Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1280–o1281. doi: 10.1107/S1600536811015376

Ethyl 4-hy­droxy-6-(4-hy­droxy­phen­yl)-4-trifluoro­methyl-2-sulfanyl­idene-1,3-diazinane-5-carboxyl­ate ethanol monosolvate

Feng-Ling Yang a,*, Wen-Jun Fa b
PMCID: PMC3089211  PMID: 21754562

Abstract

The title compound, C14H15F3N2O4S·C2H5OH, was prepared by reaction of 4-hy­droxy­benzaldehyde, ethyl 4,4,4-trifluoro-3-oxobutano­ate and thio­urea. The hexa­hydro­pyrimidine ring adopts a half-chair conformation, the mean plane formed by the ring atoms excluding the C atom bonded to the eth­oxy­carbonyl group has an r.m.s. deviation of 0.0333 Å, and the dihedral angle between this plane and the benzene ring is 56.76 (5)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond, generating an S(6) ring. The crystal structure is stabilized by inter­molecular O—H⋯O, O—H⋯S, N—H⋯O and N—H⋯S hydrogen bonds. The ethyl group of the ester unit is disordered over two positions, with an occupancy ratio of 0.757 (10):0.243 (10).

Related literature

For the bioactivity of dihydro­pyrimidines, see: Brier et al. (2004); Cochran et al. (2005); Moran et al. (2007); Zorkun et al. (2006). For the bioactivity of organofluorine compounds, see: Hermann et al. (2003); Ulrich (2004). For a related structure, see: Song et al. (2010).graphic file with name e-67-o1280-scheme1.jpg

Experimental

Crystal data

  • C14H15F3N2O4S·C2H6O

  • M r = 410.41

  • Monoclinic, Inline graphic

  • a = 14.7204 (14) Å

  • b = 9.9772 (12) Å

  • c = 14.7357 (15) Å

  • β = 119.716 (11)°

  • V = 1879.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 113 K

  • 0.20 × 0.16 × 0.10 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009) T min = 0.955, T max = 0.977

  • 23471 measured reflections

  • 4486 independent reflections

  • 3815 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.092

  • S = 1.03

  • 4486 reflections

  • 280 parameters

  • 24 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811015376/om2424sup1.cif

e-67-o1280-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015376/om2424Isup2.hkl

e-67-o1280-Isup2.hkl (219.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015376/om2424Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.853 (19) 1.987 (19) 2.7383 (13) 146.3 (17)
O1—H1⋯S1i 0.853 (19) 3.029 (19) 3.4858 (11) 115.8 (15)
O4—H4⋯O5ii 0.835 (18) 1.873 (19) 2.7066 (14) 175.6 (19)
O5—H5⋯S1iii 0.84 2.36 3.1970 (11) 175
N1—H1A⋯S1iii 0.855 (17) 2.583 (18) 3.4307 (12) 171.5 (14)
N2—H2A⋯O1iv 0.814 (14) 2.368 (15) 3.1701 (15) 168.7 (14)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Education Department, China (grant No. 2007150036).

supplementary crystallographic information

Comment

Dihydropyrimidine (DHPM) derivatives can be used as potential calcium channel blockers (Zorkun et al., 2006), inhibitors of mitotic kinesin Eg5 for treating cancer (Cochran et al., 2005; Brier et al., 2004) and as TRPA1 modulators for treating pain (Moran et al., 2007). In addition, compounds that contain fluorine have special bioactivity, e.g. flumioxazin is a widely used herbicide (Hermann et al., 2003; Ulrich, 2004). This led us to focus our attention on the synthesis and bioactivity of these important fused perfluoroalkylated heterocyclic compounds. During the synthesis of DHPM derivatives, the title compound, an intermediate C14H15F3N2O4S.C2H5OH was isolated and the structure confirmed by X-ray diffraction.

In the structure of the title molecule, the 1,3-diazinane ring adopts a half-chair conformation, the mean plane formed by the ring atoms excluding the C atom bonded to the ethoxy carbonyl group has an r.m.s. deviation of 0.0333 Å, the dihedral angle between the mean plane and benzene ring is 56.76 (5)°. The molecular conformation is stabilized by intramolecular O—H···O hydrogen bond, generating an S(6) ring. The crystal structure is stabilized by intermolecular hydrogen bonds (O—H···O, O—H···S, N—H···O and N—H···S). The ethyl group of the ester unit is disordered over two positions, with a site-occupancy ratio of 0.757 (10):0.243 (10). For a crystal structure related to the title compound, see: Song et al., 2010.

Experimental

The title compound was synthesized by refluxing for 3 h a stirred solution of 4-hydroxybenzaldehyde (2.45 g, 20 mmol), ethyl 4,4,4-trifluoro-3-oxobutanoate (4.42 g, 24 mmol) and thiourea (2.28 g, 30 mmol) in 20 ml of anhydrous ethanol. The reaction was catalyzed by sulfamic acid (0.6 g). The solvent was evaporated in vacuo and the residue was washed with water. The title compound was recrystallized by slow evaporation of a 50% aqueous ethanol solution.

Refinement

H atoms involved in hydrogen-bonding inetractions were located by difference Fourier methods and their positional and isotropic displacement parameters were refined. Other H atoms were placed in calculated positions, with C—H(aromatic) = 0.95 Å and C—H(aliphatic) = 0.98 Å or 0.99 Å, and treated as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular configuration and atom numbering scheme with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C14H15F3N2O4S·C2H6O F(000) = 856
Mr = 410.41 Dx = 1.450 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.7204 (14) Å Cell parameters from 6768 reflections
b = 9.9772 (12) Å θ = 2.0–27.9°
c = 14.7357 (15) Å µ = 0.23 mm1
β = 119.716 (11)° T = 113 K
V = 1879.6 (3) Å3 Prism, colorless
Z = 4 0.20 × 0.16 × 0.10 mm

Data collection

Rigaku Saturn CCD area-detector diffractometer 4486 independent reflections
Radiation source: rotating anode 3815 reflections with I > 2σ(I)
multilayer Rint = 0.047
Detector resolution: 14.63 pixels mm-1 θmax = 27.9°, θmin = 2.6°
ω and φ scans h = −18→19
Absorption correction: multi-scan (CrystalClear; Rigaku, 2009) k = −13→13
Tmin = 0.955, Tmax = 0.977 l = −19→19
23471 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0506P)2] where P = (Fo2 + 2Fc2)/3
4486 reflections (Δ/σ)max = 0.004
280 parameters Δρmax = 0.47 e Å3
24 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.42068 (2) 0.59475 (3) 0.35546 (2) 0.01745 (10)
F1 0.79908 (6) 0.50693 (8) 0.56642 (6) 0.0289 (2)
F2 0.74838 (6) 0.31639 (8) 0.59449 (6) 0.0272 (2)
F3 0.85429 (6) 0.32318 (9) 0.53355 (6) 0.0293 (2)
O1 0.65426 (7) 0.24640 (9) 0.38459 (7) 0.0190 (2)
H1 0.6926 (15) 0.2229 (18) 0.3589 (15) 0.056 (6)*
O2 0.79221 (7) 0.28215 (9) 0.31283 (7) 0.0234 (2)
O3 0.85300 (8) 0.49263 (10) 0.32835 (9) 0.0356 (3)
O4 0.68310 (8) 0.73637 (10) −0.05667 (8) 0.0264 (2)
H4 0.7053 (15) 0.6801 (19) −0.0829 (14) 0.048 (6)*
N1 0.58962 (8) 0.44198 (11) 0.41833 (8) 0.0161 (2)
N2 0.52429 (9) 0.53998 (11) 0.25624 (8) 0.0171 (2)
C1 0.51772 (9) 0.52182 (12) 0.34218 (9) 0.0154 (3)
C2 0.67753 (10) 0.38150 (12) 0.41637 (10) 0.0156 (3)
C3 0.77017 (10) 0.38279 (13) 0.52882 (10) 0.0199 (3)
C4 0.70305 (9) 0.46428 (12) 0.34352 (9) 0.0153 (3)
H4A 0.7255 0.5564 0.3730 0.018*
C5 0.78765 (10) 0.40048 (13) 0.32782 (10) 0.0183 (3)
C6 0.9245 (3) 0.4501 (3) 0.2899 (4) 0.0349 (8) 0.757 (10)
H6A 0.8925 0.3759 0.2391 0.042* 0.757 (10)
H6B 0.9914 0.4179 0.3490 0.042* 0.757 (10)
C7 0.9440 (2) 0.5681 (4) 0.2384 (2) 0.0371 (9) 0.757 (10)
H7A 0.9920 0.5418 0.2134 0.056* 0.757 (10)
H7B 0.9751 0.6413 0.2890 0.056* 0.757 (10)
H7C 0.8777 0.5981 0.1791 0.056* 0.757 (10)
C6' 0.9536 (7) 0.4377 (10) 0.3420 (11) 0.034 (2) 0.243 (10)
H6'A 0.9568 0.3387 0.3462 0.041* 0.243 (10)
H6'B 1.0158 0.4770 0.4028 0.041* 0.243 (10)
C7' 0.9382 (8) 0.4894 (18) 0.2394 (9) 0.056 (3) 0.243 (10)
H7'A 0.9987 0.4651 0.2320 0.083* 0.243 (10)
H7'B 0.9309 0.5872 0.2373 0.083* 0.243 (10)
H7'C 0.8748 0.4497 0.1820 0.083* 0.243 (10)
C8 0.60150 (10) 0.47359 (12) 0.23647 (9) 0.0157 (3)
H8A 0.5765 0.3807 0.2107 0.019*
C9 0.61729 (10) 0.54638 (12) 0.15579 (9) 0.0158 (3)
C10 0.63212 (10) 0.47113 (13) 0.08457 (9) 0.0171 (3)
H10A 0.6260 0.3763 0.0842 0.021*
C11 0.65560 (10) 0.53228 (13) 0.01436 (10) 0.0179 (3)
H11A 0.6675 0.4794 −0.0323 0.021*
C12 0.66173 (10) 0.67134 (13) 0.01224 (10) 0.0179 (3)
C13 0.64511 (11) 0.74801 (13) 0.08177 (10) 0.0215 (3)
H13A 0.6479 0.8430 0.0799 0.026*
C14 0.62449 (11) 0.68552 (13) 0.15354 (10) 0.0194 (3)
H14A 0.6151 0.7382 0.2020 0.023*
O5 0.74901 (7) 0.56068 (11) 0.84823 (8) 0.0276 (2)
H5 0.7076 0.5158 0.7956 0.041*
C15 0.84625 (12) 0.57515 (17) 0.84999 (13) 0.0359 (4)
H15A 0.8351 0.6201 0.7854 0.043*
H15B 0.8774 0.4859 0.8539 0.043*
C16 0.91849 (13) 0.65741 (19) 0.94378 (15) 0.0484 (5)
H16A 0.9857 0.6682 0.9460 0.073*
H16B 0.9295 0.6120 1.0074 0.073*
H16C 0.8873 0.7457 0.9391 0.073*
H1A 0.5812 (12) 0.4270 (16) 0.4708 (13) 0.037 (5)*
H2A 0.4826 (11) 0.5934 (14) 0.2148 (11) 0.018 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01884 (18) 0.01825 (17) 0.01816 (17) 0.00402 (12) 0.01138 (14) 0.00283 (12)
F1 0.0287 (5) 0.0258 (4) 0.0222 (4) −0.0028 (4) 0.0051 (4) −0.0062 (3)
F2 0.0265 (5) 0.0362 (5) 0.0191 (4) 0.0057 (4) 0.0116 (4) 0.0094 (3)
F3 0.0191 (4) 0.0438 (5) 0.0235 (4) 0.0123 (4) 0.0093 (4) 0.0032 (4)
O1 0.0237 (5) 0.0137 (5) 0.0235 (5) −0.0001 (4) 0.0147 (4) −0.0010 (4)
O2 0.0242 (5) 0.0206 (5) 0.0291 (5) 0.0010 (4) 0.0160 (4) −0.0031 (4)
O3 0.0276 (6) 0.0282 (6) 0.0643 (8) −0.0086 (5) 0.0330 (6) −0.0118 (5)
O4 0.0427 (6) 0.0200 (5) 0.0283 (5) 0.0029 (4) 0.0267 (5) 0.0046 (4)
N1 0.0176 (6) 0.0183 (5) 0.0151 (5) 0.0028 (4) 0.0100 (5) 0.0027 (4)
N2 0.0167 (6) 0.0204 (6) 0.0145 (5) 0.0046 (5) 0.0080 (5) 0.0033 (4)
C1 0.0169 (6) 0.0133 (6) 0.0158 (6) −0.0025 (5) 0.0080 (5) −0.0010 (5)
C2 0.0159 (6) 0.0148 (6) 0.0165 (6) 0.0006 (5) 0.0084 (5) 0.0000 (5)
C3 0.0199 (7) 0.0216 (7) 0.0195 (6) 0.0037 (5) 0.0108 (6) 0.0014 (5)
C4 0.0167 (6) 0.0143 (6) 0.0161 (6) −0.0005 (5) 0.0090 (5) −0.0008 (5)
C5 0.0145 (6) 0.0229 (7) 0.0159 (6) −0.0009 (5) 0.0063 (5) −0.0011 (5)
C6 0.0241 (17) 0.0424 (15) 0.050 (2) −0.0031 (12) 0.0270 (17) −0.0049 (16)
C7 0.0250 (12) 0.062 (2) 0.0300 (12) −0.0070 (13) 0.0177 (10) 0.0034 (13)
C6' 0.012 (4) 0.041 (4) 0.050 (6) 0.001 (3) 0.015 (4) 0.002 (4)
C7' 0.039 (5) 0.081 (8) 0.058 (5) −0.005 (5) 0.033 (4) 0.002 (5)
C8 0.0175 (6) 0.0158 (6) 0.0154 (6) −0.0005 (5) 0.0095 (5) −0.0012 (5)
C9 0.0155 (6) 0.0167 (6) 0.0147 (6) 0.0008 (5) 0.0072 (5) 0.0009 (5)
C10 0.0196 (7) 0.0142 (6) 0.0179 (6) −0.0006 (5) 0.0096 (6) −0.0004 (5)
C11 0.0209 (7) 0.0184 (6) 0.0160 (6) 0.0000 (5) 0.0105 (6) −0.0023 (5)
C12 0.0193 (7) 0.0190 (7) 0.0173 (6) 0.0018 (5) 0.0106 (6) 0.0034 (5)
C13 0.0292 (8) 0.0137 (6) 0.0251 (7) 0.0012 (5) 0.0161 (6) 0.0002 (5)
C14 0.0253 (7) 0.0172 (6) 0.0196 (6) 0.0010 (5) 0.0140 (6) −0.0018 (5)
O5 0.0236 (5) 0.0372 (6) 0.0255 (5) −0.0044 (4) 0.0149 (5) −0.0081 (4)
C15 0.0264 (8) 0.0492 (10) 0.0368 (9) −0.0002 (7) 0.0193 (8) 0.0010 (8)
C16 0.0275 (9) 0.0468 (11) 0.0586 (12) −0.0065 (8) 0.0120 (9) −0.0034 (9)

Geometric parameters (Å, °)

S1—C1 1.6987 (13) C7—H7C 0.9800
F1—C3 1.3373 (15) C6'—C7' 1.504 (14)
F2—C3 1.3364 (15) C6'—H6'A 0.9900
F3—C3 1.3440 (15) C6'—H6'B 0.9900
O1—C2 1.4123 (15) C7'—H7'A 0.9800
O1—H1 0.853 (19) C7'—H7'B 0.9800
O2—C5 1.2090 (15) C7'—H7'C 0.9800
O3—C5 1.3279 (16) C8—C9 1.5063 (17)
O3—C6 1.483 (3) C8—H8A 1.0000
O3—C6' 1.497 (9) C9—C10 1.3927 (17)
O4—C12 1.3666 (15) C9—C14 1.3939 (17)
O4—H4 0.835 (18) C10—C11 1.3844 (17)
N1—C1 1.3551 (16) C10—H10A 0.9500
N1—C2 1.4410 (16) C11—C12 1.3917 (18)
N1—H1A 0.855 (17) C11—H11A 0.9500
N2—C1 1.3294 (16) C12—C13 1.3940 (18)
N2—C8 1.4640 (16) C13—C14 1.3849 (18)
N2—H2A 0.814 (14) C13—H13A 0.9500
C2—C3 1.5380 (18) C14—H14A 0.9500
C2—C4 1.5413 (17) O5—C15 1.4261 (16)
C4—C5 1.5149 (17) O5—H5 0.8400
C4—C8 1.5472 (17) C15—C16 1.503 (2)
C4—H4A 1.0000 C15—H15A 0.9900
C6—C7 1.504 (4) C15—H15B 0.9900
C6—H6A 0.9900 C16—H16A 0.9800
C6—H6B 0.9900 C16—H16B 0.9800
C7—H7A 0.9800 C16—H16C 0.9800
C7—H7B 0.9800
C2—O1—H1 107.7 (13) O3—C6'—H6'A 112.7
C5—O3—C6 116.66 (15) C7'—C6'—H6'A 112.7
C5—O3—C6' 114.4 (4) O3—C6'—H6'B 112.7
C6—O3—C6' 26.4 (4) C7'—C6'—H6'B 112.7
C12—O4—H4 108.2 (13) H6'A—C6'—H6'B 110.2
C1—N1—C2 124.76 (11) C6'—C7'—H7'A 109.5
C1—N1—H1A 116.6 (11) C6'—C7'—H7'B 109.5
C2—N1—H1A 118.6 (11) H7'A—C7'—H7'B 109.5
C1—N2—C8 123.93 (11) C6'—C7'—H7'C 109.5
C1—N2—H2A 114.8 (10) H7'A—C7'—H7'C 109.5
C8—N2—H2A 121.3 (10) H7'B—C7'—H7'C 109.5
N2—C1—N1 118.24 (11) N2—C8—C9 112.19 (10)
N2—C1—S1 120.92 (10) N2—C8—C4 106.10 (10)
N1—C1—S1 120.84 (9) C9—C8—C4 112.61 (10)
O1—C2—N1 109.49 (10) N2—C8—H8A 108.6
O1—C2—C3 107.76 (10) C9—C8—H8A 108.6
N1—C2—C3 107.48 (10) C4—C8—H8A 108.6
O1—C2—C4 112.54 (10) C10—C9—C14 118.48 (12)
N1—C2—C4 108.72 (10) C10—C9—C8 118.55 (11)
C3—C2—C4 110.72 (10) C14—C9—C8 122.83 (11)
F2—C3—F1 107.49 (10) C11—C10—C9 121.06 (12)
F2—C3—F3 106.79 (10) C11—C10—H10A 119.5
F1—C3—F3 107.01 (11) C9—C10—H10A 119.5
F2—C3—C2 111.90 (11) C10—C11—C12 119.94 (12)
F1—C3—C2 112.59 (10) C10—C11—H11A 120.0
F3—C3—C2 110.75 (10) C12—C11—H11A 120.0
C5—C4—C2 112.57 (10) O4—C12—C11 122.09 (12)
C5—C4—C8 108.75 (10) O4—C12—C13 118.32 (12)
C2—C4—C8 107.24 (10) C11—C12—C13 119.58 (12)
C5—C4—H4A 109.4 C14—C13—C12 119.94 (12)
C2—C4—H4A 109.4 C14—C13—H13A 120.0
C8—C4—H4A 109.4 C12—C13—H13A 120.0
O2—C5—O3 124.85 (12) C13—C14—C9 120.96 (12)
O2—C5—C4 124.23 (12) C13—C14—H14A 119.5
O3—C5—C4 110.86 (11) C9—C14—H14A 119.5
O3—C6—C7 108.6 (2) C15—O5—H5 109.5
O3—C6—H6A 110.0 O5—C15—C16 108.56 (13)
C7—C6—H6A 110.0 O5—C15—H15A 110.0
O3—C6—H6B 110.0 C16—C15—H15A 110.0
C7—C6—H6B 110.0 O5—C15—H15B 110.0
H6A—C6—H6B 108.4 C16—C15—H15B 110.0
C6—C7—H7A 109.5 H15A—C15—H15B 108.4
C6—C7—H7B 109.5 C15—C16—H16A 109.5
H7A—C7—H7B 109.5 C15—C16—H16B 109.5
C6—C7—H7C 109.5 H16A—C16—H16B 109.5
H7A—C7—H7C 109.5 C15—C16—H16C 109.5
H7B—C7—H7C 109.5 H16A—C16—H16C 109.5
O3—C6'—C7' 95.3 (7) H16B—C16—H16C 109.5
C8—N2—C1—N1 3.16 (18) C8—C4—C5—O2 −75.56 (15)
C8—N2—C1—S1 −175.89 (9) C2—C4—C5—O3 −139.51 (11)
C2—N1—C1—N2 4.26 (18) C8—C4—C5—O3 101.80 (12)
C2—N1—C1—S1 −176.69 (9) C5—O3—C6—C7 147.6 (2)
C1—N1—C2—O1 −100.03 (14) C6'—O3—C6—C7 −120.7 (11)
C1—N1—C2—C3 143.19 (12) C5—O3—C6'—C7' 119.4 (7)
C1—N1—C2—C4 23.29 (16) C6—O3—C6'—C7' 18.2 (10)
O1—C2—C3—F2 −59.19 (13) C1—N2—C8—C9 −159.43 (11)
N1—C2—C3—F2 58.73 (13) C1—N2—C8—C4 −36.07 (16)
C4—C2—C3—F2 177.35 (10) C5—C4—C8—N2 −178.07 (10)
O1—C2—C3—F1 179.61 (10) C2—C4—C8—N2 59.94 (12)
N1—C2—C3—F1 −62.47 (13) C5—C4—C8—C9 −54.97 (13)
C4—C2—C3—F1 56.15 (14) C2—C4—C8—C9 −176.96 (10)
O1—C2—C3—F3 59.84 (13) N2—C8—C9—C10 −141.94 (12)
N1—C2—C3—F3 177.76 (10) C4—C8—C9—C10 98.43 (13)
C4—C2—C3—F3 −63.63 (14) N2—C8—C9—C14 42.35 (16)
O1—C2—C4—C5 −52.75 (14) C4—C8—C9—C14 −77.28 (15)
N1—C2—C4—C5 −174.22 (10) C14—C9—C10—C11 1.30 (18)
C3—C2—C4—C5 67.91 (13) C8—C9—C10—C11 −174.60 (11)
O1—C2—C4—C8 66.82 (13) C9—C10—C11—C12 −1.85 (19)
N1—C2—C4—C8 −54.65 (13) C10—C11—C12—O4 −178.99 (12)
C3—C2—C4—C8 −172.52 (10) C10—C11—C12—C13 0.62 (19)
C6—O3—C5—O2 11.0 (3) O4—C12—C13—C14 −179.24 (12)
C6'—O3—C5—O2 −18.2 (6) C11—C12—C13—C14 1.14 (19)
C6—O3—C5—C4 −166.3 (2) C12—C13—C14—C9 −1.7 (2)
C6'—O3—C5—C4 164.5 (6) C10—C9—C14—C13 0.48 (19)
C2—C4—C5—O2 43.13 (17) C8—C9—C14—C13 176.20 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.853 (19) 1.987 (19) 2.7383 (13) 146.3 (17)
O1—H1···S1i 0.853 (19) 3.029 (19) 3.4858 (11) 115.8 (15)
O4—H4···O5ii 0.835 (18) 1.873 (19) 2.7066 (14) 175.6 (19)
O5—H5···S1iii 0.84 2.36 3.1970 (11) 175
N1—H1A···S1iii 0.855 (17) 2.583 (18) 3.4307 (12) 171.5 (14)
N2—H2A···O1iv 0.814 (14) 2.368 (15) 3.1701 (15) 168.7 (14)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, y, z−1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2424).

References

  1. Brier, S., Lemaire, D., Debonis, S., Forest, E. & Kozielski, F. (2004). Biochemistry, 43, 13072–13082. [DOI] [PubMed]
  2. Cochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658–12667. [DOI] [PMC free article] [PubMed]
  3. Hermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent No. 2 003 176 284.
  4. Moran, M. M., Fanger, C., Chong, J. A., McNamara, C., Zhen, X. G. & Mandel-Brehm, J. (2007). WO Patent No. 2 007 073 505.
  5. Rigaku (2009). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Song, X.-P., Li, G.-C., Wu, C.-Z. & Yang, F.-L. (2010). Acta Cryst. E66, o1083. [DOI] [PMC free article] [PubMed]
  8. Ulrich, H. (2004). US Patent No. 2 004 033 897.
  9. Zorkun, I. S., Sarac, S., Celebi, S. & Erol, K. (2006). Bioorg. Med. Chem. 14, 8582–8589. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811015376/om2424sup1.cif

e-67-o1280-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015376/om2424Isup2.hkl

e-67-o1280-Isup2.hkl (219.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015376/om2424Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES