41764 (14) 0.22616 (10) 0.0336 (3)
H10A −0.0115 0.4954 0.2487 0.040*
C11 0.16630 (19) 0.31661 (15) 0.12820 (11) 0.0345 (3)
C12 0.3609 (2) 0.20726 (17) 0.09136 (11) 0.0396 (3)
H12A 0.3909 0.1412 0.0216 0.048*
C13 0.50799 (19) 0.19515 (17) 0.15534 (11) 0.0390 (3)
H13A 0.6408 0.1213 0.1290 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0485 (5) 0.0679 (6) 0.0446 (5) −0.0099 (4) −0.0184 (4) −0.0156 (4)
O1 0.0428 (6) 0.0767 (7) 0.0512 (6) −0.0123 (5) −0.0111 (5) −0.0292 (5)
O2 0.0424 (6) 0.0553 (6) 0.0517 (6) 0.0007 (5) −0.0030 (4) −0.0189 (5)
O3 0.0686 (8) 0.0871 (9) 0.0790 (9) −0.0060 (7) −0.0370 (7) −0.0388 (7)
O4 0.0380 (5) 0.0613 (7) 0.0664 (7) −0.0057 (5) −0.0209 (5) −0.0032 (5)
N1 0.0290 (5) 0.0430 (6) 0.0384 (6) −0.0080 (4) −0.0046 (4) −0.0036 (4)
N2 0.0292 (5) 0.0480 (6) 0.0373 (5) −0.0077 (4) −0.0053 (4) −0.0108 (4)
N3 0.0440 (6) 0.0463 (6) 0.0455 (6) −0.0131 (5) −0.0174 (5) −0.0022 (5)
N4 0.0348 (5) 0.0427 (6) 0.0392 (6) −0.0121 (4) −0.0013 (4) −0.0110 (4)
C1 0.0385 (6) 0.0426 (6) 0.0338 (6) −0.0116 (5) −0.0102 (5) −0.0005 (5)
C2 0.0391 (7) 0.0540 (8) 0.0529 (8) −0.0048 (6) −0.0174 (6) 0.0011 (6)
C3 0.0407 (7) 0.0461 (7) 0.0613 (9) 0.0020 (6) −0.0060 (6) −0.0041 (7)
C4 0.0529 (8) 0.0415 (7) 0.0455 (8) −0.0103 (6) −0.0031 (6) −0.0091 (6)
C5 0.0408 (7) 0.0430 (7) 0.0393 (7) −0.0136 (5) −0.0107 (5) −0.0040 (5)
C6 0.0317 (6) 0.0357 (6) 0.0329 (6) −0.0113 (5) −0.0061 (4) 0.0007 (4)
C7 0.0333 (6) 0.0418 (6) 0.0331 (6) −0.0129 (5) −0.0054 (5) −0.0042 (5)
C8 0.0286 (5) 0.0363 (6) 0.0339 (6) −0.0108 (5) −0.0044 (4) −0.0034 (4)
C9 0.0313 (6) 0.0335 (5) 0.0318 (6) −0.0103 (4) −0.0027 (4) −0.0058 (4)
C10 0.0298 (6) 0.0313 (5) 0.0382 (6) −0.0076 (4) −0.0056 (4) −0.0021 (4)
C11 0.0354 (6) 0.0335 (6) 0.0363 (6) −0.0104 (5) −0.0115 (5) −0.0006 (5)
C12 0.0394 (7) 0.0403 (6) 0.0361 (6) −0.0071 (5) −0.0077 (5) −0.0092 (5)
C13 0.0316 (6) 0.0416 (6) 0.0385 (6) −0.0044 (5) −0.0045 (5) −0.0090 (5)

Geometric parameters (Å, °)

F1—C1 1.3555 (15) C3—H3A 0.9500
O1—N4 1.2343 (15) C4—C5 1.3785 (19)
O2—N4 1.2161 (15) C4—H4A 0.9500
O3—N3 1.2204 (16) C5—C6 1.3967 (17)
O4—N3 1.2225 (15) C5—H5A 0.9500
N1—C7 1.2724 (16) C6—C7 1.4618 (17)
N1—N2 1.3653 (15) C7—H7A 0.9500
N2—C8 1.3548 (16) C8—C9 1.4131 (17)
N2—H2A 0.8800 C8—C13 1.4181 (16)
N3—C11 1.4463 (16) C9—C10 1.3863 (16)
N4—C9 1.4500 (15) C10—C11 1.3685 (17)
C1—C2 1.3783 (19) C10—H10A 0.9500
C1—C6 1.3800 (17) C11—C12 1.3916 (18)
C2—C3 1.381 (2) C12—C13 1.3597 (18)
C2—H2B 0.9500 C12—H12A 0.9500
C3—C4 1.379 (2) C13—H13A 0.9500
C7—N1—N2 117.04 (11) C1—C6—C5 116.70 (11)
C8—N2—N1 117.99 (10) C1—C6—C7 121.17 (11)
C8—N2—H2A 121.0 C5—C6—C7 122.12 (11)
N1—N2—H2A 121.0 N1—C7—C6 118.51 (11)
O3—N3—O4 123.15 (12) N1—C7—H7A 120.7
O3—N3—C11 117.69 (12) C6—C7—H7A 120.7
O4—N3—C11 119.16 (11) N2—C8—C9 123.98 (11)
O2—N4—O1 122.32 (11) N2—C8—C13 119.48 (11)
O2—N4—C9 119.24 (11) C9—C8—C13 116.55 (11)
O1—N4—C9 118.44 (11) C10—C9—C8 121.82 (10)
F1—C1—C2 118.20 (12) C10—C9—N4 115.72 (11)
F1—C1—C6 118.24 (11) C8—C9—N4 122.45 (11)
C2—C1—C6 123.55 (12) C11—C10—C9 118.91 (11)
C1—C2—C3 118.00 (13) C11—C10—H10A 120.5
C1—C2—H2B 121.0 C9—C10—H10A 120.5
C3—C2—H2B 121.0 C10—C11—C12 121.27 (11)
C4—C3—C2 120.60 (14) C10—C11—N3 119.78 (11)
C4—C3—H3A 119.7 C12—C11—N3 118.93 (11)
C2—C3—H3A 119.7 C13—C12—C11 119.89 (11)
C5—C4—C3 120.00 (13) C13—C12—H12A 120.1
C5—C4—H4A 120.0 C11—C12—H12A 120.1
C3—C4—H4A 120.0 C12—C13—C8 121.44 (11)
C4—C5—C6 121.14 (12) C12—C13—H13A 119.3
C4—C5—H5A 119.4 C8—C13—H13A 119.3
C6—C5—H5A 119.4
C7—N1—N2—C8 −178.38 (11) N2—C8—C9—N4 2.32 (19)
F1—C1—C2—C3 −179.24 (13) C13—C8—C9—N4 −177.74 (11)
C6—C1—C2—C3 −0.3 (2) O2—N4—C9—C10 −6.98 (17)
C1—C2—C3—C4 0.2 (2) O1—N4—C9—C10 173.40 (12)
C2—C3—C4—C5 0.0 (2) O2—N4—C9—C8 173.56 (12)
C3—C4—C5—C6 −0.1 (2) O1—N4—C9—C8 −6.07 (19)
F1—C1—C6—C5 179.17 (11) C8—C9—C10—C11 0.07 (18)
C2—C1—C6—C5 0.3 (2) N4—C9—C10—C11 −179.40 (11)
F1—C1—C6—C7 −0.39 (18) C9—C10—C11—C12 −2.71 (19)
C2—C1—C6—C7 −179.28 (13) C9—C10—C11—N3 176.08 (11)
C4—C5—C6—C1 0.0 (2) O3—N3—C11—C10 −173.46 (14)
C4—C5—C6—C7 179.51 (12) O4—N3—C11—C10 6.06 (19)
N2—N1—C7—C6 178.86 (10) O3—N3—C11—C12 5.4 (2)
C1—C6—C7—N1 173.99 (12) O4—N3—C11—C12 −175.12 (12)
C5—C6—C7—N1 −5.54 (19) C10—C11—C12—C13 2.3 (2)
N1—N2—C8—C9 177.09 (11) N3—C11—C12—C13 −176.51 (12)
N1—N2—C8—C13 −2.85 (18) C11—C12—C13—C8 0.8 (2)
N2—C8—C9—C10 −177.12 (11) N2—C8—C13—C12 176.68 (12)
C13—C8—C9—C10 2.82 (18) C9—C8—C13—C12 −3.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O1 0.88 2.02 2.6317 (15) 126.
N2—H2A···O1i 0.88 2.51 3.3424 (15) 158.
C2—H2B···F1ii 0.95 2.45 3.3386 (17) 156.
C3—H3A···O4iii 0.95 2.48 3.3177 (19) 148.
C5—H5A···O3iv 0.95 2.43 3.2694 (17) 148.

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3, −y, −z+1; (iii) x+2, y−1, z; (iv) −x+1, −y, −z.

Table 2 Cg···Cg π-ring stacking interactions, Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13; [Symmetry codes: (i) 1+x,y,z; (ii) -1+x, y, z]

CgI···CgJ Cg···Cg (Å) Cg I_Perp (Å) CgJ_Perp (Å)
Cg1···Cg2i 3.6916 (10) -3.4632 (6) 3.3267 (5)
Cg2···Cg1ii 3.6916 (10) 3.3267 (5) -3.4632 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5151).

References

  1. Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106. [DOI] [PubMed]
  2. Bolte, M. & Dill, M. (1998). Acta Cryst. C54, IUC9800065.
  3. Fan, Z., Shan, S., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o1102–o1104.
  4. Jasinski, J. P., Guild, C. J., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o2832–o2833. [DOI] [PMC free article] [PubMed]
  5. Ji, N.-N., Shi, Z.-Q., Zhao, R.-G., Zheng, Z.-B. & Li, Z.-F. (2010). Bull. Korean Chem. Soc. 31, 881–886.
  6. Kia, R., Fun, H.-K., Etemadi, B. & Kargar, H. (2009). Acta Cryst. E65, o833–o834. [DOI] [PMC free article] [PubMed]
  7. Liang, Z.-P. (2007). Acta Cryst. E63, o2943.
  8. Motherwell, W. D. S. & Ramsay, J. (2007). Acta Cryst. E63, o4043.
  9. Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  10. Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  11. Shan, S., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. E58, o1333–o1335.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Shi, Z.-Q., Ji, N.-N. & Li, X.-Y. (2008). Acta Cryst. E64, o2135. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014383/ng5151sup1.cif

e-67-o1200-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014383/ng5151Isup2.hkl

e-67-o1200-Isup2.hkl (169.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES