Abstract
In the title hydrate, C16H15BrO2SSe·H2O, the sulfinyl O atom lies on the opposite side of the molecule to the Se and carbonyl O atoms. The benzene rings form a dihedral angle of 51.66 (17)° and are splayed with respect to each other. The observed conformation allows the water molecules to bridge sulfinyl O atoms via O—H⋯O hydrogen bonds, generating a linear supramolecular chain along the b axis; the chain is further stabilized by C—H⋯O contacts. The chains are held in place in the crystal structure by C⋯H⋯π and C—Br⋯π interactions.
Related literature
For background to β,β-bis-substituted-carbonyl compounds, see: Reis et al. (2006 ▶). For related structures, see: Olivato et al. (2004 ▶); Zukerman-Schpector et al. (2009 ▶, 2010 ▶). For details of the synthetic protocols, see: Long (1946 ▶); Leonard & Johnson (1962 ▶); Zoretic & Soja (1976 ▶).
Experimental
Crystal data
C16H15BrO2SSe·H2O
M r = 448.23
Monoclinic,
a = 14.6942 (2) Å
b = 6.1103 (1) Å
c = 21.5717 (4) Å
β = 113.714 (1)°
V = 1773.30 (5) Å3
Z = 4
Mo Kα radiation
μ = 4.50 mm−1
T = 290 K
0.36 × 0.19 × 0.16 mm
Data collection
Nonius KappaCCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.291, T max = 0.734
32063 measured reflections
3734 independent reflections
3177 reflections with I > 2σ(I)
R int = 0.076
Refinement
R[F 2 > 2σ(F 2)] = 0.037
wR(F 2) = 0.095
S = 1.03
3734 reflections
200 parameters
H-atom parameters constrained
Δρmax = 0.80 e Å−3
Δρmin = −0.55 e Å−3
Data collection: COLLECT (Nonius, 1999 ▶); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 ▶); data reduction: DENZO (Otwinowski & Minor, 1997 ▶) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and DIAMOND (Brandenburg, 2006 ▶); software used to prepare material for publication: MarvinSketch (Chemaxon, 2010 ▶) and publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012712/hg5022sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012712/hg5022Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 and Cg2 are the centroids of the C5–C10 and C11–C16 rings, respectively.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1w—H1w⋯O2i | 0.85 | 1.95 | 2.788 (4) | 169 |
| O1w—H2w⋯O2 | 0.84 | 1.99 | 2.810 (4) | 165 |
| C2—H2⋯O1wi | 0.98 | 2.40 | 3.334 (4) | 159 |
| C3—H3b⋯O1wi | 0.97 | 2.54 | 3.434 (4) | 153 |
| C9—H9⋯O1wii | 0.93 | 2.55 | 3.320 (4) | 141 |
| C10—H10⋯O2ii | 0.93 | 2.58 | 3.456 (4) | 157 |
| C14—H14⋯Cg1iii | 0.93 | 2.96 | 3.793 (5) | 149 |
| C8—Br⋯Cg2iv | 1.90 (1) | 3.49 (1) | 5.349 (3) | 165 (1) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Acknowledgments
We thank the Brazilian agencies FAPESP, CNPq (fellowships to JZS and PRO) and CAPES (808/2009 to JZS) for financial support.
supplementary crystallographic information
Comment
As part of our on-going research on the conformational and electronic interactions in some β,β-substituted-carbonyl compounds, e.g. 4'-substituted 2-(bromo)-2-(ethylsulfonyl)- and 4'-substituted 2-(methylthio)-2-(diethoxyphosphoryl)]-acetophenones, and 3,3-bis[(4'-chlorophenyl)thio]-1-methylpiperidin-2-one, using theoretical, spectroscopic and X-ray diffraction methods (Olivato et al., 2004; Reis et al., 2006; Zukerman-Schpector et al., 2009; Zukerman-Schpector et al., 2010), the title hydrate, (I), was synthesized and its crystal structure determined, Fig. 1.
With reference to the pyramidal-S atom, the sulfinyl-O lies to the opposite side of the molecule to each of the Se and carbonyl-O atoms. This conformation allows for the formation of supramolecular chains mediated by the sulfinyl-O and water molecules, see below. The benzene rings are splayed with respect to each other as seen in the value of the C1—C2—Se—C11 torsion angle of -27.7 (2) °; the dihedral angle formed between the rings is 51.66 (17) °.
In the crystal packing, the water molecules bridge sulfinyl-O atoms via O—H···O hydrogen bonds to form a linear supramolecular chain along the b axis, Fig. 2 and Table 1. Chains are stabilized by a series of C—H···O interactions, Table 1, and are held in place by C—H···π(aryl-Br) and C—Br···π(aryl-Se) interactions, Fig. 3 and Table 1.
Experimental
Following the procedure of Long (1946), a solution of potassium hydroxide (400 mg, 7.2 mmol) and ethanothiol (0.5 ml, 7.2 mmol) in ethanol (10 ml) was added to a solution of 2-bromo-4'-bromoacetophenone (2.0 g, 7.2 mmol) in ethanol, to give 2-ethylthio-4'-bromoacetophenone (1.6 g, yield = 86%). The product was isolated and oxidized with 12 ml of an aqueous solution of sodium periodate (0.5 M) in acetonitrile (16 ml), after Leonard & Johnson (1962), to give 2-ethylsulfinyl-4'-bromoacetophenone that was extracted with dichloromethane and dried over anhydrous magnesium sulfate. 2-Ethylsulfinyl-4'-bromoacetophenone (730 mg, 2.6 mmol) was added drop-wise to a cooled (195 K) solution of diisopropylamine (0.4 ml, 2.6 mmol) and butyllithium (2.3 ml, 2.6 mmol) in THF (20 ml). After 20 minutes, phenylselenilbromide (610 mg, 2.6 mmol) dissolved in THF (10 ml) was added drop-wise to the enolate solution (Zoretic and Soja, 1976). After stirring for 3 h at 195 K, water (50 ml) was added at room temperature and extraction with chloroform was performed. The organic layer was dried over anhydrous magnesium sulfate. After evaporation of solvent, a crude solid was obtained. Purification through flash chromatography with a solution of hexane and ethyl acetate in a 1:1 ratio gave a mixture of the two possible diastereoisomers (500 mg, yield = 45%). One of the diastereoisomers was separated by recrystallization at low temperature (283 K) from chloroform. Suitable crystals for X-ray analysis were obtained by vapour diffusion of n-hexane into its chloroform solution at 283 K; M.pt. 366–367 K. IR (cm-1): ν(C=O) 1670, ν(S=O) 993. NMR (CDCl3, p.p.m.): δ 1.42–1.45 (3H, t 3J = 7.5 Hz), 2.92–2.99 (1H, dq, 2J = 13 Hz, 3J = 7.5 Hz), 3.32–3.25 (1H, dq, 2J = 13 Hz, 3J = 7.5 Hz), 5.44 (1H, s), 7.29–7.33 (2H, m, Aryl-H), 7.38–7.41 (1H, m, Aryl-H), 7.52–7.55 (2H, m, Aryl-H), 7.59–7.62 (2H, m, Aryl-H), 7.75–7.73 (2H, m, Aryl-H). Analysis found: C 42.76, H 3.84%. C16H15BrO2SSe.H2O requires: C 42.87, H 3.82%.
Refinement
The H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). Those of the water molecule were found in a difference map, fixed in those positions and refined with Uiso(H) = 1.2Ueq(O); see Table 1 for distances.
Figures
Fig. 1.
The molecular structure of (I) showing atom labelling scheme and displacement ellipsoids at the 35% probability level (arbitrary spheres for the H atoms).
Fig. 2.
Supramolecular linear chain along the b axis in (I) mediated by O—H···O hydrogen bonding (orange dashed lines).
Fig. 3.
View of the unit-cell contents in projection down the b axis in (I). Chains shown in Fig. 2, sustained by O–H···O hydrogen bonding (orange dashed lines), are held in place by C—H···π and C—Br···π contacts, shown as blue and purple dashed lines, respectively.
Crystal data
| C16H15BrO2SSe·H2O | F(000) = 888 |
| Mr = 448.23 | Dx = 1.679 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 23524 reflections |
| a = 14.6942 (2) Å | θ = 2.6–26.7° |
| b = 6.1103 (1) Å | µ = 4.50 mm−1 |
| c = 21.5717 (4) Å | T = 290 K |
| β = 113.714 (1)° | Plate, colourless |
| V = 1773.30 (5) Å3 | 0.36 × 0.19 × 0.16 mm |
| Z = 4 |
Data collection
| Nonius KappaCCD diffractometer | 3734 independent reflections |
| Radiation source: sealed tube | 3177 reflections with I > 2σ(I) |
| graphite | Rint = 0.076 |
| CCD rotation images scans | θmax = 26.7°, θmin = 3.6° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −18→18 |
| Tmin = 0.291, Tmax = 0.734 | k = −7→7 |
| 32063 measured reflections | l = −27→25 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.095 | H-atom parameters constrained |
| S = 1.03 | w = 1/[σ2(Fo2) + (0.0428P)2 + 1.5141P] where P = (Fo2 + 2Fc2)/3 |
| 3734 reflections | (Δ/σ)max < 0.001 |
| 200 parameters | Δρmax = 0.80 e Å−3 |
| 0 restraints | Δρmin = −0.55 e Å−3 |
Special details
| Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.27316 (19) | 0.2209 (5) | 0.25810 (14) | 0.0424 (6) | |
| C2 | 0.36493 (19) | 0.1572 (5) | 0.32017 (13) | 0.0419 (6) | |
| H2 | 0.4114 | 0.0804 | 0.3055 | 0.050* | |
| C3 | 0.5393 (2) | 0.2846 (6) | 0.42271 (17) | 0.0593 (8) | |
| H3A | 0.5269 | 0.1896 | 0.4545 | 0.071* | |
| H3B | 0.5683 | 0.1973 | 0.3977 | 0.071* | |
| C4 | 0.6102 (3) | 0.4646 (8) | 0.4605 (2) | 0.0811 (12) | |
| H4A | 0.5806 | 0.5522 | 0.4844 | 0.122* | |
| H4B | 0.6243 | 0.5547 | 0.4290 | 0.122* | |
| H4C | 0.6709 | 0.4014 | 0.4922 | 0.122* | |
| C5 | 0.23970 (19) | 0.0756 (5) | 0.19795 (14) | 0.0409 (6) | |
| C6 | 0.1669 (2) | 0.1548 (5) | 0.13798 (15) | 0.0488 (6) | |
| H6 | 0.1396 | 0.2925 | 0.1373 | 0.059* | |
| C7 | 0.1349 (2) | 0.0315 (5) | 0.07957 (16) | 0.0544 (7) | |
| H7 | 0.0868 | 0.0854 | 0.0395 | 0.065* | |
| C8 | 0.1756 (2) | −0.1734 (5) | 0.08164 (15) | 0.0503 (7) | |
| C9 | 0.2473 (2) | −0.2565 (5) | 0.14005 (16) | 0.0506 (7) | |
| H9 | 0.2736 | −0.3952 | 0.1405 | 0.061* | |
| C10 | 0.2796 (2) | −0.1304 (5) | 0.19819 (15) | 0.0470 (6) | |
| H10 | 0.3287 | −0.1843 | 0.2379 | 0.056* | |
| C11 | 0.1967 (2) | 0.0520 (5) | 0.36178 (14) | 0.0468 (6) | |
| C12 | 0.1754 (3) | 0.2435 (6) | 0.38661 (18) | 0.0612 (8) | |
| H12 | 0.2261 | 0.3392 | 0.4116 | 0.073* | |
| C13 | 0.0772 (3) | 0.2921 (7) | 0.3739 (2) | 0.0709 (10) | |
| H13 | 0.0618 | 0.4222 | 0.3900 | 0.085* | |
| C14 | 0.0026 (3) | 0.1487 (8) | 0.33776 (19) | 0.0722 (10) | |
| H14 | −0.0631 | 0.1809 | 0.3298 | 0.087* | |
| C15 | 0.0248 (3) | −0.0399 (8) | 0.3137 (2) | 0.0713 (10) | |
| H15 | −0.0259 | −0.1368 | 0.2894 | 0.086* | |
| C16 | 0.1217 (2) | −0.0899 (6) | 0.32472 (17) | 0.0577 (8) | |
| H16 | 0.1362 | −0.2181 | 0.3073 | 0.069* | |
| O1 | 0.22999 (15) | 0.3895 (3) | 0.25913 (11) | 0.0532 (5) | |
| O2 | 0.45208 (18) | 0.5313 (4) | 0.31552 (12) | 0.0643 (6) | |
| O1W | 0.4391 (2) | 0.4022 (4) | 0.18722 (14) | 0.0729 (7) | |
| H1W | 0.4651 | 0.2794 | 0.1849 | 0.088* | |
| H2W | 0.4411 | 0.4158 | 0.2263 | 0.088* | |
| S | 0.42388 (5) | 0.40496 (12) | 0.36491 (4) | 0.04610 (18) | |
| Se | 0.33094 (2) | −0.03515 (6) | 0.380920 (17) | 0.05674 (12) | |
| Br | 0.13073 (3) | −0.34569 (7) | 0.001765 (19) | 0.07905 (15) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0385 (13) | 0.0460 (15) | 0.0428 (15) | −0.0001 (11) | 0.0165 (11) | 0.0043 (11) |
| C2 | 0.0366 (13) | 0.0488 (15) | 0.0393 (14) | 0.0033 (11) | 0.0143 (11) | −0.0005 (11) |
| C3 | 0.0458 (16) | 0.077 (2) | 0.0477 (17) | −0.0005 (15) | 0.0116 (13) | −0.0088 (16) |
| C4 | 0.054 (2) | 0.114 (3) | 0.067 (2) | −0.015 (2) | 0.0156 (18) | −0.030 (2) |
| C5 | 0.0351 (12) | 0.0465 (14) | 0.0402 (14) | −0.0005 (11) | 0.0144 (11) | 0.0018 (11) |
| C6 | 0.0438 (14) | 0.0497 (16) | 0.0474 (16) | 0.0058 (12) | 0.0127 (12) | 0.0029 (12) |
| C7 | 0.0494 (16) | 0.0604 (18) | 0.0426 (16) | 0.0017 (14) | 0.0073 (13) | 0.0028 (13) |
| C8 | 0.0491 (15) | 0.0589 (18) | 0.0440 (15) | −0.0071 (13) | 0.0199 (13) | −0.0048 (13) |
| C9 | 0.0498 (15) | 0.0490 (16) | 0.0527 (17) | 0.0008 (13) | 0.0203 (13) | −0.0028 (13) |
| C10 | 0.0410 (14) | 0.0505 (16) | 0.0442 (15) | 0.0017 (12) | 0.0116 (12) | 0.0036 (12) |
| C11 | 0.0484 (15) | 0.0545 (16) | 0.0403 (15) | −0.0053 (12) | 0.0207 (12) | 0.0044 (12) |
| C12 | 0.0638 (19) | 0.062 (2) | 0.0597 (19) | −0.0092 (16) | 0.0271 (16) | −0.0088 (16) |
| C13 | 0.078 (2) | 0.077 (2) | 0.070 (2) | 0.0102 (19) | 0.043 (2) | −0.0010 (19) |
| C14 | 0.0531 (19) | 0.109 (3) | 0.061 (2) | 0.003 (2) | 0.0298 (17) | 0.014 (2) |
| C15 | 0.0543 (19) | 0.099 (3) | 0.062 (2) | −0.0205 (19) | 0.0248 (17) | −0.007 (2) |
| C16 | 0.0591 (18) | 0.0643 (19) | 0.0530 (18) | −0.0161 (15) | 0.0260 (15) | −0.0090 (15) |
| O1 | 0.0507 (11) | 0.0509 (11) | 0.0526 (12) | 0.0099 (9) | 0.0149 (9) | −0.0012 (9) |
| O2 | 0.0661 (14) | 0.0659 (14) | 0.0611 (14) | −0.0174 (11) | 0.0258 (12) | 0.0026 (11) |
| O1W | 0.0846 (17) | 0.0675 (15) | 0.0766 (17) | 0.0192 (13) | 0.0428 (14) | 0.0114 (13) |
| S | 0.0449 (4) | 0.0504 (4) | 0.0427 (4) | −0.0023 (3) | 0.0172 (3) | −0.0049 (3) |
| Se | 0.05056 (19) | 0.0595 (2) | 0.0579 (2) | 0.00582 (13) | 0.01947 (15) | 0.01869 (14) |
| Br | 0.0929 (3) | 0.0816 (3) | 0.0526 (2) | −0.0047 (2) | 0.01875 (19) | −0.02037 (18) |
Geometric parameters (Å, °)
| C1—O1 | 1.215 (3) | C8—Br | 1.897 (3) |
| C1—C5 | 1.483 (4) | C9—C10 | 1.383 (4) |
| C1—C2 | 1.520 (4) | C9—H9 | 0.9300 |
| C2—S | 1.817 (3) | C10—H10 | 0.9300 |
| C2—Se | 1.969 (3) | C11—C12 | 1.375 (5) |
| C2—H2 | 0.9800 | C11—C16 | 1.377 (4) |
| C3—C4 | 1.509 (5) | C11—Se | 1.920 (3) |
| C3—S | 1.809 (3) | C12—C13 | 1.388 (5) |
| C3—H3A | 0.9700 | C12—H12 | 0.9300 |
| C3—H3B | 0.9700 | C13—C14 | 1.375 (6) |
| C4—H4A | 0.9600 | C13—H13 | 0.9300 |
| C4—H4B | 0.9600 | C14—C15 | 1.357 (6) |
| C4—H4C | 0.9600 | C14—H14 | 0.9300 |
| C5—C10 | 1.388 (4) | C15—C16 | 1.380 (5) |
| C5—C6 | 1.392 (4) | C15—H15 | 0.9300 |
| C6—C7 | 1.378 (4) | C16—H16 | 0.9300 |
| C6—H6 | 0.9300 | O2—S | 1.503 (2) |
| C7—C8 | 1.380 (4) | O1W—H1W | 0.8525 |
| C7—H7 | 0.9300 | O1W—H2W | 0.8362 |
| C8—C9 | 1.374 (4) | ||
| O1—C1—C5 | 122.1 (2) | C9—C8—Br | 119.1 (2) |
| O1—C1—C2 | 119.1 (3) | C7—C8—Br | 119.1 (2) |
| C5—C1—C2 | 118.8 (2) | C8—C9—C10 | 118.8 (3) |
| C1—C2—S | 108.62 (19) | C8—C9—H9 | 120.6 |
| C1—C2—Se | 111.50 (17) | C10—C9—H9 | 120.6 |
| S—C2—Se | 109.77 (14) | C9—C10—C5 | 120.8 (3) |
| C1—C2—H2 | 109.0 | C9—C10—H10 | 119.6 |
| S—C2—H2 | 109.0 | C5—C10—H10 | 119.6 |
| Se—C2—H2 | 109.0 | C12—C11—C16 | 120.4 (3) |
| C4—C3—S | 109.2 (3) | C12—C11—Se | 121.9 (2) |
| C4—C3—H3A | 109.8 | C16—C11—Se | 117.6 (2) |
| S—C3—H3A | 109.8 | C11—C12—C13 | 119.2 (3) |
| C4—C3—H3B | 109.8 | C11—C12—H12 | 120.4 |
| S—C3—H3B | 109.8 | C13—C12—H12 | 120.4 |
| H3A—C3—H3B | 108.3 | C14—C13—C12 | 120.2 (4) |
| C3—C4—H4A | 109.5 | C14—C13—H13 | 119.9 |
| C3—C4—H4B | 109.5 | C12—C13—H13 | 119.9 |
| H4A—C4—H4B | 109.5 | C15—C14—C13 | 119.9 (3) |
| C3—C4—H4C | 109.5 | C15—C14—H14 | 120.0 |
| H4A—C4—H4C | 109.5 | C13—C14—H14 | 120.0 |
| H4B—C4—H4C | 109.5 | C14—C15—C16 | 120.8 (3) |
| C10—C5—C6 | 118.9 (3) | C14—C15—H15 | 119.6 |
| C10—C5—C1 | 123.3 (2) | C16—C15—H15 | 119.6 |
| C6—C5—C1 | 117.7 (2) | C11—C16—C15 | 119.4 (3) |
| C7—C6—C5 | 120.8 (3) | C11—C16—H16 | 120.3 |
| C7—C6—H6 | 119.6 | C15—C16—H16 | 120.3 |
| C5—C6—H6 | 119.6 | H1W—O1W—H2W | 108.1 |
| C6—C7—C8 | 118.8 (3) | O2—S—C3 | 104.37 (15) |
| C6—C7—H7 | 120.6 | O2—S—C2 | 105.07 (13) |
| C8—C7—H7 | 120.6 | C3—S—C2 | 98.16 (14) |
| C9—C8—C7 | 121.8 (3) | C11—Se—C2 | 101.82 (11) |
| O1—C1—C2—S | −28.1 (3) | C16—C11—C12—C13 | 0.1 (5) |
| C5—C1—C2—S | 151.4 (2) | Se—C11—C12—C13 | −176.7 (3) |
| O1—C1—C2—Se | 93.0 (3) | C11—C12—C13—C14 | 0.9 (5) |
| C5—C1—C2—Se | −87.5 (2) | C12—C13—C14—C15 | −0.8 (6) |
| O1—C1—C5—C10 | −171.6 (3) | C13—C14—C15—C16 | −0.3 (6) |
| C2—C1—C5—C10 | 8.9 (4) | C12—C11—C16—C15 | −1.1 (5) |
| O1—C1—C5—C6 | 10.6 (4) | Se—C11—C16—C15 | 175.8 (3) |
| C2—C1—C5—C6 | −168.9 (2) | C14—C15—C16—C11 | 1.3 (6) |
| C10—C5—C6—C7 | −0.2 (4) | C4—C3—S—O2 | 64.1 (3) |
| C1—C5—C6—C7 | 177.7 (3) | C4—C3—S—C2 | 172.0 (3) |
| C5—C6—C7—C8 | 0.7 (5) | C1—C2—S—O2 | −61.3 (2) |
| C6—C7—C8—C9 | −0.5 (5) | Se—C2—S—O2 | 176.53 (14) |
| C6—C7—C8—Br | 179.2 (2) | C1—C2—S—C3 | −168.7 (2) |
| C7—C8—C9—C10 | −0.2 (5) | Se—C2—S—C3 | 69.18 (16) |
| Br—C8—C9—C10 | −179.9 (2) | C12—C11—Se—C2 | −76.2 (3) |
| C8—C9—C10—C5 | 0.7 (4) | C16—C11—Se—C2 | 106.9 (2) |
| C6—C5—C10—C9 | −0.5 (4) | C1—C2—Se—C11 | −27.7 (2) |
| C1—C5—C10—C9 | −178.3 (3) | S—C2—Se—C11 | 92.67 (15) |
Hydrogen-bond geometry (Å, °)
| Cg1 and Cg2 are the centroids of the C5–C10 and C11–C16 rings, respectively. |
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1w—H1w···O2i | 0.85 | 1.95 | 2.788 (4) | 169 |
| O1w—H2w···O2 | 0.84 | 1.99 | 2.810 (4) | 165 |
| C2—H2···O1wi | 0.98 | 2.40 | 3.334 (4) | 159 |
| C3—H3b···O1wi | 0.97 | 2.54 | 3.434 (4) | 153 |
| C9—H9···O1wii | 0.93 | 2.55 | 3.320 (4) | 141 |
| C10—H10···O2ii | 0.93 | 2.58 | 3.456 (4) | 157 |
| C14—H14···Cg1iii | 0.93 | 2.96 | 3.793 (5) | 149 |
| C8—Br···Cg2iv | 1.897 (3) | 3.4921 (16) | 5.349 (3) | 165.34 (10) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) −x, y+1/2, −z+1/2; (iv) x, −y−1/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5022).
References
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Chemaxon (2010). Marvinsketch http://www.chemaxon.com.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Leonard, N. J. & Johnson, C. R. (1962). J. Org. Chem. 27, 282–284.
- Long, L. M. (1946). J. Am. Chem. Soc. 68, 2159–2161. [DOI] [PubMed]
- Nonius (1999). COLLECT Nonius BV, Delft, The Netherlands.
- Olivato, P. R., Reis, A. K. C. A., Rodrigues, A., Zukerman-Schpector, J., Tormena, C. F., Rittner, R. & Dal Colle, M. (2004). J. Mol. Struct. 707, 199–210.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Reis, A. K. C. A., Olivato, P. R., Zukerman-Schpector, J., Tormena, C. F. J., Rittner, R. & Dal Colle, M. (2006). J. Mol. Struct. 798, 57–63.
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Zoretic, P. A. & Soja, P. (1976). J. Org. Chem. 41, 3587–3589.
- Zukerman-Schpector, J., De Simone, C. A., Olivato, P. R., Cerqueira, C. R., Santos, J. M. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1863. [DOI] [PMC free article] [PubMed]
- Zukerman-Schpector, J., Vinhato, E., Olivato, P. R., Rodrigues, A., Dal Colle, M., Cerqueira, C. R. Jr, Arman, H. D. & Tiekink, E. R. T. (2009). Z. Kristallogr. 224, 484–492.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012712/hg5022sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012712/hg5022Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



