Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):o1034–o1035. doi: 10.1107/S1600536811011135

(E)-1-(2,4-Dinitro­phen­yl)-2-[1-(thio­phen-2-yl)ethyl­idene]hydrazine

Hoong-Kun Fun a,*,, Patcharaporn Jansrisewangwong b, Suchada Chantrapromma b,§
PMCID: PMC3089201  PMID: 21754363

Abstract

The mol­ecule of the title compound, C12H10N4O4S, is slightly twisted, with a dihedral angle of 8.23 (9)° between the benzene and thio­phene rings. One nitro group is co-planar [O—N—C—C torsion angles = −0.5 (3) and −1.9 (3)°] whereas the other is slightly twisted with respect to the benzene ring [O—N—C—C torsion angles = −5.1 (3) and −5.7 (3)°]. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions into screw chains along the b axis. The mol­ecular conformation is consolidated by an intra­molecular N—H⋯O hydrogen bond.

Related literature

For bond-length data, see: Allen et al. (1987). For related structures, see: Chantrapromma et al. (2010); Fun et al. (2010); Jansrisewangwong et al. (2010); Shan et al. (2008). For background to and the biological activity of hydrazones, see: Baughman et al. (2004); Bedia et al. (2006); El-Tabl et al. (2008); Ramamohan et al. (1995); Rollas & Küçükgüzel (2007). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).graphic file with name e-67-o1034-scheme1.jpg

Experimental

Crystal data

  • C12H10N4O4S

  • M r = 306.30

  • Monoclinic, Inline graphic

  • a = 9.4868 (5) Å

  • b = 15.3912 (8) Å

  • c = 8.9756 (4) Å

  • β = 91.672 (2)°

  • V = 1310.00 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.60 × 0.19 × 0.16 mm

Data collection

  • Bruker APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.854, T max = 0.959

  • 10366 measured reflections

  • 2414 independent reflections

  • 2176 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.109

  • S = 1.08

  • 2414 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011135/rz2573sup1.cif

e-67-o1034-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011135/rz2573Isup2.hkl

e-67-o1034-Isup2.hkl (118.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1 0.79 (3) 2.00 (3) 2.618 (3) 134 (2)
C6—H6A⋯O2i 0.93 2.45 3.099 (3) 127
C9—H9A⋯O4ii 0.93 2.47 3.147 (2) 129
C11—H11A⋯O3i 0.93 2.57 3.240 (3) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

PJ thanks the Graduate School, Prince of Songkla University, for partial financial support. The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit (CMRU), and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

supplementary crystallographic information

Comment

Hydrazones are an important class of compounds which are used in numerous biological and pharmacological applications as insecticidal, antitumor, antioxidant, antifungal, antibacterial, antiviral and antituberculosis compounds (Bedia et al., 2006; El-Tabl et al., 2008; Ramamohan et al., 1995; Rollas & Küçükgüzel, 2007). Several of them also exhibit good nonlinear optical properties (Baughman et al., 2004). In our previous studies we reported the syntheses and crystal structures of some hydrazone derivatives (Chantrapromma et al., 2010; Fun et al., 2010; Jansrisewangwong et al., 2010). The title compound (I) was synthesized as part of our on going research on biological activities of hydrazones.

The molecule of (I), (Fig. 1), is slightly twisted with the dihedral angle between the benzene and thiophene rings of 8.23 (9)°. The middle ethylidinehydrazine unit (N1/N2/C7/C12) is planar with the r.m.s. 0.0033 (2) Å and the torsion angle N2–N1–C7–C12 = -1.1 (3)°. This N—N=C—C bridge makes dihedral angles of 6.62 (11) and 2.14 (12)° with the benzene and thiophene rings, respectively. The nitro group at atom C2 is co-planar [torsion angles O1–N3–C2–C1 = -0.5 (3)° and O2–N3–C2–C3 = -1.9 (3)°] whereby that at atom C4 is slightly twisted with respect to the benzene ring [torsion angles O3–N4–C4–C3 = -5.1 (3)° and O4–N4–C4–C5 = -5.7 (3)°]. The bond distances are of normal values (Allen et al., 1987) and comparable with those found in related structures (Jansrisewangwong et al., 2010; Shan et al., 2008).

In the crystal structure (Fig. 2), the molecules are linked by C—H···O weak interactions (Table 1) into screw chains along the b axis. The molecular conformation is consolidated by an intramolecular N—H···O hydrogen bonding interaction (Table 1). C···Niii, iv[3.219 (3)–3.232 (3) Å], C···Oiii, v,vi[3.099 (3)–3.187 (2) Å] and N···Ovii[2.971 (2) Å] short contacts are also observed [symmetry codes: (iii) x, 1/2 - y, -1/2 + z; (iv) 1 + x, 1/2 - y, -1/2 + z; (v) 1 - x, 1/2 + y, 3/2 - z; (vi) 1 + x, y, -1 + z and (vii) 1 - x, 1 - y, 2 - z].

Experimental

The title compound was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10 ml) and H2SO4 (conc.) (98%, 0.5 ml) was slowly added with stirring. Then 2-acetylthiophene (0.20 ml, 2 mmol) was added to the solution with continuous stirring. The solution was refluxed for 30 min yielding an orange-red solid, which was filtered off and washed with methanol. Orange block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from ethanol by slow evaporation of the solvent at room temperature over several days. Mp. 516–518 K.

Refinement

The H atom attached to N2 was located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.97 Å from S1 and the deepest hole is located at 0.67 Å from S1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is drawn as dash line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the c axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C12H10N4O4S F(000) = 632
Mr = 306.30 Dx = 1.553 Mg m3
Monoclinic, P21/c Melting point = 516–518 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 9.4868 (5) Å Cell parameters from 2414 reflections
b = 15.3912 (8) Å θ = 2.2–25.5°
c = 8.9756 (4) Å µ = 0.27 mm1
β = 91.672 (2)° T = 100 K
V = 1310.00 (11) Å3 Block, orange
Z = 4 0.60 × 0.19 × 0.16 mm

Data collection

Bruker APEXII CCD area detector diffractometer 2414 independent reflections
Radiation source: sealed tube 2176 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→11
Tmin = 0.854, Tmax = 0.959 k = −18→14
10366 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0504P)2 + 1.3252P] where P = (Fo2 + 2Fc2)/3
2414 reflections (Δ/σ)max < 0.001
195 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.18528 (6) 0.07603 (4) 1.08312 (6) 0.02114 (18)
O1 0.38055 (16) 0.48642 (10) 0.89817 (17) 0.0234 (4)
O2 0.5358 (2) 0.53354 (10) 0.7464 (2) 0.0367 (5)
O3 0.82477 (16) 0.34691 (11) 0.46978 (17) 0.0263 (4)
O4 0.82742 (17) 0.20890 (11) 0.51711 (18) 0.0295 (4)
N1 0.29668 (17) 0.24567 (11) 1.00495 (18) 0.0165 (4)
N2 0.35684 (18) 0.31993 (13) 0.9518 (2) 0.0169 (4)
H1N2 0.328 (2) 0.3673 (18) 0.967 (3) 0.018 (6)*
N3 0.47704 (19) 0.47362 (12) 0.8097 (2) 0.0219 (4)
N4 0.78273 (18) 0.28269 (13) 0.53639 (19) 0.0212 (4)
C1 0.4601 (2) 0.31302 (13) 0.8510 (2) 0.0150 (4)
C2 0.5214 (2) 0.38567 (13) 0.7812 (2) 0.0165 (4)
C3 0.6272 (2) 0.37572 (14) 0.6779 (2) 0.0185 (5)
H3A 0.6662 0.4239 0.6322 0.022*
C4 0.6724 (2) 0.29369 (14) 0.6451 (2) 0.0170 (4)
C5 0.6148 (2) 0.22010 (14) 0.7110 (2) 0.0169 (4)
H5A 0.6469 0.1649 0.6866 0.020*
C6 0.5112 (2) 0.23004 (13) 0.8115 (2) 0.0158 (4)
H6A 0.4731 0.1810 0.8553 0.019*
C7 0.2011 (2) 0.25572 (14) 1.1041 (2) 0.0166 (4)
C8 0.1380 (2) 0.17563 (14) 1.1560 (2) 0.0173 (4)
C9 0.0380 (2) 0.16528 (15) 1.2632 (2) 0.0202 (5)
H9A −0.0017 0.2113 1.3144 0.024*
C10 0.0020 (2) 0.07644 (14) 1.2874 (2) 0.0188 (5)
H10A −0.0628 0.0581 1.3565 0.023*
C11 0.0736 (2) 0.02170 (16) 1.1973 (2) 0.0237 (5)
H11A 0.0630 −0.0384 1.1977 0.028*
C12 0.1551 (2) 0.34159 (14) 1.1648 (2) 0.0211 (5)
H12A 0.2364 0.3740 1.1986 0.032*
H12B 0.0941 0.3321 1.2468 0.032*
H12C 0.1054 0.3736 1.0880 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0239 (3) 0.0203 (3) 0.0198 (3) −0.0021 (2) 0.0103 (2) −0.0022 (2)
O1 0.0255 (8) 0.0191 (8) 0.0262 (8) 0.0024 (6) 0.0095 (7) −0.0037 (6)
O2 0.0487 (11) 0.0151 (9) 0.0478 (11) −0.0032 (8) 0.0247 (9) 0.0050 (8)
O3 0.0254 (8) 0.0333 (10) 0.0206 (8) −0.0092 (7) 0.0095 (6) 0.0043 (7)
O4 0.0300 (9) 0.0300 (10) 0.0297 (9) 0.0039 (7) 0.0190 (7) −0.0033 (7)
N1 0.0174 (8) 0.0171 (9) 0.0152 (8) −0.0018 (7) 0.0052 (7) −0.0004 (7)
N2 0.0190 (9) 0.0125 (10) 0.0194 (9) 0.0006 (8) 0.0072 (7) −0.0015 (7)
N3 0.0272 (10) 0.0163 (10) 0.0225 (9) −0.0019 (8) 0.0058 (8) 0.0020 (8)
N4 0.0188 (9) 0.0277 (11) 0.0174 (9) −0.0020 (8) 0.0063 (7) −0.0013 (8)
C1 0.0150 (9) 0.0188 (11) 0.0113 (9) −0.0003 (8) 0.0024 (7) −0.0001 (8)
C2 0.0181 (10) 0.0142 (10) 0.0173 (10) −0.0011 (8) 0.0035 (8) −0.0003 (8)
C3 0.0205 (10) 0.0188 (11) 0.0162 (10) −0.0045 (9) 0.0026 (8) 0.0037 (8)
C4 0.0160 (10) 0.0234 (12) 0.0120 (9) −0.0024 (9) 0.0075 (8) 0.0008 (8)
C5 0.0182 (10) 0.0173 (11) 0.0152 (10) 0.0023 (8) 0.0029 (8) −0.0026 (8)
C6 0.0182 (10) 0.0147 (10) 0.0148 (9) −0.0012 (8) 0.0048 (8) 0.0009 (8)
C7 0.0172 (10) 0.0199 (11) 0.0127 (9) 0.0008 (8) 0.0020 (8) −0.0018 (8)
C8 0.0160 (10) 0.0216 (12) 0.0143 (10) 0.0004 (8) 0.0031 (8) −0.0027 (8)
C9 0.0187 (10) 0.0261 (12) 0.0163 (10) 0.0004 (9) 0.0065 (8) −0.0025 (9)
C10 0.0168 (10) 0.0256 (12) 0.0146 (10) −0.0032 (9) 0.0094 (8) 0.0001 (9)
C11 0.0251 (11) 0.0236 (12) 0.0229 (11) −0.0064 (9) 0.0076 (9) 0.0018 (9)
C12 0.0228 (11) 0.0219 (12) 0.0191 (11) 0.0001 (9) 0.0093 (9) −0.0025 (9)

Geometric parameters (Å, °)

S1—C11 1.714 (2) C3—H3A 0.9300
S1—C8 1.731 (2) C4—C5 1.396 (3)
O1—N3 1.245 (2) C5—C6 1.362 (3)
O2—N3 1.226 (2) C5—H5A 0.9300
O3—N4 1.228 (2) C6—H6A 0.9300
O4—N4 1.226 (2) C7—C8 1.453 (3)
N1—C7 1.298 (3) C7—C12 1.499 (3)
N1—N2 1.370 (3) C8—C9 1.380 (3)
N2—C1 1.357 (3) C9—C10 1.428 (3)
N2—H1N2 0.79 (3) C9—H9A 0.9300
N3—C2 1.443 (3) C10—C11 1.363 (3)
N4—C4 1.462 (3) C10—H10A 0.9300
C1—C2 1.415 (3) C11—H11A 0.9300
C1—C6 1.415 (3) C12—H12A 0.9600
C2—C3 1.394 (3) C12—H12B 0.9600
C3—C4 1.368 (3) C12—H12C 0.9600
C11—S1—C8 91.98 (11) C4—C5—H5A 120.4
C7—N1—N2 116.47 (18) C5—C6—C1 121.80 (19)
C1—N2—N1 118.89 (18) C5—C6—H6A 119.1
C1—N2—H1N2 116.4 (18) C1—C6—H6A 119.1
N1—N2—H1N2 124.2 (18) N1—C7—C8 114.90 (19)
O2—N3—O1 121.94 (18) N1—C7—C12 124.81 (19)
O2—N3—C2 119.03 (18) C8—C7—C12 120.30 (18)
O1—N3—C2 119.03 (17) C9—C8—C7 128.3 (2)
O4—N4—O3 123.94 (18) C9—C8—S1 110.63 (16)
O4—N4—C4 117.31 (18) C7—C8—S1 121.11 (15)
O3—N4—C4 118.75 (18) C8—C9—C10 112.89 (19)
N2—C1—C2 123.19 (19) C8—C9—H9A 123.6
N2—C1—C6 119.84 (18) C10—C9—H9A 123.6
C2—C1—C6 116.98 (18) C11—C10—C9 112.11 (19)
C3—C2—C1 121.38 (19) C11—C10—H10A 123.9
C3—C2—N3 116.11 (18) C9—C10—H10A 123.9
C1—C2—N3 122.50 (18) C10—C11—S1 112.39 (18)
C4—C3—C2 118.73 (19) C10—C11—H11A 123.8
C4—C3—H3A 120.6 S1—C11—H11A 123.8
C2—C3—H3A 120.6 C7—C12—H12A 109.5
C3—C4—C5 121.90 (19) C7—C12—H12B 109.5
C3—C4—N4 119.07 (19) H12A—C12—H12B 109.5
C5—C4—N4 119.03 (19) C7—C12—H12C 109.5
C6—C5—C4 119.21 (19) H12A—C12—H12C 109.5
C6—C5—H5A 120.4 H12B—C12—H12C 109.5
C7—N1—N2—C1 178.22 (17) C3—C4—C5—C6 −0.4 (3)
N1—N2—C1—C2 175.14 (17) N4—C4—C5—C6 −179.49 (17)
N1—N2—C1—C6 −4.9 (3) C4—C5—C6—C1 0.0 (3)
N2—C1—C2—C3 −179.90 (18) N2—C1—C6—C5 −179.89 (18)
C6—C1—C2—C3 0.2 (3) C2—C1—C6—C5 0.1 (3)
N2—C1—C2—N3 −1.2 (3) N2—N1—C7—C8 178.99 (16)
C6—C1—C2—N3 178.88 (17) N2—N1—C7—C12 −1.1 (3)
O2—N3—C2—C3 −1.9 (3) N1—C7—C8—C9 177.69 (19)
O1—N3—C2—C3 178.29 (17) C12—C7—C8—C9 −2.2 (3)
O2—N3—C2—C1 179.28 (19) N1—C7—C8—S1 −2.2 (2)
O1—N3—C2—C1 −0.5 (3) C12—C7—C8—S1 177.89 (15)
C1—C2—C3—C4 −0.5 (3) C11—S1—C8—C9 −0.67 (16)
N3—C2—C3—C4 −179.26 (17) C11—S1—C8—C7 179.21 (17)
C2—C3—C4—C5 0.6 (3) C7—C8—C9—C10 −178.97 (19)
C2—C3—C4—N4 179.69 (17) S1—C8—C9—C10 0.9 (2)
O4—N4—C4—C3 175.19 (18) C8—C9—C10—C11 −0.7 (3)
O3—N4—C4—C3 −5.1 (3) C9—C10—C11—S1 0.2 (2)
O4—N4—C4—C5 −5.7 (3) C8—S1—C11—C10 0.27 (17)
O3—N4—C4—C5 174.08 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1 0.79 (3) 2.00 (3) 2.618 (3) 134 (2)
C6—H6A···O2i 0.93 2.45 3.099 (3) 127
C9—H9A···O4ii 0.93 2.47 3.147 (2) 129
C11—H11A···O3i 0.93 2.57 3.240 (3) 129

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2573).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106. [DOI] [PubMed]
  3. Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261. [DOI] [PubMed]
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2010). Acta Cryst. E66, o2994–o2995. [DOI] [PMC free article] [PubMed]
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  7. El-Tabl, A. S., El-Saied, F. A., Plass, W. & Al-Hakimi, A. N. (2008). Spectrochim. Acta Part A, 71, 90–99. [DOI] [PubMed]
  8. Fun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o2401–o2402. [DOI] [PMC free article] [PubMed]
  9. Jansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2170. [DOI] [PMC free article] [PubMed]
  10. Ramamohan, L., Shikkaragol, R. K., Angadi, S. D. & Kulkarni, V. H. (1995). Asian J. Pure Appl. Chem. 1, 86.
  11. Rollas, S. & Küçükgüzel, Ş. G. (2007). Molecules 12, 1910–1939. [DOI] [PMC free article] [PubMed]
  12. Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1153. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011135/rz2573sup1.cif

e-67-o1034-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011135/rz2573Isup2.hkl

e-67-o1034-Isup2.hkl (118.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES