Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1093. doi: 10.1107/S1600536811012748

3-Methyl-6-trichloro­methyl-1,2,4-triazolo[3,4-b][1,3,4]thia­diazole

Wei-min Jia a, Zhi-jian Wang a,*, Xiao-yu Jia b, Jing-jing Zhang b, Wei Wang a,b
PMCID: PMC3089198  PMID: 21754413

Abstract

In the crystal structure of the title compound, C5H3Cl3N4S, two mol­ecules related by a centre of symmetry demonstrate extremely short inter­molecular S⋯N contacts of 2.783 (2) Å. The crystal packing also exhibits π–π inter­actions indicated by a short distance of 3.340 (1) Å between the centroids of the triazole rings of neighbouring mol­ecules.

Related literature

For the anti­microbial and anti-inflammatory activity of 1,2,4-triazole and 1,3,4-thio­diazole derivatives, see: Karabasanagouda et al. (2007); Mathew et al. (2007); For related structures, see: Du et al. (2008); Khan et al. (2009); Haugwitz et al. (1977). graphic file with name e-67-o1093-scheme1.jpg

Experimental

Crystal data

  • C5H3Cl3N4S

  • M r = 257.52

  • Monoclinic, Inline graphic

  • a = 5.8732 (12) Å

  • b = 9.4164 (19) Å

  • c = 16.750 (3) Å

  • β = 91.82 (3)°

  • V = 925.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 153 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.721, T max = 0.892

  • 9841 measured reflections

  • 2196 independent reflections

  • 1934 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.113

  • S = 1.24

  • 2196 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012748/cv5070sup1.cif

e-67-o1093-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012748/cv5070Isup2.hkl

e-67-o1093-Isup2.hkl (108KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support by the Key Laboratory Project of Liaoning Province (grant No. 2008S127) and the Doctor Starting Foundation of Liaoning Province (grant No. 20071103).

supplementary crystallographic information

Comment

1,2,4-Triazole and 1,3,4-thiodiazole derivatives demonstrate various activities such as antimicrobial (Karabasanagouda et al., 2007) and anti-inflammatory (Mathew et al., 2007) activities. Herewith we report the synthesis and crystal structure of the title compound (I), a new derivative from the aforementioned family.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related structures (Du et al., 2008; Khan et al., 2009). The triazolothiadiazole ring system is essentially planar with an r.m.s derivation of 0.0087 (2)Å and maximum deviation of 0.0037 (2)Å for atom C2. In the crystal structure, π-π interactions (Table 1) consolidate the crystal packing, which exhibits short intermolecular S···N contacts of 2.783 (2) Å observed eralier in the related structure (Haugwitz et al., 1977).

Experimental

The title compound was synthesized by the reaction of 4-amino-3-methyl-4H-1,2,4-triazole-5-thiol (2.0 mmol) and trichloroacetic acid (2.0 mmol) in phosphoryl trichloride for 24 h. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform-ethanol (1:1).

Refinement

H atoms were positioned geometrically (C—H = 0.98 Å) and refined as riding, with Uiso(H) = 1.5Ueq(parent).

Figures

Fig. 1.

Fig. 1.

View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 60% probability level.

Crystal data

C5H3Cl3N4S F(000) = 512
Mr = 257.52 Dx = 1.847 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2918 reflections
a = 5.8732 (12) Å θ = 3.3–27.9°
b = 9.4164 (19) Å µ = 1.17 mm1
c = 16.750 (3) Å T = 153 K
β = 91.82 (3)° Prism, colorless
V = 925.9 (3) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer 2196 independent reflections
Radiation source: rotating anode 1934 reflections with I > 2σ(I)
multilayer Rint = 0.038
Detector resolution: 7.31 pixels mm-1 θmax = 27.9°, θmin = 2.4°
φ and ω scans h = −7→7
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) k = −10→12
Tmin = 0.721, Tmax = 0.892 l = −22→22
9841 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0693P)2] where P = (Fo2 + 2Fc2)/3
S = 1.24 (Δ/σ)max < 0.001
2196 reflections Δρmax = 0.49 e Å3
120 parameters Δρmin = −0.44 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.071 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.13777 (9) 0.52705 (5) 0.13657 (3) 0.01622 (19)
Cl1 0.55694 (10) 0.67616 (5) 0.27560 (3) 0.0242 (2)
Cl2 0.15047 (9) 0.53079 (6) 0.32341 (3) 0.02410 (19)
Cl3 0.58496 (8) 0.38759 (5) 0.33267 (3) 0.01648 (18)
N1 0.3533 (3) 0.30847 (19) −0.04370 (11) 0.0193 (4)
N2 0.1853 (3) 0.40411 (19) −0.01768 (11) 0.0191 (4)
N3 0.4320 (3) 0.35972 (16) 0.08095 (10) 0.0134 (4)
N4 0.5132 (3) 0.37661 (17) 0.15796 (10) 0.0133 (4)
C1 0.7018 (4) 0.1903 (2) 0.01481 (13) 0.0223 (5)
H1A 0.7271 0.1594 −0.0401 0.033*
H1B 0.6776 0.1070 0.0486 0.033*
H1C 0.8353 0.2430 0.0352 0.033*
C2 0.4981 (3) 0.2833 (2) 0.01591 (12) 0.0158 (4)
C3 0.2385 (3) 0.4306 (2) 0.05699 (12) 0.0151 (4)
C4 0.3744 (3) 0.46089 (19) 0.19257 (12) 0.0135 (4)
C5 0.4165 (3) 0.5096 (2) 0.27709 (11) 0.0136 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0153 (3) 0.0166 (3) 0.0165 (3) 0.00419 (18) −0.0027 (2) −0.00059 (17)
Cl1 0.0359 (4) 0.0136 (3) 0.0227 (3) −0.0086 (2) −0.0055 (2) 0.00025 (18)
Cl2 0.0186 (3) 0.0337 (4) 0.0202 (3) 0.0075 (2) 0.0050 (2) −0.0021 (2)
Cl3 0.0186 (3) 0.0164 (3) 0.0143 (3) 0.00304 (18) −0.00199 (19) 0.00178 (16)
N1 0.0204 (9) 0.0206 (9) 0.0169 (9) −0.0011 (7) −0.0001 (7) −0.0020 (7)
N2 0.0201 (9) 0.0214 (9) 0.0157 (9) 0.0021 (7) −0.0023 (7) −0.0011 (7)
N3 0.0142 (8) 0.0127 (8) 0.0133 (8) −0.0010 (6) −0.0022 (6) 0.0002 (6)
N4 0.0132 (8) 0.0145 (8) 0.0122 (8) −0.0015 (6) −0.0015 (6) 0.0002 (6)
C1 0.0240 (12) 0.0254 (11) 0.0176 (10) 0.0059 (9) 0.0015 (8) −0.0031 (8)
C2 0.0180 (10) 0.0155 (9) 0.0142 (9) −0.0029 (8) 0.0017 (7) −0.0013 (7)
C3 0.0133 (10) 0.0135 (9) 0.0184 (10) 0.0013 (8) −0.0018 (8) 0.0022 (7)
C4 0.0145 (10) 0.0121 (9) 0.0136 (9) −0.0009 (7) −0.0007 (7) 0.0027 (7)
C5 0.0138 (9) 0.0110 (8) 0.0162 (10) 0.0023 (7) 0.0008 (7) 0.0009 (7)

Geometric parameters (Å, °)

S1—C3 1.732 (2) N3—N4 1.370 (2)
S1—C4 1.765 (2) N3—C2 1.372 (3)
Cl1—C5 1.772 (2) N4—C4 1.289 (3)
Cl2—C5 1.778 (2) C1—C2 1.483 (3)
Cl3—C5 1.763 (2) C1—H1A 0.9800
N1—C2 1.313 (3) C1—H1B 0.9800
N1—N2 1.415 (2) C1—H1C 0.9800
N2—C3 1.304 (3) C4—C5 1.501 (3)
N3—C3 1.367 (3)
Cg1···Cg1i 3.340 (1) Cg1···Cg2i 3.682 (1)
C3—S1—C4 86.65 (9) N1—C2—C1 126.9 (2)
C2—N1—N2 108.78 (17) N3—C2—C1 124.63 (18)
C3—N2—N1 105.63 (17) N2—C3—N3 111.08 (18)
C3—N3—N4 118.75 (16) N2—C3—S1 139.59 (16)
C3—N3—C2 106.06 (17) N3—C3—S1 109.33 (14)
N4—N3—C2 135.19 (17) N4—C4—C5 121.67 (18)
C4—N4—N3 106.78 (16) N4—C4—S1 118.48 (15)
C2—C1—H1A 109.5 C5—C4—S1 119.77 (15)
C2—C1—H1B 109.5 C4—C5—Cl3 111.82 (14)
H1A—C1—H1B 109.5 C4—C5—Cl1 108.66 (13)
C2—C1—H1C 109.5 Cl3—C5—Cl1 109.30 (11)
H1A—C1—H1C 109.5 C4—C5—Cl2 108.97 (14)
H1B—C1—H1C 109.5 Cl3—C5—Cl2 109.20 (10)
N1—C2—N3 108.44 (17) Cl1—C5—Cl2 108.84 (10)
C2—N1—N2—C3 −0.4 (2) C2—N3—C3—S1 178.46 (13)
C3—N3—N4—C4 0.9 (2) C4—S1—C3—N2 179.8 (3)
C2—N3—N4—C4 −178.6 (2) C4—S1—C3—N3 0.80 (14)
N2—N1—C2—N3 −0.2 (2) N3—N4—C4—C5 −176.81 (17)
N2—N1—C2—C1 −179.41 (19) N3—N4—C4—S1 −0.2 (2)
C3—N3—C2—N1 0.6 (2) C3—S1—C4—N4 −0.36 (16)
N4—N3—C2—N1 −179.8 (2) C3—S1—C4—C5 176.31 (16)
C3—N3—C2—C1 179.86 (19) N4—C4—C5—Cl3 −25.8 (2)
N4—N3—C2—C1 −0.6 (3) S1—C4—C5—Cl3 157.64 (11)
N1—N2—C3—N3 0.7 (2) N4—C4—C5—Cl1 94.93 (19)
N1—N2—C3—S1 −178.24 (19) S1—C4—C5—Cl1 −81.63 (16)
N4—N3—C3—N2 179.50 (16) N4—C4—C5—Cl2 −146.61 (16)
C2—N3—C3—N2 −0.8 (2) S1—C4—C5—Cl2 36.83 (18)
N4—N3—C3—S1 −1.2 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5070).

References

  1. Du, H., Du, H., An, Y. & Li, S. (2008). Acta Cryst. E64, o1402. [DOI] [PMC free article] [PubMed]
  2. Haugwitz, R. D., Toeplitz, B. & Gougoutas, J. Z. (1977). J. Chem. Soc. Chem. Commun. pp. 736–737.
  3. Karabasanagouda, T., Adhikari, A. V. & Shetty, S. N. (2007). Eur. J. Med. Chem. 42, 521–529. [DOI] [PubMed]
  4. Khan, M.-H., Hameed, S., Tahir, M. N., Bokhari, T. H. & Khan, I. U. (2009). Acta Cryst. E65, o1437. [DOI] [PMC free article] [PubMed]
  5. Mathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem. 42, 823–840. [DOI] [PubMed]
  6. Rigaku/MSC (2005). CrystalClear Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811012748/cv5070sup1.cif

e-67-o1093-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012748/cv5070Isup2.hkl

e-67-o1093-Isup2.hkl (108KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES