Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):i30. doi: 10.1107/S160053681101258X

Hemipotassium hemirubidium digallium(III) manganese(II) tris(phos­phate) dihydrate

Jing Zhang a, Ping Li a, Zhi-Hong Liu a, Seik Weng Ng b,*
PMCID: PMC3089190  PMID: 21754256

Abstract

The title manganese(II) substituted gallophosphate, K0.5Rb0.5[Ga2Mn(PO4)3(H2O)2], features a three-dimensional network built of PO4 tetra­hedra, GaO5 trigonal bipyramids and MnO6 octa­hedra. The RbI and KI ions, which are disordered with respect to each other in a 1:1 ratio, occupy sites within the channels of the framework. The RbI/KI and MnII atoms occupy positions of 2 symmetry, as does one of the two P atoms. The RbI/KI site is surrounded by six O atoms [2.996 (2)–3.178 (4) Å] in an irregularly-shaped coordination environment. O—H⋯O hydrogen bonds between the water molecules and phosphate O atoms consolidate the crystal packing.

Related literature

For isotypic NH4[Ga2Mn(PO4)3(H2O)2], see: Chippindale et al. (1998).

Experimental

Crystal data

  • K0.5Rb0.5[Ga2Mn(PO4)3(H2O)2]

  • M r = 577.61

  • Monoclinic, Inline graphic

  • a = 13.5504 (12) Å

  • b = 10.2965 (9) Å

  • c = 8.9072 (8) Å

  • β = 108.527 (1)°

  • V = 1178.34 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.31 mm−1

  • T = 295 K

  • 0.45 × 0.40 × 0.35 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.118, T max = 0.159

  • 6267 measured reflections

  • 1348 independent reflections

  • 1239 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.065

  • S = 1.04

  • 1348 reflections

  • 103 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.75 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681101258X/br2164sup1.cif

e-67-00i30-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101258X/br2164Isup2.hkl

e-67-00i30-Isup2.hkl (66.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1⋯O3i 0.84 (3) 1.97 (2) 2.790 (3) 166 (4)
O1w—H2⋯O6ii 0.84 (3) 2.10 (2) 2.913 (3) 165 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank Shaanxi Normal University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Microporous aluminium phosphates are readily synthesized by using the hydrothermal route; studies on these compounds have led to improvements in the synthesis of the related gallophosphates. The structure of NH4[Ga2Mn(PO4)3(H2O)2] features PO4 tetrahedra, GaO5 trigonal bipyramids and MnO6 octahedra that are linked together to form a three-dimensional network (Chippindale et al., 1998). The title compound has a similar structure (Fig. 1); however, the rubidium and potassium atoms that occupy the channels within the network rattle in the cavities, as noted from the irregular nature of the polyhedron surrounding the atoms. The coordination number is much higher when longer interactions are considered.

Experimental

The compound was synthesized from a mixture of gallium oxide (0.037 g), boric acid (0.035 g), rubidium carbonate (0.023 g), potassium carbonate (0.138 g), manganese dichloride tetrahydrate (0.397 g), phosphoric acid (0.15 ml) and water (1.8 ml) (molar ratio of 2:5:1:10:20:20:1000). This mixture was sealed in 25 ml, Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 468 K for 7 days. Colorless block-shaped crystals were isolated.

Refinement

The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their temperature factors were tied to those of the O atom by a factor of 1.5 times.

The potassium and rubidium atoms share the same site, a special position of 2 site symmetry. As the occupancy of each refined to nearly 1/2, the occupancies were then fixed as exactly 1/2. The temperature factors of K1 and Rb1 were restrained to be identical.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of a portion of the polymeric structure of K0.5Rb0.5[Ga2Mn(PO4)3(H2O)2] at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The potassium atoms are disordered with respect to the rubidium atoms in a 1:1 ratio. Symmetry codes: (i) x + 1/2, -y + 3/2, z + 1/2; (ii) -x + 1/2, -y + 3/2, -z + 1; (iii) -x + 1, y, -z + 3/2; (iv) -x + 1/2, y + 1/2, -z + 1/2; (v) x + 1/2, y + 1/2, z + 1; (vi) x, -y + 1, z + 1/2; (vii) -x + 1, -y + 1, -z + 1; (viii) x, -y + 1, z - 1/2; (ix) -x, y, -z + 1/2; (x) x - 1/2, -y + 1/2, z - 1/2.

Crystal data

K0.5Rb0.5[Ga2Mn(PO4)3(H2O)2] F(000) = 1104
Mr = 577.61 Dx = 3.256 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4099 reflections
a = 13.5504 (12) Å θ = 2.5–28.6°
b = 10.2965 (9) Å µ = 8.31 mm1
c = 8.9072 (8) Å T = 295 K
β = 108.527 (1)° Block, colorless
V = 1178.34 (18) Å3 0.45 × 0.40 × 0.35 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 1348 independent reflections
Radiation source: fine-focus sealed tube 1239 reflections with I > 2σ(I)
graphite Rint = 0.037
ω scans θmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −17→17
Tmin = 0.118, Tmax = 0.159 k = −13→13
6267 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: difference Fourier map
wR(F2) = 0.065 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0391P)2 + 2.8102P] where P = (Fo2 + 2Fc2)/3
1348 reflections (Δ/σ)max = 0.001
103 parameters Δρmax = 0.63 e Å3
2 restraints Δρmin = −0.75 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Rb1 0.5000 0.86132 (6) 0.7500 0.03306 (18) 0.50
Ga1 0.32950 (2) 0.57498 (3) 0.42741 (3) 0.01061 (11)
Mn1 0.0000 0.28198 (6) 0.2500 0.01443 (15)
K1 0.5000 0.86132 (6) 0.7500 0.03306 (18) 0.50
P1 0.5000 0.49997 (9) 0.7500 0.0106 (2)
P2 0.21012 (6) 0.37336 (7) 0.17422 (8) 0.01171 (16)
O1 0.44106 (16) 0.59068 (19) 0.6149 (2) 0.0150 (4)
O2 0.42851 (16) 0.40472 (19) 0.8014 (2) 0.0154 (4)
O3 0.29213 (16) 0.41300 (18) 0.3344 (2) 0.0146 (4)
O4 0.10038 (17) 0.3988 (2) 0.1749 (3) 0.0198 (4)
O5 0.23416 (16) 0.22845 (19) 0.1603 (2) 0.0156 (4)
O6 0.22740 (16) 0.45222 (19) 0.0373 (2) 0.0148 (4)
O1w −0.11223 (19) 0.3043 (2) 0.0069 (3) 0.0263 (5)
H1 −0.146 (3) 0.237 (3) −0.033 (5) 0.039*
H2 −0.154 (3) 0.366 (3) −0.001 (5) 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rb1 0.0418 (4) 0.0181 (3) 0.0425 (4) 0.000 0.0179 (3) 0.000
Ga1 0.01323 (18) 0.01036 (17) 0.00716 (17) 0.00043 (10) 0.00172 (12) 0.00000 (10)
Mn1 0.0166 (3) 0.0129 (3) 0.0145 (3) 0.000 0.0059 (2) 0.000
K1 0.0418 (4) 0.0181 (3) 0.0425 (4) 0.000 0.0179 (3) 0.000
P1 0.0127 (4) 0.0117 (4) 0.0067 (4) 0.000 0.0021 (3) 0.000
P2 0.0142 (4) 0.0121 (3) 0.0088 (3) −0.0013 (3) 0.0036 (3) −0.0006 (2)
O1 0.0181 (10) 0.0163 (10) 0.0072 (9) −0.0007 (8) −0.0010 (7) 0.0015 (7)
O2 0.0182 (10) 0.0134 (9) 0.0165 (10) −0.0009 (8) 0.0081 (8) 0.0005 (8)
O3 0.0213 (11) 0.0110 (9) 0.0101 (9) −0.0030 (8) 0.0028 (8) −0.0027 (7)
O4 0.0176 (10) 0.0203 (10) 0.0232 (11) 0.0004 (8) 0.0088 (9) 0.0042 (9)
O5 0.0202 (10) 0.0115 (9) 0.0147 (9) −0.0038 (8) 0.0048 (8) −0.0038 (7)
O6 0.0196 (10) 0.0146 (9) 0.0118 (9) 0.0006 (8) 0.0072 (8) 0.0026 (7)
O1w 0.0286 (13) 0.0226 (11) 0.0204 (11) 0.0018 (10) −0.0025 (9) −0.0040 (9)

Geometric parameters (Å, °)

Rb1—O1 3.040 (2) Mn1—O2ix 2.264 (2)
Rb1—O1i 3.040 (2) Mn1—O2x 2.264 (2)
Rb1—O4ii 3.613 (2) Mn1—O4 2.079 (2)
Rb1—O4iii 2.996 (2) Mn1—O4xi 2.079 (2)
Rb1—O4iv 2.996 (2) Mn1—O1w 2.228 (2)
Rb1—O5v 3.555 (2) Mn1—O1wxi 2.228 (2)
Rb1—O5vi 3.555 (2) P1—O1 1.532 (2)
Rb1—O6vii 3.451 (2) P1—O1i 1.532 (2)
Rb1—O6ii 3.451 (2) P1—O2 1.546 (2)
Rb1—O4vii 3.613 (2) P1—O2i 1.546 (2)
Rb1—O1wii 3.178 (3) P2—O4 1.512 (2)
Rb1—O1wvii 3.178 (3) P2—O5 1.541 (2)
Ga1—O1 1.870 (2) P2—O6 1.543 (2)
Ga1—O2viii 2.015 (2) P2—O3 1.558 (2)
Ga1—O3 1.860 (2) O1w—H1 0.84 (3)
Ga1—O5ii 1.850 (2) O1w—H2 0.84 (3)
Ga1—O6vi 1.952 (2)
O4iv—Rb1—O4iii 68.95 (8) O4iii—Rb1—O4ii 95.69 (5)
O4iv—Rb1—O1 138.43 (6) O1—Rb1—O4ii 73.69 (5)
O4iii—Rb1—O1 139.75 (6) O1i—Rb1—O4ii 118.48 (5)
O4iv—Rb1—O1i 139.75 (6) O1wii—Rb1—O4ii 51.14 (5)
O4iii—Rb1—O1i 138.43 (6) O1wvii—Rb1—O4ii 131.83 (5)
O1—Rb1—O1i 47.11 (7) O6vii—Rb1—O4ii 134.28 (5)
O4iv—Rb1—O1wii 68.68 (6) O6ii—Rb1—O4ii 40.88 (5)
O4iii—Rb1—O1wii 131.90 (6) O5vi—Rb1—O4ii 77.00 (5)
O1—Rb1—O1wii 70.81 (6) O5v—Rb1—O4ii 106.30 (5)
O1i—Rb1—O1wii 89.44 (6) O4iv—Rb1—O4vii 95.69 (5)
O4iv—Rb1—O1wvii 131.90 (6) O4iii—Rb1—O4vii 74.01 (6)
O4iii—Rb1—O1wvii 68.68 (6) O1—Rb1—O4vii 118.48 (5)
O1—Rb1—O1wvii 89.44 (6) O1i—Rb1—O4vii 73.69 (5)
O1i—Rb1—O1wvii 70.81 (6) O1wii—Rb1—O4vii 131.83 (5)
O1wii—Rb1—O1wvii 158.73 (9) O1wvii—Rb1—O4vii 51.14 (5)
O4iv—Rb1—O6vii 65.17 (5) O6vii—Rb1—O4vii 40.88 (5)
O4iii—Rb1—O6vii 88.43 (6) O6ii—Rb1—O4vii 134.28 (5)
O1—Rb1—O6vii 127.06 (5) O5vi—Rb1—O4vii 106.30 (5)
O1i—Rb1—O6vii 83.95 (5) O5v—Rb1—O4vii 77.00 (5)
O1wii—Rb1—O6vii 93.74 (5) O4ii—Rb1—O4vii 167.72 (7)
O1wvii—Rb1—O6vii 92.00 (5) O5ii—Ga1—O3 123.61 (9)
O4iv—Rb1—O6ii 88.43 (6) O5ii—Ga1—O1 116.06 (9)
O4iii—Rb1—O6ii 65.17 (5) O3—Ga1—O1 120.26 (9)
O1—Rb1—O6ii 83.95 (5) O5ii—Ga1—O6vi 91.40 (9)
O1i—Rb1—O6ii 127.06 (5) O3—Ga1—O6vi 87.64 (9)
O1wii—Rb1—O6ii 92.00 (5) O1—Ga1—O6vi 93.74 (9)
O1wvii—Rb1—O6ii 93.74 (5) O5ii—Ga1—O2viii 88.85 (8)
O6vii—Rb1—O6ii 148.53 (7) O3—Ga1—O2viii 88.85 (9)
O4iv—Rb1—O5vi 131.58 (5) O1—Ga1—O2viii 89.78 (9)
O4iii—Rb1—O5vi 76.41 (5) O6vi—Ga1—O2viii 175.95 (8)
O1—Rb1—O5vi 63.43 (5) O4—Mn1—O4xi 109.28 (12)
O1i—Rb1—O5vi 88.32 (5) O4—Mn1—O1w 86.67 (9)
O1wii—Rb1—O5vi 118.20 (5) O4xi—Mn1—O1w 86.48 (9)
O1wvii—Rb1—O5vi 55.36 (5) O4—Mn1—O1wxi 86.48 (9)
O6vii—Rb1—O5vi 147.08 (4) O4xi—Mn1—O1wxi 86.67 (9)
O6ii—Rb1—O5vi 45.70 (4) O1w—Mn1—O1wxi 168.14 (13)
O4iv—Rb1—O5v 76.41 (5) O4—Mn1—O2x 157.23 (8)
O4iii—Rb1—O5v 131.58 (6) O4xi—Mn1—O2x 93.49 (8)
O1—Rb1—O5v 88.32 (5) O1w—Mn1—O2x 94.61 (8)
O1i—Rb1—O5v 63.43 (5) O1wxi—Mn1—O2x 95.46 (8)
O1wii—Rb1—O5v 55.36 (5) O4—Mn1—O2ix 93.49 (8)
O1wvii—Rb1—O5v 118.20 (5) O4xi—Mn1—O2ix 157.23 (8)
O6vii—Rb1—O5v 45.70 (4) O1w—Mn1—O2ix 95.46 (8)
O6ii—Rb1—O5v 147.08 (4) O1wxi—Mn1—O2ix 94.61 (8)
O5vi—Rb1—O5v 149.86 (6) O2x—Mn1—O2ix 63.75 (10)
O4iv—Rb1—O4ii 74.01 (6)

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1/2, −y+3/2, −z+1; (iv) x+1/2, −y+3/2, z+1/2; (v) −x+1, −y+1, −z+1; (vi) x, −y+1, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x, −y+1, z−1/2; (ix) −x+1/2, −y+1/2, −z+1; (x) x−1/2, −y+1/2, z−1/2; (xi) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1w—H1···O3x 0.84 (3) 1.97 (2) 2.790 (3) 166 (4)
O1w—H2···O6xii 0.84 (3) 2.10 (2) 2.913 (3) 165 (4)

Symmetry codes: (x) x−1/2, −y+1/2, z−1/2; (xii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2164).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chippindale, A. M., Cowley, A. R. & Bond, A. D. (1998). Acta Cryst. C54, IUC9800061.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681101258X/br2164sup1.cif

e-67-00i30-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681101258X/br2164Isup2.hkl

e-67-00i30-Isup2.hkl (66.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES