Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):m636. doi: 10.1107/S1600536811014796

Ferrocen­yl(meth­yl)diphenyl­silane

Yu-Peng Liu a, Zong-Qi Li a, Yong-Xia Tan a, Zhi-Jie Zhang a,*
PMCID: PMC3089205  PMID: 21754344

Abstract

In the title mol­ecule, [Fe(C5H5)(C18H17Si)], the distances of the Fe atom from the centroids of the unsubstituted and substituted cyclo­penta­dienyl (Cp) rings are 1.651 (1) and 1.646 (1) Å, respectively. The dihedral angle between the two Cp rings is 3.20 (17)°. The crystal packing is mainly stabilized by van der Waals forces.

Related literature

For applications of transition metal compounds derived from ferrocene as catalysts, see: Togni & Hayashi (1994); and as biomolecules, see: Stepnicka (2008). For the preparation of ferrocenyl lithium, see: Rautz et al. (2001); and of analogues of the title compound, see: Herberhold et al. (2002).graphic file with name e-67-0m636-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C18H17Si)]

  • M r = 382.35

  • Monoclinic, Inline graphic

  • a = 7.4318 (15) Å

  • b = 17.795 (4) Å

  • c = 14.367 (3) Å

  • β = 100.408 (4)°

  • V = 1868.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 173 K

  • 0.28 × 0.26 × 0.13 mm

Data collection

  • Rigaku MM007-HF CCD (Saturn 724+) diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) T min = 0.792, T max = 0.895

  • 16474 measured reflections

  • 4265 independent reflections

  • 3998 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.105

  • S = 1.18

  • 4265 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014796/mw2007sup1.cif

e-67-0m636-sup1.cif (27.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014796/mw2007Isup2.hkl

e-67-0m636-Isup2.hkl (209KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Science Foundation of China (NSFC, grant No. 50803070).

supplementary crystallographic information

Comment

Transition metal compounds derived from ferrocene have attracted considerable interest due to their applications in many fields such as catalysis (Togni & Hayashi, 1994) and biomolecules (Stepnicka, 2008). In this paper we report the synthesis and crystal structure of the title compound. In the ferrocene unit, the distances of the Fe atom from the centroids of the unsubstituted and substituted cyclopentadienyl (Cp) rings are 1.651 (1) and 1.646 (1) Å, respectively. The internal ring angle at the substituted C is smaller than the other internal ring angles. The dihedral angle between the two cyclopentadienyl rings is 3.20 (17)°. The crystal packing is mainly stabilized by van der Waals forces.

Experimental

The preparations of FcLi and the title compound are similar to those previously reported (Rautz et al., 2001; Herberhold et al., 2002). Ferrocene (2.00 g, 26.88 mmol) was dissolved in 12 ml of anhydrous tetrahydrofuran (THF). In the course of 15 min a solution of 10.8 mmol t-BuLi (7.16 ml of a 1.5 M n-pentane solution) was added dropwise at 0°C. n-Hexane (16 ml) was then added and the solution was kept at -78°C for 15 min before the orange precipitate of FcLi was filtered off. The precipitate was washed with small portions of n-hexane. The FcLi was dissolved in THF (15 ml) and was added to a solution of chloromethyldiphenylsilane (2.2 g, 9.45 mmol) in n-hexane (20 ml) at 0°C and then stirred over night at room temperature. The precipitate was filtered off and the solvent was evaporated under vacuum. the orange residue was purified by recrystallization from n-hexane to give 3.26 g of yellow product in 82% yield.

Refinement

All the H atoms were discernible in the difference electron density maps. Nevertheless, all the H atoms were constrained by the riding-hydrogen formalism with Uiso(H) = 1.2Ueq(Caryl or cyclopentadienyl) or Uiso(H) = 1.5Ueq(Cmethyl). The C—H distances were constrained to 0.95 Å for the aryl H atoms, 0.98 Å for the the methyl H atoms and 1.00 Å for the cyclopentadienyl H atoms respectively.

Figures

Fig. 1.

Fig. 1.

View of the title compound with 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Fe(C5H5)(C18H17Si)] F(000) = 800
Mr = 382.35 Dx = 1.359 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6544 reflections
a = 7.4318 (15) Å θ = 1.8–27.5°
b = 17.795 (4) Å µ = 0.87 mm1
c = 14.367 (3) Å T = 173 K
β = 100.408 (4)° Block, yellow
V = 1868.8 (7) Å3 0.28 × 0.26 × 0.13 mm
Z = 4

Data collection

Rigaku MM007-HF CCD (Saturn 724+) diffractometer 4265 independent reflections
Radiation source: rotating anode 3998 reflections with I > 2σ(I)
Confocal Rint = 0.047
ω scans at fixed χ = 45° θmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) h = −9→9
Tmin = 0.792, Tmax = 0.895 k = −22→23
16474 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0318P)2 + 1.4337P] where P = (Fo2 + 2Fc2)/3
4265 reflections (Δ/σ)max < 0.001
227 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. X1A and X1B are the centroids of the substituted and unsubstituted cyclopentadienyl (Cp) rings, respectively.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.26293 (4) 0.334745 (19) 0.53570 (2) 0.02536 (11)
Si1 0.45588 (9) 0.15904 (4) 0.48452 (4) 0.02365 (15)
C1 0.4252 (3) 0.26273 (13) 0.47397 (15) 0.0248 (5)
C2 0.5333 (3) 0.31775 (14) 0.53173 (18) 0.0288 (5)
H2A 0.6307 0.3066 0.5877 0.035*
C3 0.4780 (4) 0.39057 (15) 0.4979 (2) 0.0367 (6)
H3A 0.5306 0.4393 0.5249 0.044*
C4 0.3346 (4) 0.38192 (16) 0.41877 (19) 0.0391 (6)
H4A 0.2682 0.4236 0.3803 0.047*
C5 0.3012 (3) 0.30396 (15) 0.40376 (16) 0.0311 (5)
H5A 0.2063 0.2814 0.3532 0.037*
C6 0.2323 (4) 0.33179 (17) 0.67424 (18) 0.0378 (6)
H6A 0.3321 0.3234 0.7300 0.045*
C7 0.1755 (4) 0.40192 (17) 0.6337 (2) 0.0443 (7)
H7A 0.2273 0.4520 0.6558 0.053*
C8 0.0317 (4) 0.3887 (2) 0.5559 (2) 0.0494 (8)
H8A −0.0361 0.4280 0.5135 0.059*
C9 0.0006 (4) 0.3108 (2) 0.5492 (2) 0.0472 (8)
H9A −0.0929 0.2848 0.5011 0.057*
C10 0.1244 (4) 0.27564 (17) 0.62260 (19) 0.0390 (6)
H10A 0.1343 0.2204 0.6352 0.047*
C11 0.6161 (3) 0.13831 (13) 0.59914 (16) 0.0257 (5)
C12 0.5675 (4) 0.15244 (15) 0.68696 (17) 0.0344 (6)
H12A 0.4517 0.1743 0.6892 0.041*
C13 0.6844 (4) 0.13532 (16) 0.77123 (18) 0.0395 (6)
H13A 0.6478 0.1452 0.8301 0.047*
C14 0.8527 (4) 0.10412 (16) 0.76933 (19) 0.0413 (7)
H14A 0.9327 0.0924 0.8269 0.050*
C15 0.9057 (4) 0.08981 (17) 0.6838 (2) 0.0409 (6)
H15A 1.0223 0.0684 0.6824 0.049*
C16 0.7881 (3) 0.10685 (14) 0.59942 (17) 0.0311 (5)
H16A 0.8258 0.0968 0.5409 0.037*
C17 0.5722 (3) 0.12657 (14) 0.38585 (15) 0.0256 (5)
C18 0.5443 (4) 0.05473 (14) 0.34648 (17) 0.0322 (5)
H18A 0.4606 0.0216 0.3682 0.039*
C19 0.6371 (4) 0.03118 (16) 0.2761 (2) 0.0424 (7)
H19A 0.6152 −0.0176 0.2497 0.051*
C20 0.7603 (4) 0.07783 (17) 0.24421 (18) 0.0401 (6)
H20A 0.8248 0.0611 0.1967 0.048*
C21 0.7898 (4) 0.14908 (17) 0.28160 (18) 0.0373 (6)
H21A 0.8741 0.1818 0.2596 0.045*
C22 0.6961 (3) 0.17263 (15) 0.35131 (17) 0.0322 (5)
H22A 0.7172 0.2219 0.3764 0.039*
C23 0.2338 (3) 0.10882 (16) 0.47803 (19) 0.0353 (6)
H23A 0.1518 0.1222 0.4190 0.053*
H23B 0.1777 0.1234 0.5321 0.053*
H23C 0.2553 0.0545 0.4796 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.02179 (18) 0.0283 (2) 0.02612 (18) 0.00286 (14) 0.00470 (13) −0.00229 (13)
Si1 0.0220 (3) 0.0261 (3) 0.0235 (3) 0.0012 (3) 0.0060 (2) −0.0008 (2)
C1 0.0218 (11) 0.0294 (12) 0.0250 (11) 0.0034 (10) 0.0092 (9) 0.0005 (9)
C2 0.0211 (11) 0.0294 (12) 0.0372 (13) −0.0009 (10) 0.0089 (9) −0.0002 (10)
C3 0.0326 (14) 0.0277 (13) 0.0524 (16) −0.0049 (11) 0.0147 (12) 0.0019 (11)
C4 0.0411 (15) 0.0362 (15) 0.0427 (15) 0.0083 (13) 0.0149 (12) 0.0140 (11)
C5 0.0309 (13) 0.0387 (14) 0.0241 (11) 0.0042 (12) 0.0062 (9) 0.0028 (10)
C6 0.0326 (14) 0.0552 (18) 0.0264 (12) 0.0024 (13) 0.0074 (10) −0.0059 (11)
C7 0.0482 (17) 0.0425 (16) 0.0460 (16) 0.0049 (14) 0.0187 (13) −0.0158 (13)
C8 0.0394 (16) 0.066 (2) 0.0445 (16) 0.0295 (16) 0.0113 (13) −0.0023 (14)
C9 0.0194 (12) 0.080 (2) 0.0428 (16) −0.0023 (14) 0.0086 (11) −0.0226 (15)
C10 0.0366 (14) 0.0426 (16) 0.0438 (15) −0.0039 (13) 0.0231 (12) −0.0059 (12)
C11 0.0281 (12) 0.0230 (11) 0.0263 (11) 0.0002 (10) 0.0061 (9) 0.0009 (9)
C12 0.0384 (14) 0.0374 (14) 0.0279 (12) 0.0070 (12) 0.0069 (10) 0.0006 (10)
C13 0.0522 (17) 0.0406 (15) 0.0254 (12) 0.0000 (14) 0.0062 (11) 0.0005 (11)
C14 0.0408 (15) 0.0460 (16) 0.0329 (14) −0.0042 (13) −0.0051 (11) 0.0114 (11)
C15 0.0285 (13) 0.0491 (17) 0.0438 (15) 0.0051 (13) 0.0028 (11) 0.0130 (13)
C16 0.0285 (12) 0.0355 (13) 0.0300 (12) 0.0003 (11) 0.0072 (10) 0.0052 (10)
C17 0.0241 (11) 0.0309 (12) 0.0214 (10) 0.0047 (10) 0.0029 (8) 0.0019 (9)
C18 0.0378 (14) 0.0273 (12) 0.0338 (13) 0.0018 (11) 0.0124 (11) 0.0004 (10)
C19 0.0571 (18) 0.0329 (14) 0.0411 (15) 0.0067 (14) 0.0194 (13) −0.0053 (11)
C20 0.0407 (15) 0.0511 (17) 0.0324 (13) 0.0126 (14) 0.0168 (11) 0.0004 (12)
C21 0.0312 (13) 0.0524 (17) 0.0299 (13) −0.0037 (13) 0.0101 (10) 0.0023 (11)
C22 0.0304 (13) 0.0375 (14) 0.0280 (12) −0.0045 (11) 0.0036 (10) −0.0042 (10)
C23 0.0275 (13) 0.0377 (15) 0.0412 (14) −0.0035 (11) 0.0076 (11) −0.0043 (11)

Geometric parameters (Å, °)

Fe1—C4 2.033 (3) C8—H8A 1.0000
Fe1—C8 2.035 (3) C9—C10 1.414 (4)
Fe1—C3 2.037 (3) C9—H9A 1.0000
Fe1—C9 2.039 (3) C10—H10A 1.0000
Fe1—C7 2.040 (3) C11—C16 1.395 (3)
Fe1—C5 2.042 (2) C11—C12 1.397 (3)
Fe1—C2 2.043 (2) C12—C13 1.390 (4)
Fe1—C6 2.045 (3) C12—H12A 0.9500
Fe1—C10 2.047 (3) C13—C14 1.374 (4)
Fe1—C1 2.066 (2) C13—H13A 0.9500
Si1—C1 1.862 (2) C14—C15 1.381 (4)
Si1—C23 1.864 (3) C14—H14A 0.9500
Si1—C17 1.880 (2) C15—C16 1.394 (3)
Si1—C11 1.886 (2) C15—H15A 0.9500
C1—C2 1.432 (3) C16—H16A 0.9500
C1—C5 1.438 (3) C17—C22 1.390 (3)
C2—C3 1.419 (3) C17—C18 1.398 (3)
C2—H2A 1.0000 C18—C19 1.388 (3)
C3—C4 1.419 (4) C18—H18A 0.9500
C3—H3A 1.0000 C19—C20 1.374 (4)
C4—C5 1.419 (4) C19—H19A 0.9500
C4—H4A 1.0000 C20—C21 1.379 (4)
C5—H5A 1.0000 C20—H20A 0.9500
C6—C10 1.406 (4) C21—C22 1.384 (4)
C6—C7 1.409 (4) C21—H21A 0.9500
C6—H6A 1.0000 C22—H22A 0.9500
C7—C8 1.420 (4) C23—H23A 0.9800
C7—H7A 1.0000 C23—H23B 0.9800
C8—C9 1.406 (5) C23—H23C 0.9800
C1—Si1—C23 112.13 (11) C13—C12—C11 121.6 (3)
C1—Si1—C17 108.03 (10) C13—C12—H12A 119.2
C23—Si1—C17 109.78 (11) C11—C12—H12A 119.2
C1—Si1—C11 108.27 (10) C14—C13—C12 119.9 (3)
C23—Si1—C11 111.31 (11) C14—C13—H13A 120.0
C17—Si1—C11 107.13 (10) C12—C13—H13A 120.0
C2—C1—C5 106.2 (2) C13—C14—C15 120.0 (2)
C2—C1—Si1 125.65 (18) C13—C14—H14A 120.0
C5—C1—Si1 128.02 (18) C15—C14—H14A 120.0
C3—C2—C1 109.2 (2) C14—C15—C16 119.9 (3)
C3—C2—H2A 125.4 C14—C15—H15A 120.0
C1—C2—H2A 125.4 C16—C15—H15A 120.0
C2—C3—C4 107.7 (2) C15—C16—C11 121.4 (2)
C2—C3—H3A 126.1 C15—C16—H16A 119.3
C4—C3—H3A 126.1 C11—C16—H16A 119.3
C3—C4—C5 108.2 (2) C22—C17—C18 117.0 (2)
C3—C4—H4A 125.9 C22—C17—Si1 120.84 (19)
C5—C4—H4A 125.9 C18—C17—Si1 122.10 (18)
C4—C5—C1 108.7 (2) C19—C18—C17 120.9 (2)
C4—C5—H5A 125.7 C19—C18—H18A 119.5
C1—C5—H5A 125.7 C17—C18—H18A 119.5
C10—C6—C7 108.2 (3) C20—C19—C18 120.6 (3)
C10—C6—H6A 125.9 C20—C19—H19A 119.7
C7—C6—H6A 125.9 C18—C19—H19A 119.7
C6—C7—C8 107.8 (3) C19—C20—C21 119.6 (2)
C6—C7—H7A 126.1 C19—C20—H20A 120.2
C8—C7—H7A 126.1 C21—C20—H20A 120.2
C9—C8—C7 107.9 (3) C20—C21—C22 119.6 (3)
C9—C8—H8A 126.1 C20—C21—H21A 120.2
C7—C8—H8A 126.1 C22—C21—H21A 120.2
C8—C9—C10 108.0 (3) C21—C22—C17 122.2 (2)
C8—C9—H9A 126.0 C21—C22—H22A 118.9
C10—C9—H9A 126.0 C17—C22—H22A 118.9
C6—C10—C9 108.1 (3) Si1—C23—H23A 109.5
C6—C10—H10A 125.9 Si1—C23—H23B 109.5
C9—C10—H10A 125.9 H23A—C23—H23B 109.5
C16—C11—C12 117.1 (2) Si1—C23—H23C 109.5
C16—C11—Si1 120.98 (17) H23A—C23—H23C 109.5
C12—C11—Si1 121.88 (19) H23B—C23—H23C 109.5
C23—Si1—C1—C2 135.4 (2) C17—Si1—C11—C12 −177.0 (2)
C17—Si1—C1—C2 −103.5 (2) C16—C11—C12—C13 −0.6 (4)
C11—Si1—C1—C2 12.2 (2) Si1—C11—C12—C13 178.4 (2)
C23—Si1—C1—C5 −49.7 (2) C11—C12—C13—C14 0.4 (4)
C17—Si1—C1—C5 71.4 (2) C12—C13—C14—C15 0.0 (4)
C11—Si1—C1—C5 −172.9 (2) C13—C14—C15—C16 −0.2 (4)
C5—C1—C2—C3 −0.2 (3) C14—C15—C16—C11 −0.1 (4)
Si1—C1—C2—C3 175.60 (17) C12—C11—C16—C15 0.4 (4)
C1—C2—C3—C4 0.2 (3) Si1—C11—C16—C15 −178.6 (2)
C2—C3—C4—C5 0.0 (3) C1—Si1—C17—C22 31.9 (2)
C3—C4—C5—C1 −0.1 (3) C23—Si1—C17—C22 154.5 (2)
C2—C1—C5—C4 0.2 (3) C11—Si1—C17—C22 −84.5 (2)
Si1—C1—C5—C4 −175.47 (17) C1—Si1—C17—C18 −150.6 (2)
C10—C6—C7—C8 −0.3 (3) C23—Si1—C17—C18 −28.0 (2)
C6—C7—C8—C9 0.1 (3) C11—Si1—C17—C18 93.0 (2)
C7—C8—C9—C10 0.1 (3) C22—C17—C18—C19 0.0 (4)
C7—C6—C10—C9 0.4 (3) Si1—C17—C18—C19 −177.6 (2)
C8—C9—C10—C6 −0.3 (3) C17—C18—C19—C20 0.7 (4)
C1—Si1—C11—C16 −114.3 (2) C18—C19—C20—C21 −1.0 (4)
C23—Si1—C11—C16 122.0 (2) C19—C20—C21—C22 0.5 (4)
C17—Si1—C11—C16 2.0 (2) C20—C21—C22—C17 0.2 (4)
C1—Si1—C11—C12 66.7 (2) C18—C17—C22—C21 −0.5 (4)
C23—Si1—C11—C12 −56.9 (2) Si1—C17—C22—C21 177.1 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2007).

References

  1. Herberhold, M., Ayazi, A., Milius, W. & Wrackmeyer, B. (2002). J. Organomet. Chem. 656, 71–80.
  2. Rautz, H., Stüger, H., Kickelbick, G. & Pietzsch, C. (2001). J. Organomet. Chem. 627, 167–178.
  3. Rigaku (2007). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Stepnicka, P. (2008). Ferrocenes: Ligands, Materials and Biomolecules New York: Wiley.
  6. Togni, A. & Hayashi, T. (1994). Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science New York/Weinheim: Wiley/VCH.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014796/mw2007sup1.cif

e-67-0m636-sup1.cif (27.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014796/mw2007Isup2.hkl

e-67-0m636-Isup2.hkl (209KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES