Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):o1169. doi: 10.1107/S1600536811013894

1-(2,3-Dimeth­oxy­benzyl­idene)-2-(2,4-dinitro­phen­yl)hydrazine

Xianrong Xin a, Min Li a, Zhimin Chen a, Ruitao Zhu b,*
PMCID: PMC3089222  PMID: 21754475

Abstract

In the title compound, C15H14N4O6, the dihedral angle between the aromatic rings is 3.7 (4)°. The nitro groups make dihedral angles of 6.0 (4) and 5.2 (4)° with the parent ring and are oriented at 6.0 (6)° with respect to each other. The meth­oxy groups are inclined at 54.0 (2) and 2.5 (3)° with respect to the benzene ring to which they are attached. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions. The mol­ecular conformation is consolidated by an intra­molecular N—H⋯O hydrogen bond.

Related literature

For general background to the properties of Schiff base compounds, see: Mufakkar et al. (2010); Tahir et al. (2010). For related structures, see: Salhin et al. (2007); Tameem et al. (2008); Shao et al. (2008).graphic file with name e-67-o1169-scheme1.jpg

Experimental

Crystal data

  • C15H14N4O6

  • M r = 346.30

  • Triclinic, Inline graphic

  • a = 7.8409 (8) Å

  • b = 7.9200 (9) Å

  • c = 13.8961 (14) Å

  • α = 85.038 (2)°

  • β = 82.773 (1)°

  • γ = 65.894 (1)°

  • V = 780.85 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.43 × 0.38 × 0.37 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.952, T max = 0.958

  • 4130 measured reflections

  • 2725 independent reflections

  • 1414 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.178

  • S = 1.06

  • 2725 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013894/pv2405sup1.cif

e-67-o1169-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013894/pv2405Isup2.hkl

e-67-o1169-Isup2.hkl (133.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.99 2.625 (4) 130
C14—H14A⋯O4i 0.96 2.48 3.431 (4) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Professor Daqi Wang, Liaocheng University, for use of the X-ray diffraction facility.

supplementary crystallographic information

Comment

In view of the importance of hydrazone derivatives in chemical and biological applications (Shao et al., 2008), a series of hydrazone derivatives has been prepared, and several X-ray structures have been reported (Salhin et al., 2007; Aameem et al., 2008). Here, we report the crystal structure of the title compound.

The bond distances and bond angles in the title compound (Fig. 1) are in agreement with the corresponding bond distances and angles reported in the crystale structures of closely related compounds, (Salhin et al., 2007; Tameem et al., 2008). In the crystal structure (Fig. 2), the molecules are linked by C—H···O weak interactions (Table 1). The molecular conformation is consolidated by an intramolecular N—H···O hydrogen bonding interaction (Table 1).

Experimental

Equimolar quantities of 2,4-dinitrophenylhydrazine (0.99 g, 5.0 mmol) and 2,3-dimethoxybenzaldehyde (0.83 g, 5.0 mmol) were refluxed in ethanol (20 ml) for 30 min and rotary evaporated. The crystals of the title compound were growm by recrystallization from an ethanol solution.

Refinement

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93 and 0.96 Å, for methylene and ary H-atoms, respectively, and N—H = 0.86 Å with Uiso(H)= 1.2Ueq(methylene C/N) and 1.5Ueq(aryl C).

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound; displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) with hydrogen bonds drawn as dashed lines.

Crystal data

C15H14N4O6 Z = 2
Mr = 346.30 F(000) = 360
Triclinic, P1 Dx = 1.473 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8409 (8) Å Cell parameters from 855 reflections
b = 7.9200 (9) Å θ = 2.8–22.8°
c = 13.8961 (14) Å µ = 0.12 mm1
α = 85.038 (2)° T = 298 K
β = 82.773 (1)° Block, orange
γ = 65.894 (1)° 0.43 × 0.38 × 0.37 mm
V = 780.85 (14) Å3

Data collection

Bruker SMART CCD diffractometer 2725 independent reflections
Radiation source: fine-focus sealed tube 1414 reflections with I > 2σ(I)
graphite Rint = 0.032
φ and ω scans θmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −9→9
Tmin = 0.952, Tmax = 0.958 k = −9→9
4130 measured reflections l = −16→8

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063 H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0737P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2725 reflections Δρmax = 0.28 e Å3
229 parameters Δρmin = −0.25 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.028 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6288 (3) 0.1887 (3) 0.55122 (17) 0.0672 (7)
H1 0.7290 0.1995 0.5243 0.081*
N2 0.4685 (3) 0.2598 (3) 0.50406 (17) 0.0627 (6)
N3 0.9691 (3) 0.0341 (4) 0.6504 (3) 0.0789 (8)
N4 0.6248 (5) −0.1660 (4) 0.9164 (2) 0.0889 (9)
O1 0.9777 (3) 0.1238 (4) 0.57412 (19) 0.0936 (8)
O2 1.1061 (3) −0.0474 (4) 0.6963 (2) 0.1191 (10)
O3 0.7741 (4) −0.2406 (4) 0.9539 (2) 0.1259 (11)
O4 0.4763 (4) −0.1674 (4) 0.95499 (18) 0.1107 (9)
O5 0.5156 (3) 0.5336 (3) 0.25258 (14) 0.0734 (6)
O6 0.2347 (3) 0.6845 (3) 0.13346 (16) 0.0810 (7)
C1 0.6302 (3) 0.1025 (3) 0.6391 (2) 0.0549 (7)
C2 0.7926 (3) 0.0256 (4) 0.6903 (2) 0.0626 (8)
C3 0.7883 (4) −0.0608 (4) 0.7802 (2) 0.0681 (8)
H3 0.8956 −0.1094 0.8130 0.082*
C4 0.6287 (4) −0.0754 (4) 0.8214 (2) 0.0652 (8)
C5 0.4661 (4) −0.0033 (4) 0.7723 (2) 0.0651 (8)
H5 0.3567 −0.0136 0.8008 0.078*
C6 0.4688 (4) 0.0809 (4) 0.6841 (2) 0.0609 (7)
H6 0.3609 0.1260 0.6518 0.073*
C7 0.4850 (4) 0.3361 (4) 0.4206 (2) 0.0627 (7)
H7 0.6000 0.3394 0.3968 0.075*
C8 0.3275 (4) 0.4181 (4) 0.3620 (2) 0.0588 (7)
C9 0.3505 (4) 0.5101 (4) 0.2741 (2) 0.0602 (7)
C10 0.2012 (4) 0.5909 (4) 0.2156 (2) 0.0641 (8)
C11 0.0346 (4) 0.5735 (4) 0.2461 (2) 0.0744 (9)
H11 −0.0643 0.6240 0.2074 0.089*
C12 0.0117 (4) 0.4825 (4) 0.3330 (3) 0.0756 (9)
H12 −0.1026 0.4740 0.3525 0.091*
C13 0.1564 (4) 0.4046 (4) 0.3907 (2) 0.0684 (8)
H13 0.1404 0.3428 0.4488 0.082*
C14 0.6191 (4) 0.4797 (5) 0.1608 (2) 0.0847 (10)
H14A 0.5771 0.3991 0.1323 0.127*
H14B 0.7503 0.4159 0.1691 0.127*
H14C 0.5998 0.5877 0.1190 0.127*
C15 0.0951 (5) 0.7525 (5) 0.0675 (3) 0.1016 (12)
H15A 0.0718 0.6516 0.0472 0.152*
H15B 0.1378 0.8107 0.0118 0.152*
H15C −0.0187 0.8412 0.0987 0.152*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0509 (13) 0.0903 (17) 0.0649 (17) −0.0324 (12) −0.0047 (11) −0.0079 (13)
N2 0.0547 (14) 0.0696 (15) 0.0639 (16) −0.0245 (12) −0.0081 (11) −0.0030 (12)
N3 0.0472 (15) 0.0818 (19) 0.110 (2) −0.0237 (14) −0.0100 (15) −0.0246 (16)
N4 0.117 (3) 0.088 (2) 0.081 (2) −0.0550 (19) −0.0386 (19) 0.0088 (16)
O1 0.0661 (14) 0.133 (2) 0.0922 (18) −0.0513 (14) 0.0068 (12) −0.0250 (15)
O2 0.0526 (13) 0.124 (2) 0.180 (3) −0.0300 (13) −0.0379 (16) 0.0068 (18)
O3 0.136 (2) 0.138 (2) 0.114 (2) −0.0557 (18) −0.0725 (19) 0.0353 (17)
O4 0.142 (2) 0.140 (2) 0.0873 (19) −0.095 (2) −0.0317 (16) 0.0251 (15)
O5 0.0724 (13) 0.0967 (15) 0.0642 (13) −0.0473 (12) −0.0049 (10) −0.0064 (10)
O6 0.0827 (14) 0.0920 (15) 0.0730 (15) −0.0389 (12) −0.0219 (11) 0.0126 (12)
C1 0.0492 (15) 0.0540 (15) 0.0625 (19) −0.0194 (13) −0.0076 (12) −0.0111 (13)
C2 0.0461 (16) 0.0640 (18) 0.080 (2) −0.0201 (13) −0.0103 (14) −0.0183 (16)
C3 0.0621 (19) 0.0584 (17) 0.087 (2) −0.0196 (15) −0.0281 (16) −0.0119 (16)
C4 0.077 (2) 0.0615 (17) 0.066 (2) −0.0324 (15) −0.0250 (15) −0.0003 (14)
C5 0.0628 (18) 0.0648 (18) 0.076 (2) −0.0329 (15) −0.0142 (15) 0.0020 (15)
C6 0.0515 (16) 0.0651 (17) 0.070 (2) −0.0256 (13) −0.0144 (13) −0.0007 (15)
C7 0.0573 (17) 0.0741 (19) 0.0600 (19) −0.0302 (15) −0.0019 (13) −0.0060 (15)
C8 0.0543 (16) 0.0630 (17) 0.0602 (18) −0.0240 (14) −0.0005 (13) −0.0129 (13)
C9 0.0572 (17) 0.0653 (17) 0.0628 (19) −0.0287 (14) −0.0009 (13) −0.0125 (14)
C10 0.0627 (18) 0.0639 (18) 0.067 (2) −0.0250 (15) −0.0085 (14) −0.0074 (15)
C11 0.0620 (19) 0.075 (2) 0.089 (2) −0.0260 (16) −0.0185 (16) −0.0074 (17)
C12 0.0578 (18) 0.078 (2) 0.095 (3) −0.0327 (16) 0.0006 (17) −0.0115 (18)
C13 0.0627 (18) 0.0689 (19) 0.076 (2) −0.0293 (15) −0.0014 (15) −0.0098 (15)
C14 0.080 (2) 0.113 (3) 0.072 (2) −0.051 (2) −0.0011 (16) −0.0033 (18)
C15 0.095 (3) 0.120 (3) 0.084 (3) −0.035 (2) −0.032 (2) 0.019 (2)

Geometric parameters (Å, °)

N1—C1 1.345 (3) C5—C6 1.347 (4)
N1—N2 1.375 (3) C5—H5 0.9300
N1—H1 0.8600 C6—H6 0.9300
N2—C7 1.278 (3) C7—C8 1.455 (4)
N3—O2 1.230 (3) C7—H7 0.9300
N3—O1 1.234 (3) C8—C13 1.395 (4)
N3—C2 1.451 (4) C8—C9 1.397 (4)
N4—O4 1.223 (3) C9—C10 1.408 (4)
N4—O3 1.236 (3) C10—C11 1.379 (4)
N4—C4 1.450 (4) C11—C12 1.382 (4)
O5—C9 1.375 (3) C11—H11 0.9300
O5—C14 1.420 (3) C12—C13 1.372 (4)
O6—C10 1.363 (3) C12—H12 0.9300
O6—C15 1.420 (3) C13—H13 0.9300
C1—C6 1.407 (4) C14—H14A 0.9600
C1—C2 1.421 (4) C14—H14B 0.9600
C2—C3 1.375 (4) C14—H14C 0.9600
C3—C4 1.355 (4) C15—H15A 0.9600
C3—H3 0.9300 C15—H15B 0.9600
C4—C5 1.404 (4) C15—H15C 0.9600
C1—N1—N2 120.6 (2) C8—C7—H7 119.4
C1—N1—H1 119.7 C13—C8—C9 119.6 (3)
N2—N1—H1 119.7 C13—C8—C7 121.7 (3)
C7—N2—N1 114.9 (2) C9—C8—C7 118.7 (2)
O2—N3—O1 122.2 (3) O5—C9—C8 117.6 (2)
O2—N3—C2 117.5 (3) O5—C9—C10 121.8 (3)
O1—N3—C2 120.3 (3) C8—C9—C10 120.2 (3)
O4—N4—O3 123.2 (3) O6—C10—C11 125.7 (3)
O4—N4—C4 119.1 (3) O6—C10—C9 115.8 (3)
O3—N4—C4 117.7 (3) C11—C10—C9 118.4 (3)
C9—O5—C14 118.8 (2) C10—C11—C12 121.4 (3)
C10—O6—C15 117.7 (2) C10—C11—H11 119.3
N1—C1—C6 120.8 (2) C12—C11—H11 119.3
N1—C1—C2 122.6 (3) C13—C12—C11 120.4 (3)
C6—C1—C2 116.5 (3) C13—C12—H12 119.8
C3—C2—C1 121.0 (3) C11—C12—H12 119.8
C3—C2—N3 117.3 (3) C12—C13—C8 120.0 (3)
C1—C2—N3 121.8 (3) C12—C13—H13 120.0
C4—C3—C2 120.4 (3) C8—C13—H13 120.0
C4—C3—H3 119.8 O5—C14—H14A 109.5
C2—C3—H3 119.8 O5—C14—H14B 109.5
C3—C4—C5 120.2 (3) H14A—C14—H14B 109.5
C3—C4—N4 120.1 (3) O5—C14—H14C 109.5
C5—C4—N4 119.6 (3) H14A—C14—H14C 109.5
C6—C5—C4 119.9 (3) H14B—C14—H14C 109.5
C6—C5—H5 120.0 O6—C15—H15A 109.5
C4—C5—H5 120.0 O6—C15—H15B 109.5
C5—C6—C1 121.9 (2) H15A—C15—H15B 109.5
C5—C6—H6 119.0 O6—C15—H15C 109.5
C1—C6—H6 119.0 H15A—C15—H15C 109.5
N2—C7—C8 121.3 (3) H15B—C15—H15C 109.5
N2—C7—H7 119.4
C1—N1—N2—C7 −179.1 (2) C2—C1—C6—C5 2.0 (4)
N2—N1—C1—C6 0.9 (4) N1—N2—C7—C8 −179.8 (2)
N2—N1—C1—C2 179.5 (2) N2—C7—C8—C13 −5.0 (4)
N1—C1—C2—C3 179.7 (2) N2—C7—C8—C9 175.9 (2)
C6—C1—C2—C3 −1.7 (4) C14—O5—C9—C8 129.0 (3)
N1—C1—C2—N3 −0.4 (4) C14—O5—C9—C10 −57.3 (4)
C6—C1—C2—N3 178.2 (2) C13—C8—C9—O5 174.7 (2)
O2—N3—C2—C3 4.9 (4) C7—C8—C9—O5 −6.3 (4)
O1—N3—C2—C3 −173.6 (3) C13—C8—C9—C10 0.9 (4)
O2—N3—C2—C1 −174.9 (3) C7—C8—C9—C10 180.0 (2)
O1—N3—C2—C1 6.6 (4) C15—O6—C10—C11 −7.7 (4)
C1—C2—C3—C4 0.6 (4) C15—O6—C10—C9 173.9 (3)
N3—C2—C3—C4 −179.3 (2) O5—C9—C10—O6 3.7 (4)
C2—C3—C4—C5 0.3 (4) C8—C9—C10—O6 177.2 (2)
C2—C3—C4—N4 −179.8 (2) O5—C9—C10—C11 −174.8 (2)
O4—N4—C4—C3 175.4 (3) C8—C9—C10—C11 −1.4 (4)
O3—N4—C4—C3 −5.5 (4) O6—C10—C11—C12 −177.0 (3)
O4—N4—C4—C5 −4.7 (4) C9—C10—C11—C12 1.3 (4)
O3—N4—C4—C5 174.4 (3) C10—C11—C12—C13 −0.9 (5)
C3—C4—C5—C6 0.0 (4) C11—C12—C13—C8 0.4 (5)
N4—C4—C5—C6 −179.9 (2) C9—C8—C13—C12 −0.5 (4)
C4—C5—C6—C1 −1.2 (4) C7—C8—C13—C12 −179.5 (3)
N1—C1—C6—C5 −179.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 1.99 2.625 (4) 130
N1—H1···N3 0.86 2.60 2.913 (4) 103
C3—H3···O2 0.93 2.33 2.654 (4) 100
C6—H6···N2 0.93 2.44 2.766 (4) 100
C7—H7···O5 0.93 2.41 2.737 (4) 101
C14—H14A···O4i 0.96 2.48 3.431 (4) 170

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2405).

References

  1. Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Mufakkar, M., Tahir, M. N., Tariq, M. I., Ahmad, S. & Sarfraz, M. (2010). Acta Cryst. E66, o1887. [DOI] [PMC free article] [PubMed]
  3. Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.
  4. Shao, J., Lin, I., Yu, M., Cai, Z. & Lin, I. (2008). Talanta, 75, 551–555. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Tahir, M. N., Tariq, M. I., Ahmad, S., Sarfraz, M. & Ather, A. Q. (2010). Acta Cryst. E66, o1817. [DOI] [PMC free article] [PubMed]
  8. Tameem, A., Saad, B., Salhin, A. M., Jebas, S. R. & Fun, H.-K. (2008). Acta Cryst. E64, o679–o680. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013894/pv2405sup1.cif

e-67-o1169-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013894/pv2405Isup2.hkl

e-67-o1169-Isup2.hkl (133.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES