Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1094. doi: 10.1107/S1600536811012323

1-(4,6-Dimethyl­pyrimidin-2-yl)-3-(3,5-dinitro­benzo­yl)thio­urea monohydrate

Sohail Saeed a,*, Naghmana Rashid a, Wing-Tak Wong b, Rizwan Hussain c
PMCID: PMC3089191  PMID: 21754414

Abstract

The organic molecule in the title mol­ecule, C14H12N6O5S·H2O, is roughly planar with a maximum deviation of 0.156 (2) Å. An intra­molecular N—H⋯N hydrogen bond occurs. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen-bonding inter­actions connect the mol­ecules into a two-dimensional network that lies parallel to (101).

Related literature

For background to this study and our previous work on the structural chemistry of N,N′-disubstituted thio­urea, see: Saeed et al. (2011).graphic file with name e-67-o1094-scheme1.jpg

Experimental

Crystal data

  • C14H12N6O5S·H2O

  • M r = 394.37

  • Monoclinic, Inline graphic

  • a = 6.7892 (6) Å

  • b = 10.1823 (9) Å

  • c = 24.267 (2) Å

  • β = 92.901 (1)°

  • V = 1675.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 297 K

  • 0.40 × 0.16 × 0.14 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.909, T max = 0.967

  • 9067 measured reflections

  • 2942 independent reflections

  • 2499 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.105

  • S = 1.06

  • 2942 reflections

  • 263 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012323/pv2402sup1.cif

e-67-o1094-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012323/pv2402Isup2.hkl

e-67-o1094-Isup2.hkl (144.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O6 0.88 (2) 1.97 (2) 2.849 (2) 171.9 (19)
N3—H3N⋯N6 0.83 (2) 2.00 (2) 2.705 (2) 141.8 (19)
O6—H6A⋯O3i 0.82 (4) 2.32 (4) 3.119 (3) 168 (4)
O6—H6B⋯O2ii 0.73 (4) 2.44 (4) 3.143 (3) 164 (4)
O6—H6B⋯O1ii 0.73 (4) 2.62 (4) 3.248 (3) 146 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for the allocation of research and analytical laboratory facilities.

supplementary crystallographic information

Comment

The background to this study has been described in our previous work on the structural chemistry of N,N'-disubstituted thiourea (Saeed et al., 2011). In continuation of our studies, the crystal structure of the title compound, is presented in this paper.

In the title molecule (Fig. 1), the nitro groups N1/O1/O2 and N2/O3/O4 are oriented are 5.05 (11) and 9.40 (15)°, respectively, with rest to the mean-plane of the phenyl ring C1—C6. Moreover, the 4,6-dimethyl-pyrimidinyl ring plane, C9—C14/N5/N6, makes a dihedral angle of 1.31 (5)° with the the plane formed by the atoms C7/O5/N3/C8/S1/N4.

The structure is stabilized by intra-molecular N—H···O and N—H···N hydrogen bonding interactions. The inter-molecular hydrogen bonds O—H···O link the molecules into a two dimensinal network (Tab. 1 and Fig. 2).

Experimental

A solution of 3,5-dinitrobenzoyl chloride (0.01 mol) in anhydrous acetone (75 ml) and 3% tetrabutylammonium bromide as a phase-transfer catalyst in anhydrous acetone was added dropwise to a suspension of dry potassium thiocyanate (0.01 mol) in acetone (50 ml) and the reaction mixture was refluxed for 50 min. After cooling to room temperature, a solution of 2-amino-4,6-dimethylpyrimidine (0.01 mol) in anhydrous acetone (25 ml) was added dropwise and the resulting mixture refluxed for 3 h. Hydrochloric acid (0.1 N, 300 ml) was added, and the solution was filtered. The solid product was washed with water and purified by re-crystallization from ethanol.

Refinement

All of the C-bound H atoms were observable from difference Fourier map but were placed at geometrically idealized positions with C—H = 0.93 and 0.96Å for phenyl and methyl H-atoms, respectively. The C-bound H-atoms were refined using riding model with Uiso(H) = 1.2Ueq(C). Both the N– and O-bound H-atoms were located from difference Fourier map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

An ORTEP plot of the title molecule drawn with 50% probability thermal ellipsoids showing the atom numbering scheme.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the a axis.

Crystal data

C14H12N6O5S·H2O F(000) = 816
Mr = 394.37 Dx = 1.563 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 11914 reflections
a = 6.7892 (6) Å θ = 2.0–25.0°
b = 10.1823 (9) Å µ = 0.24 mm1
c = 24.267 (2) Å T = 297 K
β = 92.901 (1)° Prism, yellow
V = 1675.4 (3) Å3 0.40 × 0.16 × 0.14 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 2942 independent reflections
Radiation source: fine-focus sealed tube 2499 reflections with I > 2σ(I)
graphite Rint = 0.020
ω scans θmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −8→8
Tmin = 0.909, Tmax = 0.967 k = −11→12
9067 measured reflections l = −23→28

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.9069P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.003
2942 reflections Δρmax = 0.20 e Å3
263 parameters Δρmin = −0.23 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0044 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.The structure was solved by direct methods (SHELXS97) and expanded using Fourier techniques. All non-H atoms were refined anisotropically.All of the C-bound H atoms are observable from difference Fourier map but are all placed at geometrical positions with C—H = 0.93 and 0.96Å for phenyl and methyl H-atoms. All C-bound H-atoms are refined using riding model with Uiso(H) = 1.2Ueq(Carrier). Both the N– and O-bound H-atoms were located from difference Fourier map and refined isotropically.Highest peak is 0.20 at (0.0792, 0.5848, 0.1447) [0.83Å from Hl4C] Deepest hole is -0.23 at (0.0397, 0.8302, 0.0937) [0.74Å from Sl]

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.64692 (10) 0.68130 (5) 0.59394 (2) 0.05020 (19)
O1 0.9131 (3) 0.89155 (18) 0.30790 (8) 0.0777 (6)
O2 1.0041 (4) 0.7610 (2) 0.24468 (8) 0.0851 (7)
O3 0.9757 (3) 0.29505 (18) 0.27197 (7) 0.0759 (6)
O4 0.8719 (4) 0.21594 (17) 0.34703 (7) 0.0802 (6)
O5 0.7636 (3) 0.73999 (15) 0.48300 (6) 0.0608 (5)
O6 0.5934 (4) 0.4521 (2) 0.70525 (8) 0.0692 (6)
H6A 0.561 (5) 0.395 (4) 0.7269 (16) 0.108 (14)*
H6B 0.569 (6) 0.512 (4) 0.7202 (16) 0.108 (15)*
N1 0.9439 (3) 0.7823 (2) 0.29029 (8) 0.0563 (5)
N2 0.9151 (3) 0.30735 (18) 0.31844 (8) 0.0519 (5)
N3 0.7393 (2) 0.52460 (16) 0.50834 (6) 0.0338 (4)
H3N 0.753 (3) 0.447 (2) 0.4988 (8) 0.035 (6)*
N4 0.6648 (2) 0.42786 (15) 0.59103 (7) 0.0354 (4)
H4N 0.632 (3) 0.440 (2) 0.6254 (10) 0.037 (5)*
N5 0.6445 (3) 0.21615 (16) 0.61919 (7) 0.0405 (4)
N6 0.7339 (2) 0.26275 (15) 0.52709 (6) 0.0346 (4)
C1 0.8532 (3) 0.6919 (2) 0.37878 (8) 0.0395 (5)
H1 0.8383 0.7775 0.3913 0.047*
C2 0.9061 (3) 0.6685 (2) 0.32582 (8) 0.0416 (5)
C3 0.9278 (3) 0.5444 (2) 0.30505 (8) 0.0437 (5)
H3 0.9645 0.5305 0.2691 0.052*
C4 0.8928 (3) 0.4414 (2) 0.33990 (8) 0.0399 (5)
C5 0.8407 (3) 0.45841 (19) 0.39404 (8) 0.0363 (4)
H5 0.8188 0.3865 0.4166 0.044*
C6 0.8221 (3) 0.58592 (19) 0.41368 (8) 0.0341 (4)
C7 0.7720 (3) 0.62534 (18) 0.47127 (8) 0.0362 (4)
C8 0.6868 (3) 0.54090 (18) 0.56219 (8) 0.0330 (4)
C9 0.6830 (3) 0.29543 (18) 0.57718 (8) 0.0331 (4)
C10 0.6548 (3) 0.0876 (2) 0.60875 (8) 0.0417 (5)
C11 0.7017 (3) 0.04196 (19) 0.55717 (8) 0.0429 (5)
H11 0.7055 −0.0477 0.5499 0.051*
C12 0.7424 (3) 0.13190 (19) 0.51685 (8) 0.0371 (4)
C13 0.7985 (4) 0.0930 (2) 0.46069 (8) 0.0496 (6)
H13A 0.9262 0.1281 0.4539 0.060*
H13B 0.7032 0.1269 0.4338 0.060*
H13C 0.8021 −0.0010 0.4581 0.060*
C14 0.6125 (4) −0.0021 (2) 0.65554 (9) 0.0600 (7)
H14A 0.6208 0.0462 0.6895 0.072*
H14B 0.7073 −0.0722 0.6573 0.072*
H14C 0.4824 −0.0381 0.6498 0.072*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0823 (4) 0.0302 (3) 0.0389 (3) 0.0073 (2) 0.0114 (3) −0.0046 (2)
O1 0.1246 (17) 0.0442 (10) 0.0658 (12) −0.0034 (10) 0.0201 (11) 0.0142 (9)
O2 0.1375 (18) 0.0706 (13) 0.0507 (11) −0.0010 (12) 0.0386 (11) 0.0165 (9)
O3 0.1253 (16) 0.0596 (11) 0.0457 (10) 0.0000 (10) 0.0324 (10) −0.0116 (8)
O4 0.1496 (19) 0.0412 (9) 0.0524 (11) −0.0108 (11) 0.0316 (11) −0.0044 (8)
O5 0.1047 (13) 0.0309 (8) 0.0490 (9) −0.0032 (8) 0.0266 (9) −0.0014 (7)
O6 0.1083 (16) 0.0545 (11) 0.0466 (10) 0.0065 (11) 0.0221 (10) −0.0072 (9)
N1 0.0725 (14) 0.0516 (12) 0.0452 (11) −0.0031 (10) 0.0085 (10) 0.0142 (9)
N2 0.0741 (13) 0.0450 (11) 0.0374 (10) −0.0029 (9) 0.0101 (9) −0.0037 (8)
N3 0.0430 (9) 0.0269 (8) 0.0320 (8) 0.0018 (7) 0.0057 (7) −0.0014 (7)
N4 0.0495 (10) 0.0294 (8) 0.0278 (8) 0.0022 (7) 0.0070 (7) −0.0019 (6)
N5 0.0561 (10) 0.0331 (9) 0.0327 (9) −0.0012 (7) 0.0063 (7) 0.0004 (7)
N6 0.0429 (9) 0.0296 (8) 0.0315 (8) 0.0024 (7) 0.0038 (7) −0.0008 (7)
C1 0.0421 (11) 0.0363 (11) 0.0403 (11) −0.0004 (8) 0.0036 (9) 0.0033 (8)
C2 0.0458 (11) 0.0443 (12) 0.0349 (11) −0.0030 (9) 0.0042 (9) 0.0102 (9)
C3 0.0495 (12) 0.0506 (12) 0.0316 (10) −0.0043 (10) 0.0071 (9) 0.0013 (9)
C4 0.0459 (11) 0.0409 (11) 0.0330 (10) −0.0012 (9) 0.0036 (8) −0.0025 (8)
C5 0.0390 (10) 0.0375 (10) 0.0325 (10) −0.0035 (8) 0.0033 (8) 0.0020 (8)
C6 0.0337 (10) 0.0364 (10) 0.0323 (10) −0.0009 (8) 0.0025 (7) 0.0020 (8)
C7 0.0409 (11) 0.0305 (10) 0.0374 (10) −0.0013 (8) 0.0041 (8) −0.0001 (8)
C8 0.0351 (10) 0.0317 (9) 0.0321 (10) 0.0014 (8) 0.0013 (8) −0.0011 (8)
C9 0.0369 (10) 0.0304 (9) 0.0320 (10) 0.0008 (8) 0.0023 (8) 0.0002 (8)
C10 0.0557 (12) 0.0342 (10) 0.0353 (10) −0.0034 (9) 0.0044 (9) 0.0017 (8)
C11 0.0602 (13) 0.0287 (10) 0.0403 (11) 0.0009 (9) 0.0073 (9) −0.0020 (8)
C12 0.0438 (11) 0.0326 (10) 0.0350 (10) 0.0028 (8) 0.0031 (8) −0.0024 (8)
C13 0.0744 (15) 0.0351 (11) 0.0403 (12) 0.0044 (10) 0.0132 (11) −0.0043 (9)
C14 0.105 (2) 0.0363 (12) 0.0400 (12) −0.0073 (12) 0.0160 (12) 0.0025 (10)

Geometric parameters (Å, °)

S1—C8 1.6528 (19) C1—C6 1.395 (3)
O1—N1 1.213 (3) C1—H1 0.9300
O2—N1 1.218 (3) C2—C3 1.372 (3)
O3—N2 1.226 (2) C3—C4 1.375 (3)
O4—N2 1.206 (2) C3—H3 0.9300
O5—C7 1.204 (2) C4—C5 1.389 (3)
O6—H6A 0.82 (4) C5—C6 1.391 (3)
O6—H6B 0.73 (4) C5—H5 0.9300
N1—C2 1.475 (3) C6—C7 1.509 (3)
N2—C4 1.472 (3) C10—C11 1.387 (3)
N3—C8 1.382 (2) C10—C14 1.496 (3)
N3—C7 1.390 (2) C11—C12 1.379 (3)
N3—H3N 0.83 (2) C11—H11 0.9300
N4—C8 1.359 (2) C12—C13 1.487 (3)
N4—C9 1.397 (2) C13—H13A 0.9600
N4—H4N 0.88 (2) C13—H13B 0.9600
N5—C9 1.337 (2) C13—H13C 0.9600
N5—C10 1.336 (3) C14—H14A 0.9600
N6—C9 1.323 (2) C14—H14B 0.9600
N6—C12 1.357 (2) C14—H14C 0.9600
C1—C2 1.373 (3)
H6A—O6—H6B 101 (4) C1—C6—C7 113.88 (17)
O1—N1—O2 123.7 (2) O5—C7—N3 123.49 (18)
O1—N1—C2 118.43 (19) O5—C7—C6 119.51 (17)
O2—N1—C2 117.9 (2) N3—C7—C6 117.00 (16)
O4—N2—O3 123.56 (19) N4—C8—N3 115.18 (16)
O4—N2—C4 118.69 (17) N4—C8—S1 117.87 (14)
O3—N2—C4 117.75 (18) N3—C8—S1 126.94 (14)
C8—N3—C7 125.51 (17) N6—C9—N5 128.26 (17)
C8—N3—H3N 114.5 (14) N6—C9—N4 119.63 (16)
C7—N3—H3N 119.9 (14) N5—C9—N4 112.11 (16)
C8—N4—C9 132.86 (16) N5—C10—C11 121.06 (18)
C8—N4—H4N 114.2 (14) N5—C10—C14 116.15 (18)
C9—N4—H4N 112.9 (14) C11—C10—C14 122.79 (19)
C9—N5—C10 115.67 (17) C12—C11—C10 118.78 (18)
C9—N6—C12 115.51 (16) C12—C11—H11 120.6
C2—C1—C6 119.31 (19) C10—C11—H11 120.6
C2—C1—H1 120.3 N6—C12—C11 120.68 (17)
C6—C1—H1 120.3 N6—C12—C13 116.40 (17)
C1—C2—C3 122.81 (18) C11—C12—C13 122.92 (18)
C1—C2—N1 118.21 (19) C12—C13—H13A 109.5
C3—C2—N1 118.97 (18) C12—C13—H13B 109.5
C2—C3—C4 116.83 (18) H13A—C13—H13B 109.5
C2—C3—H3 121.6 C12—C13—H13C 109.5
C4—C3—H3 121.6 H13A—C13—H13C 109.5
C3—C4—C5 123.19 (19) H13B—C13—H13C 109.5
C3—C4—N2 117.74 (17) C10—C14—H14A 109.5
C5—C4—N2 119.06 (17) C10—C14—H14B 109.5
C4—C5—C6 118.16 (17) H14A—C14—H14B 109.5
C4—C5—H5 120.9 C10—C14—H14C 109.5
C6—C5—H5 120.9 H14A—C14—H14C 109.5
C5—C6—C1 119.68 (17) H14B—C14—H14C 109.5
C5—C6—C7 126.44 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4N···O6 0.88 (2) 1.97 (2) 2.849 (2) 171.9 (19)
N3—H3N···N6 0.83 (2) 2.00 (2) 2.705 (2) 141.8 (19)
O6—H6A···O3i 0.82 (4) 2.32 (4) 3.119 (3) 168 (4)
O6—H6B···O2ii 0.73 (4) 2.44 (4) 3.143 (3) 164 (4)
O6—H6B···O1ii 0.73 (4) 2.62 (4) 3.248 (3) 146 (4)

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2402).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Bruker (2007). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  4. Saeed, S., Rashid, N., Jones, P. G. & Tahir, A. (2011). J. Heterocycl. Chem. 48, 74–84.
  5. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012323/pv2402sup1.cif

e-67-o1094-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012323/pv2402Isup2.hkl

e-67-o1094-Isup2.hkl (144.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES