Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1099–o1100. doi: 10.1107/S1600536811012712

1-(4-Bromo­phen­yl)-2-ethyl­sulfinyl-2-(phenyl­selan­yl)ethanone monohydrate

Julio Zukerman-Schpector a,*, Carlos A De Simone b, Paulo R Olivato c, Carlos R Cerqueira Jr c, Edward R T Tiekink d
PMCID: PMC3089188  PMID: 21754419

Abstract

In the title hydrate, C16H15BrO2SSe·H2O, the sulfinyl O atom lies on the opposite side of the mol­ecule to the Se and carbonyl O atoms. The benzene rings form a dihedral angle of 51.66 (17)° and are splayed with respect to each other. The observed conformation allows the water mol­ecules to bridge sulfinyl O atoms via O—H⋯O hydrogen bonds, generating a linear supra­molecular chain along the b axis; the chain is further stabilized by C—H⋯O contacts. The chains are held in place in the crystal structure by C⋯H⋯π and C—Br⋯π inter­actions.

Related literature

For background to β,β-bis-substituted-carbonyl compounds, see: Reis et al. (2006). For related structures, see: Olivato et al. (2004); Zukerman-Schpector et al. (2009, 2010). For details of the synthetic protocols, see: Long (1946); Leonard & Johnson (1962); Zoretic & Soja (1976).graphic file with name e-67-o1099-scheme1.jpg

Experimental

Crystal data

  • C16H15BrO2SSe·H2O

  • M r = 448.23

  • Monoclinic, Inline graphic

  • a = 14.6942 (2) Å

  • b = 6.1103 (1) Å

  • c = 21.5717 (4) Å

  • β = 113.714 (1)°

  • V = 1773.30 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.50 mm−1

  • T = 290 K

  • 0.36 × 0.19 × 0.16 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.291, T max = 0.734

  • 32063 measured reflections

  • 3734 independent reflections

  • 3177 reflections with I > 2σ(I)

  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.095

  • S = 1.03

  • 3734 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012712/hg5022sup1.cif

e-67-o1099-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012712/hg5022Isup2.hkl

e-67-o1099-Isup2.hkl (179.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C5–C10 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯O2i 0.85 1.95 2.788 (4) 169
O1w—H2w⋯O2 0.84 1.99 2.810 (4) 165
C2—H2⋯O1wi 0.98 2.40 3.334 (4) 159
C3—H3b⋯O1wi 0.97 2.54 3.434 (4) 153
C9—H9⋯O1wii 0.93 2.55 3.320 (4) 141
C10—H10⋯O2ii 0.93 2.58 3.456 (4) 157
C14—H14⋯Cg1iii 0.93 2.96 3.793 (5) 149
C8—Br⋯Cg2iv 1.90 (1) 3.49 (1) 5.349 (3) 165 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank the Brazilian agencies FAPESP, CNPq (fellowships to JZS and PRO) and CAPES (808/2009 to JZS) for financial support.

supplementary crystallographic information

Comment

As part of our on-going research on the conformational and electronic interactions in some β,β-substituted-carbonyl compounds, e.g. 4'-substituted 2-(bromo)-2-(ethylsulfonyl)- and 4'-substituted 2-(methylthio)-2-(diethoxyphosphoryl)]-acetophenones, and 3,3-bis[(4'-chlorophenyl)thio]-1-methylpiperidin-2-one, using theoretical, spectroscopic and X-ray diffraction methods (Olivato et al., 2004; Reis et al., 2006; Zukerman-Schpector et al., 2009; Zukerman-Schpector et al., 2010), the title hydrate, (I), was synthesized and its crystal structure determined, Fig. 1.

With reference to the pyramidal-S atom, the sulfinyl-O lies to the opposite side of the molecule to each of the Se and carbonyl-O atoms. This conformation allows for the formation of supramolecular chains mediated by the sulfinyl-O and water molecules, see below. The benzene rings are splayed with respect to each other as seen in the value of the C1—C2—Se—C11 torsion angle of -27.7 (2) °; the dihedral angle formed between the rings is 51.66 (17) °.

In the crystal packing, the water molecules bridge sulfinyl-O atoms via O—H···O hydrogen bonds to form a linear supramolecular chain along the b axis, Fig. 2 and Table 1. Chains are stabilized by a series of C—H···O interactions, Table 1, and are held in place by C—H···π(aryl-Br) and C—Br···π(aryl-Se) interactions, Fig. 3 and Table 1.

Experimental

Following the procedure of Long (1946), a solution of potassium hydroxide (400 mg, 7.2 mmol) and ethanothiol (0.5 ml, 7.2 mmol) in ethanol (10 ml) was added to a solution of 2-bromo-4'-bromoacetophenone (2.0 g, 7.2 mmol) in ethanol, to give 2-ethylthio-4'-bromoacetophenone (1.6 g, yield = 86%). The product was isolated and oxidized with 12 ml of an aqueous solution of sodium periodate (0.5 M) in acetonitrile (16 ml), after Leonard & Johnson (1962), to give 2-ethylsulfinyl-4'-bromoacetophenone that was extracted with dichloromethane and dried over anhydrous magnesium sulfate. 2-Ethylsulfinyl-4'-bromoacetophenone (730 mg, 2.6 mmol) was added drop-wise to a cooled (195 K) solution of diisopropylamine (0.4 ml, 2.6 mmol) and butyllithium (2.3 ml, 2.6 mmol) in THF (20 ml). After 20 minutes, phenylselenilbromide (610 mg, 2.6 mmol) dissolved in THF (10 ml) was added drop-wise to the enolate solution (Zoretic and Soja, 1976). After stirring for 3 h at 195 K, water (50 ml) was added at room temperature and extraction with chloroform was performed. The organic layer was dried over anhydrous magnesium sulfate. After evaporation of solvent, a crude solid was obtained. Purification through flash chromatography with a solution of hexane and ethyl acetate in a 1:1 ratio gave a mixture of the two possible diastereoisomers (500 mg, yield = 45%). One of the diastereoisomers was separated by recrystallization at low temperature (283 K) from chloroform. Suitable crystals for X-ray analysis were obtained by vapour diffusion of n-hexane into its chloroform solution at 283 K; M.pt. 366–367 K. IR (cm-1): ν(C=O) 1670, ν(S=O) 993. NMR (CDCl3, p.p.m.): δ 1.42–1.45 (3H, t 3J = 7.5 Hz), 2.92–2.99 (1H, dq, 2J = 13 Hz, 3J = 7.5 Hz), 3.32–3.25 (1H, dq, 2J = 13 Hz, 3J = 7.5 Hz), 5.44 (1H, s), 7.29–7.33 (2H, m, Aryl-H), 7.38–7.41 (1H, m, Aryl-H), 7.52–7.55 (2H, m, Aryl-H), 7.59–7.62 (2H, m, Aryl-H), 7.75–7.73 (2H, m, Aryl-H). Analysis found: C 42.76, H 3.84%. C16H15BrO2SSe.H2O requires: C 42.87, H 3.82%.

Refinement

The H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). Those of the water molecule were found in a difference map, fixed in those positions and refined with Uiso(H) = 1.2Ueq(O); see Table 1 for distances.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 35% probability level (arbitrary spheres for the H atoms).

Fig. 2.

Fig. 2.

Supramolecular linear chain along the b axis in (I) mediated by O—H···O hydrogen bonding (orange dashed lines).

Fig. 3.

Fig. 3.

View of the unit-cell contents in projection down the b axis in (I). Chains shown in Fig. 2, sustained by O–H···O hydrogen bonding (orange dashed lines), are held in place by C—H···π and C—Br···π contacts, shown as blue and purple dashed lines, respectively.

Crystal data

C16H15BrO2SSe·H2O F(000) = 888
Mr = 448.23 Dx = 1.679 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 23524 reflections
a = 14.6942 (2) Å θ = 2.6–26.7°
b = 6.1103 (1) Å µ = 4.50 mm1
c = 21.5717 (4) Å T = 290 K
β = 113.714 (1)° Plate, colourless
V = 1773.30 (5) Å3 0.36 × 0.19 × 0.16 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 3734 independent reflections
Radiation source: sealed tube 3177 reflections with I > 2σ(I)
graphite Rint = 0.076
CCD rotation images scans θmax = 26.7°, θmin = 3.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −18→18
Tmin = 0.291, Tmax = 0.734 k = −7→7
32063 measured reflections l = −27→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0428P)2 + 1.5141P] where P = (Fo2 + 2Fc2)/3
3734 reflections (Δ/σ)max < 0.001
200 parameters Δρmax = 0.80 e Å3
0 restraints Δρmin = −0.55 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.27316 (19) 0.2209 (5) 0.25810 (14) 0.0424 (6)
C2 0.36493 (19) 0.1572 (5) 0.32017 (13) 0.0419 (6)
H2 0.4114 0.0804 0.3055 0.050*
C3 0.5393 (2) 0.2846 (6) 0.42271 (17) 0.0593 (8)
H3A 0.5269 0.1896 0.4545 0.071*
H3B 0.5683 0.1973 0.3977 0.071*
C4 0.6102 (3) 0.4646 (8) 0.4605 (2) 0.0811 (12)
H4A 0.5806 0.5522 0.4844 0.122*
H4B 0.6243 0.5547 0.4290 0.122*
H4C 0.6709 0.4014 0.4922 0.122*
C5 0.23970 (19) 0.0756 (5) 0.19795 (14) 0.0409 (6)
C6 0.1669 (2) 0.1548 (5) 0.13798 (15) 0.0488 (6)
H6 0.1396 0.2925 0.1373 0.059*
C7 0.1349 (2) 0.0315 (5) 0.07957 (16) 0.0544 (7)
H7 0.0868 0.0854 0.0395 0.065*
C8 0.1756 (2) −0.1734 (5) 0.08164 (15) 0.0503 (7)
C9 0.2473 (2) −0.2565 (5) 0.14005 (16) 0.0506 (7)
H9 0.2736 −0.3952 0.1405 0.061*
C10 0.2796 (2) −0.1304 (5) 0.19819 (15) 0.0470 (6)
H10 0.3287 −0.1843 0.2379 0.056*
C11 0.1967 (2) 0.0520 (5) 0.36178 (14) 0.0468 (6)
C12 0.1754 (3) 0.2435 (6) 0.38661 (18) 0.0612 (8)
H12 0.2261 0.3392 0.4116 0.073*
C13 0.0772 (3) 0.2921 (7) 0.3739 (2) 0.0709 (10)
H13 0.0618 0.4222 0.3900 0.085*
C14 0.0026 (3) 0.1487 (8) 0.33776 (19) 0.0722 (10)
H14 −0.0631 0.1809 0.3298 0.087*
C15 0.0248 (3) −0.0399 (8) 0.3137 (2) 0.0713 (10)
H15 −0.0259 −0.1368 0.2894 0.086*
C16 0.1217 (2) −0.0899 (6) 0.32472 (17) 0.0577 (8)
H16 0.1362 −0.2181 0.3073 0.069*
O1 0.22999 (15) 0.3895 (3) 0.25913 (11) 0.0532 (5)
O2 0.45208 (18) 0.5313 (4) 0.31552 (12) 0.0643 (6)
O1W 0.4391 (2) 0.4022 (4) 0.18722 (14) 0.0729 (7)
H1W 0.4651 0.2794 0.1849 0.088*
H2W 0.4411 0.4158 0.2263 0.088*
S 0.42388 (5) 0.40496 (12) 0.36491 (4) 0.04610 (18)
Se 0.33094 (2) −0.03515 (6) 0.380920 (17) 0.05674 (12)
Br 0.13073 (3) −0.34569 (7) 0.001765 (19) 0.07905 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0385 (13) 0.0460 (15) 0.0428 (15) −0.0001 (11) 0.0165 (11) 0.0043 (11)
C2 0.0366 (13) 0.0488 (15) 0.0393 (14) 0.0033 (11) 0.0143 (11) −0.0005 (11)
C3 0.0458 (16) 0.077 (2) 0.0477 (17) −0.0005 (15) 0.0116 (13) −0.0088 (16)
C4 0.054 (2) 0.114 (3) 0.067 (2) −0.015 (2) 0.0156 (18) −0.030 (2)
C5 0.0351 (12) 0.0465 (14) 0.0402 (14) −0.0005 (11) 0.0144 (11) 0.0018 (11)
C6 0.0438 (14) 0.0497 (16) 0.0474 (16) 0.0058 (12) 0.0127 (12) 0.0029 (12)
C7 0.0494 (16) 0.0604 (18) 0.0426 (16) 0.0017 (14) 0.0073 (13) 0.0028 (13)
C8 0.0491 (15) 0.0589 (18) 0.0440 (15) −0.0071 (13) 0.0199 (13) −0.0048 (13)
C9 0.0498 (15) 0.0490 (16) 0.0527 (17) 0.0008 (13) 0.0203 (13) −0.0028 (13)
C10 0.0410 (14) 0.0505 (16) 0.0442 (15) 0.0017 (12) 0.0116 (12) 0.0036 (12)
C11 0.0484 (15) 0.0545 (16) 0.0403 (15) −0.0053 (12) 0.0207 (12) 0.0044 (12)
C12 0.0638 (19) 0.062 (2) 0.0597 (19) −0.0092 (16) 0.0271 (16) −0.0088 (16)
C13 0.078 (2) 0.077 (2) 0.070 (2) 0.0102 (19) 0.043 (2) −0.0010 (19)
C14 0.0531 (19) 0.109 (3) 0.061 (2) 0.003 (2) 0.0298 (17) 0.014 (2)
C15 0.0543 (19) 0.099 (3) 0.062 (2) −0.0205 (19) 0.0248 (17) −0.007 (2)
C16 0.0591 (18) 0.0643 (19) 0.0530 (18) −0.0161 (15) 0.0260 (15) −0.0090 (15)
O1 0.0507 (11) 0.0509 (11) 0.0526 (12) 0.0099 (9) 0.0149 (9) −0.0012 (9)
O2 0.0661 (14) 0.0659 (14) 0.0611 (14) −0.0174 (11) 0.0258 (12) 0.0026 (11)
O1W 0.0846 (17) 0.0675 (15) 0.0766 (17) 0.0192 (13) 0.0428 (14) 0.0114 (13)
S 0.0449 (4) 0.0504 (4) 0.0427 (4) −0.0023 (3) 0.0172 (3) −0.0049 (3)
Se 0.05056 (19) 0.0595 (2) 0.0579 (2) 0.00582 (13) 0.01947 (15) 0.01869 (14)
Br 0.0929 (3) 0.0816 (3) 0.0526 (2) −0.0047 (2) 0.01875 (19) −0.02037 (18)

Geometric parameters (Å, °)

C1—O1 1.215 (3) C8—Br 1.897 (3)
C1—C5 1.483 (4) C9—C10 1.383 (4)
C1—C2 1.520 (4) C9—H9 0.9300
C2—S 1.817 (3) C10—H10 0.9300
C2—Se 1.969 (3) C11—C12 1.375 (5)
C2—H2 0.9800 C11—C16 1.377 (4)
C3—C4 1.509 (5) C11—Se 1.920 (3)
C3—S 1.809 (3) C12—C13 1.388 (5)
C3—H3A 0.9700 C12—H12 0.9300
C3—H3B 0.9700 C13—C14 1.375 (6)
C4—H4A 0.9600 C13—H13 0.9300
C4—H4B 0.9600 C14—C15 1.357 (6)
C4—H4C 0.9600 C14—H14 0.9300
C5—C10 1.388 (4) C15—C16 1.380 (5)
C5—C6 1.392 (4) C15—H15 0.9300
C6—C7 1.378 (4) C16—H16 0.9300
C6—H6 0.9300 O2—S 1.503 (2)
C7—C8 1.380 (4) O1W—H1W 0.8525
C7—H7 0.9300 O1W—H2W 0.8362
C8—C9 1.374 (4)
O1—C1—C5 122.1 (2) C9—C8—Br 119.1 (2)
O1—C1—C2 119.1 (3) C7—C8—Br 119.1 (2)
C5—C1—C2 118.8 (2) C8—C9—C10 118.8 (3)
C1—C2—S 108.62 (19) C8—C9—H9 120.6
C1—C2—Se 111.50 (17) C10—C9—H9 120.6
S—C2—Se 109.77 (14) C9—C10—C5 120.8 (3)
C1—C2—H2 109.0 C9—C10—H10 119.6
S—C2—H2 109.0 C5—C10—H10 119.6
Se—C2—H2 109.0 C12—C11—C16 120.4 (3)
C4—C3—S 109.2 (3) C12—C11—Se 121.9 (2)
C4—C3—H3A 109.8 C16—C11—Se 117.6 (2)
S—C3—H3A 109.8 C11—C12—C13 119.2 (3)
C4—C3—H3B 109.8 C11—C12—H12 120.4
S—C3—H3B 109.8 C13—C12—H12 120.4
H3A—C3—H3B 108.3 C14—C13—C12 120.2 (4)
C3—C4—H4A 109.5 C14—C13—H13 119.9
C3—C4—H4B 109.5 C12—C13—H13 119.9
H4A—C4—H4B 109.5 C15—C14—C13 119.9 (3)
C3—C4—H4C 109.5 C15—C14—H14 120.0
H4A—C4—H4C 109.5 C13—C14—H14 120.0
H4B—C4—H4C 109.5 C14—C15—C16 120.8 (3)
C10—C5—C6 118.9 (3) C14—C15—H15 119.6
C10—C5—C1 123.3 (2) C16—C15—H15 119.6
C6—C5—C1 117.7 (2) C11—C16—C15 119.4 (3)
C7—C6—C5 120.8 (3) C11—C16—H16 120.3
C7—C6—H6 119.6 C15—C16—H16 120.3
C5—C6—H6 119.6 H1W—O1W—H2W 108.1
C6—C7—C8 118.8 (3) O2—S—C3 104.37 (15)
C6—C7—H7 120.6 O2—S—C2 105.07 (13)
C8—C7—H7 120.6 C3—S—C2 98.16 (14)
C9—C8—C7 121.8 (3) C11—Se—C2 101.82 (11)
O1—C1—C2—S −28.1 (3) C16—C11—C12—C13 0.1 (5)
C5—C1—C2—S 151.4 (2) Se—C11—C12—C13 −176.7 (3)
O1—C1—C2—Se 93.0 (3) C11—C12—C13—C14 0.9 (5)
C5—C1—C2—Se −87.5 (2) C12—C13—C14—C15 −0.8 (6)
O1—C1—C5—C10 −171.6 (3) C13—C14—C15—C16 −0.3 (6)
C2—C1—C5—C10 8.9 (4) C12—C11—C16—C15 −1.1 (5)
O1—C1—C5—C6 10.6 (4) Se—C11—C16—C15 175.8 (3)
C2—C1—C5—C6 −168.9 (2) C14—C15—C16—C11 1.3 (6)
C10—C5—C6—C7 −0.2 (4) C4—C3—S—O2 64.1 (3)
C1—C5—C6—C7 177.7 (3) C4—C3—S—C2 172.0 (3)
C5—C6—C7—C8 0.7 (5) C1—C2—S—O2 −61.3 (2)
C6—C7—C8—C9 −0.5 (5) Se—C2—S—O2 176.53 (14)
C6—C7—C8—Br 179.2 (2) C1—C2—S—C3 −168.7 (2)
C7—C8—C9—C10 −0.2 (5) Se—C2—S—C3 69.18 (16)
Br—C8—C9—C10 −179.9 (2) C12—C11—Se—C2 −76.2 (3)
C8—C9—C10—C5 0.7 (4) C16—C11—Se—C2 106.9 (2)
C6—C5—C10—C9 −0.5 (4) C1—C2—Se—C11 −27.7 (2)
C1—C5—C10—C9 −178.3 (3) S—C2—Se—C11 92.67 (15)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C5–C10 and C11–C16 rings, respectively.
D—H···A D—H H···A D···A D—H···A
O1w—H1w···O2i 0.85 1.95 2.788 (4) 169
O1w—H2w···O2 0.84 1.99 2.810 (4) 165
C2—H2···O1wi 0.98 2.40 3.334 (4) 159
C3—H3b···O1wi 0.97 2.54 3.434 (4) 153
C9—H9···O1wii 0.93 2.55 3.320 (4) 141
C10—H10···O2ii 0.93 2.58 3.456 (4) 157
C14—H14···Cg1iii 0.93 2.96 3.793 (5) 149
C8—Br···Cg2iv 1.897 (3) 3.4921 (16) 5.349 (3) 165.34 (10)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) −x, y+1/2, −z+1/2; (iv) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5022).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Chemaxon (2010). Marvinsketch http://www.chemaxon.com.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Leonard, N. J. & Johnson, C. R. (1962). J. Org. Chem. 27, 282–284.
  6. Long, L. M. (1946). J. Am. Chem. Soc. 68, 2159–2161. [DOI] [PubMed]
  7. Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
  8. Olivato, P. R., Reis, A. K. C. A., Rodrigues, A., Zukerman-Schpector, J., Tormena, C. F., Rittner, R. & Dal Colle, M. (2004). J. Mol. Struct. 707, 199–210.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Reis, A. K. C. A., Olivato, P. R., Zukerman-Schpector, J., Tormena, C. F. J., Rittner, R. & Dal Colle, M. (2006). J. Mol. Struct. 798, 57–63.
  11. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  14. Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.
  15. Zukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R., Santos, J. M. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1863. [DOI] [PMC free article] [PubMed]
  16. Zukerman-Schpector, J., Vinhato, E., Olivato, P. R., Rodrigues, A., Dal Colle, M., Cerqueira, C. R. Jr, Arman, H. D. & Tiekink, E. R. T. (2009). Z. Kristallogr. 224, 484–492.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012712/hg5022sup1.cif

e-67-o1099-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012712/hg5022Isup2.hkl

e-67-o1099-Isup2.hkl (179.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES