Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1175–o1176. doi: 10.1107/S1600536811013900

4-{2-[2-(4-Chloro­benzyl­idene)hydrazinyl­idene]-3,6-dihydro-2H-1,3,4-thia­diazin-5-yl}-3-(4-meth­oxy­phen­yl)sydnone

Hoong-Kun Fun a,*,, Wan-Sin Loh a,§, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3089192  PMID: 21754480

Abstract

The title compound, C19H15ClN6O3S, exists in trans and cis configurations with respect to the acyclic C=N bonds. The 3,6-dihydro-2H-1,3,4-thia­diazine ring adopts a half-boat conformation. The sydnone ring is approximately planar [maximum deviation = 0.013 (1) Å] and forms dihedral angles of 34.76 (4) and 48.67 (4)° with the benzene rings. An intra­molecular C—H⋯O hydrogen bond stabilizes the mol­ecular structure and forms an S(6) ring motif. In the crystal packing, inter­molecular N—H⋯N hydrogen bonds link centrosymmetrically related mol­ecules into dimers, generating R 2 2(8) ring motifs. The dimers are then linked into a three-dimensional network by inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds, and by C—H⋯π inter­actions. Further stabilization is provided by π–π inter­actions involving the sydnone rings, with centroid–centroid separations of 3.4198 (5) Å.

Related literature

For background to and the biological activity of sydnones, see: Baker et al. (1949); Hedge et al. (2008); Rai et al. (2008); Kalluraya et al. (2003). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2010, 2011). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o1175-scheme1.jpg

Experimental

Crystal data

  • C19H15ClN6O3S

  • M r = 442.88

  • Monoclinic, Inline graphic

  • a = 7.2322 (2) Å

  • b = 22.7311 (6) Å

  • c = 12.9299 (3) Å

  • β = 114.426 (1)°

  • V = 1935.37 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.56 × 0.33 × 0.19 mm

Data collection

  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.832, T max = 0.937

  • 38523 measured reflections

  • 10172 independent reflections

  • 8764 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.088

  • S = 1.03

  • 10172 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013900/rz2581sup1.cif

e-67-o1175-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013900/rz2581Isup2.hkl

e-67-o1175-Isup2.hkl (497.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the N3/N4/C10/C9/S1 thia­diazine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯N2i 0.88 2.00 2.8841 (9) 174
C1—H1A⋯O2ii 0.93 2.59 3.4898 (10) 162
C9—H9B⋯O2 0.97 2.41 3.0433 (10) 123
C18—H18A⋯Cl1iii 0.93 2.77 3.6978 (7) 173
C19—H19BCg2iv 0.96 2.79 3.5792 (11) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship.

supplementary crystallographic information

Comment

Sydnones constitute a well defined class of mesoionic compounds consisting of the 1,2,3-oxadiazole ring system. The introduction of the concept of mesoionic structure for certain heterocyclic compounds in the year 1949 has proved to be a fruitful development in heterocyclic chemistry (Baker et al., 1949). The study of sydnones still remains a field of interest because of their electronic structures and also because of the various types of biological activities displayed by some of them. Interest in sydnone derivatives has also been encouraged by the discovery that they exhibit various pharmacological activities (Hedge et al., 2008; Rai et al., 2008).

Encouraged by these reports and in continuation of our research for biologically active nitrogen containing heterocycles, a thiadiazine moiety at the 4-position of the phenylsydnone was introduced. The title compound was synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with N'-[(4-chlorohlorophenyl)methylidene]thiocarbonohydrazide. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

The title compound (Fig. 1) exists in trans and cis configurations with respect to the acyclic C7═N1 and C8═N2 bonds [C7═N1 = 1.2842 (9) Å and C8═N2 = 1.3061 (9) Å], respectively. The 3,6-dihydro-2H-1,3,4-thiadiazine ring (N3/N4/C10/C9/S1) adopts a half-boat conformation with the puckering parameters (Cremer & Pople, 1975), Q = 0.5322 (7) Å, Θ = 108.60 (8)°, φ = 136.74 (8)°. The sydnone ring (N5/N6/O1/C12/C11) is approximately planar with a maximum deviation of 0.013 (1) Å at atom C12 and forms dihedral angles of 34.76 (4) and 48.67 (4)° with the benzene rings (C1–C6 and C13–C18), respectively. An intramolecular C9—H9B···O2 hydrogen bond (Table 1) stabilizes the molecular structure and forms an S(6) ring motif (Bernstein et al., 1995). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Fun et al., 2010; Fun et al., 2011).

In the crystal packing (Fig. 2), intermolecular N3—H1···N2 hydrogen bonds (Table 1) link centrosymmetrically related molecules to form dimers, generating R22(8) ring motifs (Bernstein et al., 1995). The dimers are then linked into a three-dimensional network by intermolecular C1—H1A···O2 and C18—H18A···Cl1 hydrogen bonds (Table 1) and stabilized by C—H···π interactions. The crystal structure is further consolidated by π–π interactions (Table 1), involving the sydnone rings (Cg1) with centroid-to-centroid separations Cg1···Cg1v = 3.4198 (5) Å [symmetry code: (v) 2 - x,2 - y,1 - z].

Experimental

To a solution of 4-bromoacetyl-3-(4-anisyl)sydnone (0.01 mol) and N'-(4-chlorophenyl)methylidene]thiocarbonohydrazide (0.01 mol) in ethanol, a catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2 to 3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained by slow evaporation of a DMF/ethanol solution (1:2 v/v).

Refinement

H1 was located from the difference Fourier map and was fixed at its found position with Uiso(H) = 1.2 Ueq(N) [N–H = 0.88 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the intramolecular bond.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C19H15ClN6O3S F(000) = 912
Mr = 442.88 Dx = 1.520 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9060 reflections
a = 7.2322 (2) Å θ = 3.5–37.6°
b = 22.7311 (6) Å µ = 0.34 mm1
c = 12.9299 (3) Å T = 100 K
β = 114.426 (1)° Block, red
V = 1935.37 (9) Å3 0.56 × 0.33 × 0.19 mm
Z = 4

Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 10172 independent reflections
Radiation source: fine-focus sealed tube 8764 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 37.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→12
Tmin = 0.832, Tmax = 0.937 k = −37→38
38523 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.4618P] where P = (Fo2 + 2Fc2)/3
10172 reflections (Δ/σ)max = 0.003
272 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.20673 (3) 0.599009 (8) −0.296760 (19) 0.02044 (4)
S1 0.27993 (3) 0.865504 (7) 0.177439 (15) 0.01416 (4)
O1 0.86209 (8) 0.99555 (2) 0.58612 (4) 0.01533 (9)
O2 0.69250 (10) 0.90827 (3) 0.56018 (5) 0.01973 (10)
O3 0.62847 (10) 1.19710 (2) 0.08415 (5) 0.01920 (10)
N1 −0.02123 (10) 0.86024 (3) −0.03458 (5) 0.01436 (10)
N2 0.00267 (10) 0.91926 (3) −0.00409 (5) 0.01412 (10)
N3 0.16911 (9) 0.98004 (3) 0.14755 (5) 0.01379 (9)
H1 0.1098 1.0093 0.1006 0.017*
N4 0.34093 (9) 0.99876 (3) 0.23756 (5) 0.01274 (9)
N5 0.72206 (9) 1.03311 (3) 0.42028 (5) 0.01207 (9)
N6 0.86571 (10) 1.04359 (3) 0.52215 (5) 0.01467 (10)
C1 −0.20026 (12) 0.77461 (3) −0.29399 (6) 0.01656 (12)
H1A −0.2271 0.8050 −0.3464 0.020*
C2 −0.22174 (12) 0.71639 (3) −0.33105 (6) 0.01765 (12)
H2A −0.2614 0.7077 −0.4075 0.021*
C3 −0.18281 (11) 0.67161 (3) −0.25156 (6) 0.01502 (11)
C4 −0.12243 (11) 0.68343 (3) −0.13639 (6) 0.01594 (11)
H4A −0.0979 0.6529 −0.0845 0.019*
C5 −0.09958 (11) 0.74165 (3) −0.10043 (6) 0.01524 (11)
H5A −0.0579 0.7501 −0.0237 0.018*
C6 −0.13877 (11) 0.78790 (3) −0.17873 (6) 0.01341 (10)
C7 −0.11200 (11) 0.84940 (3) −0.14139 (6) 0.01443 (11)
H7A −0.1597 0.8799 −0.1938 0.017*
C8 0.13666 (10) 0.92500 (3) 0.10070 (6) 0.01224 (10)
C9 0.37326 (12) 0.89915 (3) 0.31690 (6) 0.01527 (11)
H9A 0.2663 0.8990 0.3437 0.018*
H9B 0.4857 0.8761 0.3696 0.018*
C10 0.44244 (10) 0.96112 (3) 0.31486 (6) 0.01225 (10)
C11 0.62297 (10) 0.98132 (3) 0.41035 (6) 0.01216 (10)
C12 0.71662 (11) 0.95431 (3) 0.51973 (6) 0.01398 (11)
C13 0.69885 (10) 1.07654 (3) 0.33459 (6) 0.01235 (10)
C14 0.68466 (12) 1.13502 (3) 0.35876 (6) 0.01581 (11)
H14A 0.6883 1.1460 0.4289 0.019*
C15 0.66483 (12) 1.17767 (3) 0.27707 (7) 0.01669 (12)
H15A 0.6581 1.2173 0.2928 0.020*
C16 0.65519 (11) 1.16009 (3) 0.17168 (6) 0.01458 (11)
C17 0.67298 (12) 1.10052 (3) 0.14935 (6) 0.01655 (12)
H17A 0.6690 1.0892 0.0793 0.020*
C18 0.69642 (12) 1.05866 (3) 0.23103 (6) 0.01542 (11)
H18A 0.7104 1.0191 0.2172 0.019*
C19 0.61977 (13) 1.25837 (3) 0.10431 (8) 0.02065 (13)
H19A 0.5968 1.2798 0.0361 0.031*
H19B 0.7459 1.2707 0.1638 0.031*
H19C 0.5108 1.2659 0.1266 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02240 (8) 0.01084 (7) 0.03075 (9) −0.00245 (5) 0.01366 (7) −0.00500 (6)
S1 0.01632 (7) 0.00916 (6) 0.01430 (7) 0.00094 (5) 0.00364 (6) −0.00035 (5)
O1 0.0158 (2) 0.0165 (2) 0.01175 (19) 0.00025 (17) 0.00369 (17) 0.00065 (16)
O2 0.0252 (3) 0.0156 (2) 0.0162 (2) −0.00022 (19) 0.0064 (2) 0.00420 (18)
O3 0.0257 (3) 0.0128 (2) 0.0186 (2) −0.00033 (19) 0.0087 (2) 0.00338 (18)
N1 0.0161 (2) 0.0102 (2) 0.0146 (2) −0.00112 (18) 0.00425 (19) −0.00205 (17)
N2 0.0163 (2) 0.0099 (2) 0.0132 (2) −0.00053 (18) 0.00306 (19) −0.00127 (17)
N3 0.0150 (2) 0.0094 (2) 0.0127 (2) 0.00004 (17) 0.00144 (18) −0.00074 (17)
N4 0.0135 (2) 0.0108 (2) 0.0118 (2) −0.00057 (17) 0.00305 (18) −0.00070 (17)
N5 0.0124 (2) 0.0115 (2) 0.0114 (2) −0.00024 (17) 0.00396 (17) −0.00076 (17)
N6 0.0152 (2) 0.0152 (2) 0.0117 (2) −0.00103 (19) 0.00366 (19) −0.00106 (18)
C1 0.0208 (3) 0.0119 (3) 0.0134 (3) −0.0007 (2) 0.0035 (2) −0.0005 (2)
C2 0.0218 (3) 0.0133 (3) 0.0156 (3) −0.0015 (2) 0.0056 (2) −0.0025 (2)
C3 0.0144 (3) 0.0103 (2) 0.0202 (3) −0.0011 (2) 0.0071 (2) −0.0021 (2)
C4 0.0176 (3) 0.0116 (2) 0.0188 (3) 0.0002 (2) 0.0077 (2) 0.0014 (2)
C5 0.0175 (3) 0.0125 (2) 0.0146 (3) 0.0001 (2) 0.0056 (2) 0.0005 (2)
C6 0.0137 (3) 0.0105 (2) 0.0137 (2) −0.00017 (19) 0.0034 (2) −0.00092 (19)
C7 0.0159 (3) 0.0108 (2) 0.0137 (2) −0.0004 (2) 0.0032 (2) −0.00090 (19)
C8 0.0131 (2) 0.0100 (2) 0.0127 (2) −0.00038 (19) 0.0044 (2) −0.00029 (18)
C9 0.0185 (3) 0.0112 (2) 0.0134 (2) −0.0021 (2) 0.0039 (2) 0.0007 (2)
C10 0.0132 (2) 0.0105 (2) 0.0120 (2) −0.00038 (19) 0.0041 (2) −0.00019 (18)
C11 0.0130 (2) 0.0108 (2) 0.0116 (2) 0.00004 (19) 0.00400 (19) 0.00039 (18)
C12 0.0148 (3) 0.0137 (3) 0.0122 (2) 0.0012 (2) 0.0045 (2) 0.00047 (19)
C13 0.0139 (2) 0.0103 (2) 0.0126 (2) −0.00055 (19) 0.0052 (2) −0.00006 (19)
C14 0.0207 (3) 0.0117 (2) 0.0157 (3) −0.0002 (2) 0.0082 (2) −0.0019 (2)
C15 0.0216 (3) 0.0106 (2) 0.0184 (3) 0.0005 (2) 0.0088 (2) −0.0007 (2)
C16 0.0156 (3) 0.0116 (2) 0.0162 (3) −0.0006 (2) 0.0061 (2) 0.0010 (2)
C17 0.0238 (3) 0.0123 (3) 0.0157 (3) −0.0014 (2) 0.0103 (2) −0.0010 (2)
C18 0.0219 (3) 0.0107 (2) 0.0153 (3) −0.0008 (2) 0.0094 (2) −0.0013 (2)
C19 0.0221 (3) 0.0127 (3) 0.0274 (4) −0.0001 (2) 0.0105 (3) 0.0042 (2)

Geometric parameters (Å, °)

Cl1—C3 1.7353 (7) C4—C5 1.3897 (10)
S1—C8 1.7426 (7) C4—H4A 0.9300
S1—C9 1.8125 (7) C5—C6 1.4047 (10)
O1—N6 1.3767 (8) C5—H5A 0.9300
O1—C12 1.4055 (9) C6—C7 1.4653 (9)
O2—C12 1.2145 (9) C7—H7A 0.9300
O3—C16 1.3582 (9) C9—C10 1.4988 (9)
O3—C19 1.4231 (10) C9—H9A 0.9700
N1—C7 1.2842 (9) C9—H9B 0.9700
N1—N2 1.3887 (8) C10—C11 1.4514 (10)
N2—C8 1.3061 (9) C11—C12 1.4295 (9)
N3—C8 1.3675 (9) C13—C14 1.3790 (9)
N3—N4 1.3724 (8) C13—C18 1.3924 (9)
N3—H1 0.8830 C14—C15 1.3968 (10)
N4—C10 1.2896 (9) C14—H14A 0.9300
N5—N6 1.3188 (8) C15—C16 1.3939 (10)
N5—C11 1.3564 (9) C15—H15A 0.9300
N5—C13 1.4411 (9) C16—C17 1.4017 (10)
C1—C2 1.3942 (10) C17—C18 1.3788 (10)
C1—C6 1.4007 (10) C17—H17A 0.9300
C1—H1A 0.9300 C18—H18A 0.9300
C2—C3 1.3902 (11) C19—H19A 0.9600
C2—H2A 0.9300 C19—H19B 0.9600
C3—C4 1.3938 (11) C19—H19C 0.9600
C8—S1—C9 97.36 (3) C10—C9—H9A 109.3
N6—O1—C12 110.94 (5) S1—C9—H9A 109.3
C16—O3—C19 117.09 (6) C10—C9—H9B 109.3
C7—N1—N2 116.04 (6) S1—C9—H9B 109.3
C8—N2—N1 110.05 (6) H9A—C9—H9B 108.0
C8—N3—N4 126.06 (6) N4—C10—C11 118.23 (6)
C8—N3—H1 116.0 N4—C10—C9 123.36 (6)
N4—N3—H1 111.2 C11—C10—C9 118.15 (6)
C10—N4—N3 118.51 (6) N5—C11—C12 105.27 (6)
N6—N5—C11 114.74 (6) N5—C11—C10 127.54 (6)
N6—N5—C13 115.93 (6) C12—C11—C10 126.68 (6)
C11—N5—C13 129.25 (6) O2—C12—O1 121.08 (6)
N5—N6—O1 104.71 (5) O2—C12—C11 134.63 (7)
C2—C1—C6 120.77 (7) O1—C12—C11 104.28 (6)
C2—C1—H1A 119.6 C14—C13—C18 121.78 (6)
C6—C1—H1A 119.6 C14—C13—N5 118.81 (6)
C3—C2—C1 118.77 (7) C18—C13—N5 119.38 (6)
C3—C2—H2A 120.6 C13—C14—C15 119.45 (6)
C1—C2—H2A 120.6 C13—C14—H14A 120.3
C2—C3—C4 121.79 (6) C15—C14—H14A 120.3
C2—C3—Cl1 119.07 (6) C16—C15—C14 119.24 (6)
C4—C3—Cl1 119.13 (5) C16—C15—H15A 120.4
C5—C4—C3 118.85 (6) C14—C15—H15A 120.4
C5—C4—H4A 120.6 O3—C16—C15 124.71 (6)
C3—C4—H4A 120.6 O3—C16—C17 114.86 (6)
C4—C5—C6 120.73 (7) C15—C16—C17 120.43 (6)
C4—C5—H5A 119.6 C18—C17—C16 120.11 (6)
C6—C5—H5A 119.6 C18—C17—H17A 119.9
C1—C6—C5 119.08 (6) C16—C17—H17A 119.9
C1—C6—C7 119.79 (6) C17—C18—C13 118.94 (6)
C5—C6—C7 121.11 (6) C17—C18—H18A 120.5
N1—C7—C6 118.46 (6) C13—C18—H18A 120.5
N1—C7—H7A 120.8 O3—C19—H19A 109.5
C6—C7—H7A 120.8 O3—C19—H19B 109.5
N2—C8—N3 117.95 (6) H19A—C19—H19B 109.5
N2—C8—S1 121.64 (5) O3—C19—H19C 109.5
N3—C8—S1 120.34 (5) H19A—C19—H19C 109.5
C10—C9—S1 111.64 (5) H19B—C19—H19C 109.5
C7—N1—N2—C8 −164.75 (7) C13—N5—C11—C12 175.91 (6)
C8—N3—N4—C10 −31.43 (10) N6—N5—C11—C10 171.22 (6)
C11—N5—N6—O1 −0.60 (8) C13—N5—C11—C10 −11.96 (11)
C13—N5—N6—O1 −177.86 (5) N4—C10—C11—N5 −12.74 (10)
C12—O1—N6—N5 1.94 (7) C9—C10—C11—N5 172.88 (6)
C6—C1—C2—C3 0.59 (12) N4—C10—C11—C12 157.77 (7)
C1—C2—C3—C4 −0.26 (11) C9—C10—C11—C12 −16.60 (10)
C1—C2—C3—Cl1 −179.36 (6) N6—O1—C12—O2 178.68 (7)
C2—C3—C4—C5 −0.40 (11) N6—O1—C12—C11 −2.46 (7)
Cl1—C3—C4—C5 178.71 (6) N5—C11—C12—O2 −179.41 (8)
C3—C4—C5—C6 0.72 (11) C10—C11—C12—O2 8.38 (13)
C2—C1—C6—C5 −0.27 (11) N5—C11—C12—O1 1.97 (7)
C2—C1—C6—C7 178.37 (7) C10—C11—C12—O1 −170.25 (6)
C4—C5—C6—C1 −0.40 (11) N6—N5—C13—C14 −49.70 (9)
C4—C5—C6—C7 −179.03 (7) C11—N5—C13—C14 133.51 (8)
N2—N1—C7—C6 179.07 (6) N6—N5—C13—C18 128.71 (7)
C1—C6—C7—N1 −167.55 (7) C11—N5—C13—C18 −48.07 (10)
C5—C6—C7—N1 11.07 (11) C18—C13—C14—C15 0.78 (11)
N1—N2—C8—N3 −175.58 (6) N5—C13—C14—C15 179.15 (7)
N1—N2—C8—S1 7.51 (8) C13—C14—C15—C16 1.44 (11)
N4—N3—C8—N2 −157.12 (7) C19—O3—C16—C15 3.20 (11)
N4—N3—C8—S1 19.84 (9) C19—O3—C16—C17 −176.93 (7)
C9—S1—C8—N2 −165.71 (6) C14—C15—C16—O3 177.44 (7)
C9—S1—C8—N3 17.44 (6) C14—C15—C16—C17 −2.43 (11)
C8—S1—C9—C10 −44.06 (6) O3—C16—C17—C18 −178.67 (7)
N3—N4—C10—C11 −179.45 (6) C15—C16—C17—C18 1.21 (12)
N3—N4—C10—C9 −5.39 (10) C16—C17—C18—C13 0.99 (12)
S1—C9—C10—N4 44.63 (9) C14—C13—C18—C17 −2.00 (11)
S1—C9—C10—C11 −141.30 (5) N5—C13—C18—C17 179.63 (7)
N6—N5—C11—C12 −0.91 (8)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the N3/N4/C10/C9/S1 thiadiazine ring.
D—H···A D—H H···A D···A D—H···A
N3—H1···N2i 0.88 2.00 2.8841 (9) 174
C1—H1A···O2ii 0.93 2.59 3.4898 (10) 162
C9—H9B···O2 0.97 2.41 3.0433 (10) 123
C18—H18A···Cl1iii 0.93 2.77 3.6978 (7) 173
C19—H19B···Cg2iv 0.96 2.79 3.5792 (11) 140

Symmetry codes: (i) −x, −y+2, −z; (ii) x−1, y, z−1; (iii) x+1, −y+3/2, z+1/2; (iv) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2581).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Baker, W., Ollis, W. D. & Poole, V. D. (1949). J. Chem. Soc. pp. 307–314.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Fun, H.-K., Loh, W.-S., Nithinchandra,, Kalluraya, B. & Nayak, S. P. (2010). Acta Cryst. E66, o2367–o2368. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o977–o978. [DOI] [PMC free article] [PubMed]
  9. Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834. [DOI] [PubMed]
  10. Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355–356.
  11. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013900/rz2581sup1.cif

e-67-o1175-sup1.cif (22.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013900/rz2581Isup2.hkl

e-67-o1175-Isup2.hkl (497.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES