Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):m548. doi: 10.1107/S1600536811011640

[Bis­(2-pyrid­yl-κN)amine]chlorido(η6-hexa­methyl­benzene)­ruthenium(II) hexa­fluorido­phosphate dichloro­methane solvate

Gajendra Gupta a, Bruno Therrien b, Jinkwon Kim a,*
PMCID: PMC3089226  PMID: 21754285

Abstract

In the title half-sandwich complex, [RuCl(η6-C12H18)(C10H9N3)]PF6·CH2Cl2, the ruthenium(II) ion is four-coordinated by a chloro, a hexa­methyl­benzene and a bidentate N,N′-chelating di(pyridin-2-yl)amine ligand. In the crystal, the amino N—H group forms a hydrogen bond with the chloro ligand of a neighbouring complex, thus forming chains along the b axis. Weak inter­molecular C—H⋯F and C—H⋯ Cl contacts are also observed.

Related literature

For related structures with the same N,N′-chelating ligand coordinated to arene ruthenium moieties, see: Romain et al. (2010); Gupta et al. (2011); Singh et al. (2004). For the synthesis, see: Romain et al. (2010); Gupta et al. (2010).graphic file with name e-67-0m548-scheme1.jpg

Experimental

Crystal data

  • [RuCl(C12H18)(C10H9N3)]PF6·CH2Cl2

  • M r = 699.88

  • Monoclinic, Inline graphic

  • a = 15.5241 (4) Å

  • b = 9.1644 (2) Å

  • c = 18.9108 (5) Å

  • β = 93.621 (1)°

  • V = 2685.05 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 173 K

  • 0.20 × 0.17 × 0.16 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.738, T max = 0.871

  • 31923 measured reflections

  • 9327 independent reflections

  • 7812 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.087

  • S = 1.06

  • 9327 reflections

  • 344 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.78 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SMART and SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011640/om2411sup1.cif

e-67-0m548-sup1.cif (33.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011640/om2411Isup2.hkl

e-67-0m548-Isup2.hkl (456.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1i 0.85 (3) 2.51 (3) 3.3493 (17) 170 (3)
C3—H3⋯F3ii 0.95 2.52 3.351 (3) 146
C8—H8⋯F5i 0.95 2.55 3.435 (3) 155
C20—H20A⋯Cl3iii 0.98 2.78 3.626 (2) 144
C20—H20B⋯F2iv 0.98 2.54 3.424 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Korea Research Foundation (KRF 313-2008-2-C00444).

supplementary crystallographic information

Comment

The title complex shows typical three legged piano-stool geometry with the ruthenium(II) atom being coordinated by a hexamethylbenzene ligand occupying one face of the octahedron, a terminal chloro and a bidentate N,N'-chelating ligand, see Fig. 1. The di(pyridin-2-yl)amine ligand acts as a bidentate chelating ligand through its two pyridyl groups, and the Ru-N distances are essentially equivalent at 2.099 (2) and 2.098 (2) Å. The aromatic ring of the hexamethylbenzene is planar and the Ru-centroid distance is 1.690 (2) Å. The Ru-Cl distance is 2.4108 (4) Å, similar to that found in other chloro arene ruthenium complexes (Singh et al., 2004; Gupta et al., 2011).

In the crystal packing, the N-H amino group is involved in a H-bonded interaction with the chloro ligand of a neighbouring complex, thus forming infinite one-dimensional chains along the b axis. Moreover, there are weak intermolecular contacts of the type C—H···F and C—H··· Cl.

Experimental

The synthesis of the title compound has been reported (Romain et al., 2010; Gupta et al., 2011). Yellow-orange crystals for X-ray diffraction analysis were obtained by slow diffusion of hexane into a dichloromethane solution of the title complex.

Refinement

The H atoms were included in calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2 (1.5 for methyl) times Ueq(C), except for the H atom of the N—H group which was found in the Fourier difference map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of [RuCl(η2-C10H9N3-κ2-N,N')(η6-C12H18)]PF6. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[RuCl(C12H18)(C10H9N3)]PF6·CH2Cl2 F(000) = 1408
Mr = 699.88 Dx = 1.731 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 550 reflections
a = 15.5241 (4) Å θ = 1.7–27.0°
b = 9.1644 (2) Å µ = 1.00 mm1
c = 18.9108 (5) Å T = 173 K
β = 93.621 (1)° Block, orange
V = 2685.05 (12) Å3 0.20 × 0.17 × 0.16 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 9327 independent reflections
Radiation source: fine-focus sealed tube 7812 reflections with I > 2σ(I)
graphite Rint = 0.030
Detector resolution: 0 pixels mm-1 θmax = 33.9°, θmin = 1.7°
ω scans h = −22→24
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −14→11
Tmin = 0.738, Tmax = 0.871 l = −25→29
31923 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0383P)2 + 2.053P] where P = (Fo2 + 2Fc2)/3
9327 reflections (Δ/σ)max = 0.003
344 parameters Δρmax = 0.77 e Å3
0 restraints Δρmin = −0.78 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru1 0.623752 (8) 0.316216 (13) 0.871467 (6) 0.01424 (4)
Cl1 0.62147 (3) 0.05324 (4) 0.86885 (2) 0.02066 (8)
N1 0.75701 (10) 0.29849 (15) 0.86021 (8) 0.0181 (3)
N2 0.74819 (10) 0.42939 (17) 0.75231 (8) 0.0222 (3)
H2A 0.7794 (18) 0.472 (3) 0.7233 (15) 0.038 (7)*
N3 0.61569 (10) 0.30532 (15) 0.76042 (8) 0.0176 (3)
C1 0.80663 (12) 0.2324 (2) 0.91254 (10) 0.0237 (4)
H1 0.7790 0.1776 0.9472 0.028*
C2 0.89516 (13) 0.2416 (2) 0.91737 (12) 0.0306 (4)
H2 0.9280 0.1945 0.9548 0.037*
C3 0.93565 (14) 0.3209 (2) 0.86646 (13) 0.0323 (5)
H3 0.9967 0.3312 0.8694 0.039*
C4 0.88661 (13) 0.3843 (2) 0.81186 (11) 0.0265 (4)
H4 0.9133 0.4383 0.7764 0.032*
C5 0.79686 (12) 0.36842 (19) 0.80912 (9) 0.0196 (3)
C6 0.67229 (11) 0.37280 (19) 0.72068 (9) 0.0183 (3)
C7 0.65632 (13) 0.3905 (2) 0.64760 (9) 0.0238 (4)
H7 0.6973 0.4385 0.6205 0.029*
C8 0.58096 (14) 0.3377 (2) 0.61534 (10) 0.0300 (4)
H8 0.5682 0.3520 0.5660 0.036*
C9 0.52350 (14) 0.2629 (3) 0.65590 (10) 0.0285 (4)
H9 0.4716 0.2231 0.6347 0.034*
C10 0.54359 (12) 0.2481 (2) 0.72714 (9) 0.0226 (3)
H10 0.5051 0.1950 0.7546 0.027*
C11 0.59093 (13) 0.33487 (19) 0.98353 (9) 0.0215 (3)
C12 0.64864 (13) 0.4479 (2) 0.96903 (10) 0.0238 (4)
C13 0.63113 (13) 0.54226 (19) 0.90926 (10) 0.0244 (4)
C14 0.55431 (14) 0.5232 (2) 0.86567 (10) 0.0253 (4)
C15 0.49318 (12) 0.4121 (2) 0.88188 (10) 0.0234 (4)
C16 0.51229 (12) 0.31772 (19) 0.93991 (10) 0.0210 (3)
C17 0.61053 (17) 0.2298 (3) 1.04399 (11) 0.0362 (5)
H17A 0.6643 0.2589 1.0702 0.054*
H17B 0.6168 0.1310 1.0251 0.054*
H17C 0.5632 0.2314 1.0759 0.054*
C18 0.73129 (16) 0.4720 (3) 1.01410 (13) 0.0425 (6)
H18A 0.7244 0.5561 1.0453 0.064*
H18B 0.7786 0.4907 0.9834 0.064*
H18C 0.7445 0.3850 1.0429 0.064*
C19 0.69407 (19) 0.6613 (2) 0.89334 (15) 0.0425 (6)
H19A 0.6916 0.6792 0.8422 0.064*
H19B 0.7526 0.6311 0.9096 0.064*
H19C 0.6789 0.7509 0.9180 0.064*
C20 0.5372 (2) 0.6196 (3) 0.80187 (13) 0.0474 (7)
H20A 0.5179 0.7158 0.8171 0.071*
H20B 0.4923 0.5755 0.7700 0.071*
H20C 0.5903 0.6304 0.7770 0.071*
C21 0.40948 (15) 0.3991 (3) 0.83713 (13) 0.0415 (6)
H21A 0.3842 0.3026 0.8441 0.062*
H21B 0.4207 0.4116 0.7871 0.062*
H21C 0.3693 0.4747 0.8511 0.062*
C22 0.45135 (16) 0.1958 (2) 0.95564 (14) 0.0362 (5)
H22A 0.4105 0.1804 0.9146 0.054*
H22B 0.4196 0.2215 0.9970 0.054*
H22C 0.4843 0.1060 0.9655 0.054*
P1 0.83358 (3) −0.08437 (6) 1.08848 (3) 0.02634 (11)
F1 0.80510 (16) 0.0740 (2) 1.10653 (13) 0.0875 (7)
F2 0.88637 (13) −0.0904 (3) 1.16249 (9) 0.0800 (7)
F3 0.86296 (14) −0.2456 (2) 1.06967 (14) 0.0859 (7)
F4 0.78098 (12) −0.0793 (2) 1.01404 (8) 0.0590 (5)
F5 0.91667 (13) −0.0269 (3) 1.05393 (10) 0.0792 (7)
F6 0.75213 (14) −0.1494 (3) 1.12304 (11) 0.0860 (8)
Cl2 0.29778 (4) 0.13851 (7) 0.69513 (3) 0.04174 (14)
Cl3 0.40491 (4) −0.05472 (7) 0.78424 (4) 0.04606 (15)
C23 0.30396 (15) −0.0338 (3) 0.73642 (13) 0.0350 (5)
H23A 0.2966 −0.1114 0.7001 0.042*
H23B 0.2569 −0.0435 0.7691 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.01582 (7) 0.01321 (6) 0.01390 (6) 0.00102 (4) 0.00260 (5) 0.00107 (4)
Cl1 0.0245 (2) 0.01458 (17) 0.02333 (19) 0.00161 (14) 0.00529 (16) 0.00003 (13)
N1 0.0172 (7) 0.0176 (6) 0.0197 (6) 0.0012 (5) 0.0017 (5) 0.0011 (5)
N2 0.0209 (7) 0.0253 (7) 0.0210 (7) −0.0042 (6) 0.0053 (6) 0.0051 (6)
N3 0.0180 (7) 0.0189 (6) 0.0162 (6) 0.0002 (5) 0.0032 (5) 0.0019 (5)
C1 0.0233 (9) 0.0225 (8) 0.0251 (8) 0.0035 (7) −0.0018 (7) 0.0021 (7)
C2 0.0235 (10) 0.0298 (10) 0.0372 (10) 0.0042 (8) −0.0076 (8) 0.0009 (8)
C3 0.0170 (9) 0.0362 (11) 0.0432 (12) 0.0006 (8) −0.0009 (8) −0.0040 (9)
C4 0.0196 (9) 0.0266 (9) 0.0337 (10) −0.0027 (7) 0.0050 (7) −0.0028 (7)
C5 0.0192 (8) 0.0180 (7) 0.0218 (8) 0.0011 (6) 0.0033 (6) −0.0022 (6)
C6 0.0194 (8) 0.0169 (7) 0.0188 (7) 0.0028 (6) 0.0039 (6) 0.0025 (6)
C7 0.0273 (9) 0.0263 (8) 0.0184 (7) 0.0046 (7) 0.0054 (7) 0.0071 (6)
C8 0.0308 (11) 0.0406 (11) 0.0183 (8) 0.0056 (9) −0.0004 (7) 0.0055 (7)
C9 0.0262 (10) 0.0377 (11) 0.0211 (8) −0.0003 (8) −0.0031 (7) 0.0007 (8)
C10 0.0212 (8) 0.0259 (9) 0.0208 (8) −0.0015 (7) 0.0017 (7) 0.0008 (6)
C11 0.0304 (10) 0.0204 (8) 0.0143 (7) 0.0036 (7) 0.0063 (7) −0.0001 (6)
C12 0.0269 (9) 0.0238 (8) 0.0210 (8) 0.0001 (7) 0.0030 (7) −0.0068 (6)
C13 0.0321 (10) 0.0142 (7) 0.0281 (9) −0.0019 (7) 0.0114 (8) −0.0031 (6)
C14 0.0335 (10) 0.0187 (8) 0.0246 (8) 0.0107 (7) 0.0082 (7) 0.0045 (6)
C15 0.0204 (8) 0.0261 (8) 0.0239 (8) 0.0079 (7) 0.0037 (7) −0.0028 (7)
C16 0.0212 (8) 0.0190 (7) 0.0239 (8) 0.0018 (6) 0.0099 (7) −0.0021 (6)
C17 0.0536 (14) 0.0342 (10) 0.0212 (9) 0.0055 (10) 0.0052 (9) 0.0088 (8)
C18 0.0361 (12) 0.0547 (15) 0.0356 (11) −0.0057 (11) −0.0059 (10) −0.0177 (11)
C19 0.0544 (16) 0.0222 (10) 0.0532 (15) −0.0135 (10) 0.0228 (12) −0.0060 (9)
C20 0.0685 (18) 0.0369 (12) 0.0383 (12) 0.0245 (12) 0.0138 (12) 0.0198 (10)
C21 0.0233 (10) 0.0624 (16) 0.0381 (12) 0.0137 (11) −0.0040 (9) −0.0082 (11)
C22 0.0322 (11) 0.0302 (10) 0.0480 (13) −0.0074 (9) 0.0171 (10) −0.0006 (9)
P1 0.0245 (2) 0.0325 (3) 0.0217 (2) −0.0028 (2) −0.00065 (18) −0.00108 (19)
F1 0.0957 (16) 0.0516 (11) 0.1124 (18) 0.0272 (11) −0.0155 (14) −0.0377 (12)
F2 0.0692 (13) 0.128 (2) 0.0388 (9) −0.0203 (13) −0.0277 (9) 0.0085 (11)
F3 0.0794 (14) 0.0444 (11) 0.129 (2) 0.0169 (10) −0.0326 (13) −0.0205 (12)
F4 0.0668 (11) 0.0758 (12) 0.0315 (7) −0.0028 (9) −0.0187 (7) 0.0029 (7)
F5 0.0597 (12) 0.1159 (18) 0.0652 (12) −0.0452 (12) 0.0299 (9) −0.0266 (12)
F6 0.0573 (12) 0.145 (2) 0.0575 (12) −0.0489 (13) 0.0167 (9) −0.0009 (13)
Cl2 0.0485 (3) 0.0372 (3) 0.0377 (3) −0.0002 (3) −0.0113 (2) 0.0066 (2)
Cl3 0.0356 (3) 0.0451 (3) 0.0571 (4) 0.0073 (3) −0.0008 (3) 0.0181 (3)
C23 0.0355 (12) 0.0315 (10) 0.0377 (11) −0.0056 (9) −0.0006 (9) 0.0020 (9)

Geometric parameters (Å, °)

Ru1—N3 2.0982 (15) C12—C18 1.511 (3)
Ru1—N1 2.0993 (15) C13—C14 1.417 (3)
Ru1—C14 2.1808 (18) C13—C19 1.507 (3)
Ru1—C13 2.1920 (18) C14—C15 1.438 (3)
Ru1—C11 2.2173 (17) C14—C20 1.506 (3)
Ru1—C12 2.2178 (18) C15—C16 1.414 (3)
Ru1—C16 2.2255 (19) C15—C21 1.510 (3)
Ru1—C15 2.2292 (18) C16—C22 1.506 (3)
Ru1—Cl1 2.4108 (4) C17—H17A 0.9800
N1—C5 1.343 (2) C17—H17B 0.9800
N1—C1 1.358 (2) C17—H17C 0.9800
N2—C6 1.388 (2) C18—H18A 0.9800
N2—C5 1.391 (2) C18—H18B 0.9800
N2—H2A 0.85 (3) C18—H18C 0.9800
N3—C6 1.343 (2) C19—H19A 0.9800
N3—C10 1.355 (2) C19—H19B 0.9800
C1—C2 1.374 (3) C19—H19C 0.9800
C1—H1 0.9500 C20—H20A 0.9800
C2—C3 1.388 (3) C20—H20B 0.9800
C2—H2 0.9500 C20—H20C 0.9800
C3—C4 1.373 (3) C21—H21A 0.9800
C3—H3 0.9500 C21—H21B 0.9800
C4—C5 1.399 (3) C21—H21C 0.9800
C4—H4 0.9500 C22—H22A 0.9800
C6—C7 1.398 (2) C22—H22B 0.9800
C7—C8 1.373 (3) C22—H22C 0.9800
C7—H7 0.9500 P1—F1 1.5608 (19)
C8—C9 1.393 (3) P1—F5 1.5730 (18)
C8—H8 0.9500 P1—F6 1.5766 (19)
C9—C10 1.370 (3) P1—F2 1.5776 (16)
C9—H9 0.9500 P1—F4 1.5830 (14)
C10—H10 0.9500 P1—F3 1.593 (2)
C11—C12 1.408 (3) Cl2—C23 1.761 (2)
C11—C16 1.438 (3) Cl3—C23 1.770 (2)
C11—C17 1.511 (3) C23—H23A 0.9900
C12—C13 1.436 (3) C23—H23B 0.9900
N3—Ru1—N1 83.79 (6) C11—C12—Ru1 71.48 (10)
N3—Ru1—C14 89.60 (6) C13—C12—Ru1 70.03 (10)
N1—Ru1—C14 123.32 (7) C18—C12—Ru1 130.24 (15)
N3—Ru1—C13 111.71 (6) C14—C13—C12 119.61 (17)
N1—Ru1—C13 94.28 (7) C14—C13—C19 120.4 (2)
C14—Ru1—C13 37.81 (8) C12—C13—C19 120.0 (2)
N3—Ru1—C11 163.23 (7) C14—C13—Ru1 70.67 (10)
N1—Ru1—C11 112.97 (7) C12—C13—Ru1 71.98 (10)
C14—Ru1—C11 80.69 (7) C19—C13—Ru1 129.79 (15)
C13—Ru1—C11 68.04 (7) C13—C14—C15 120.39 (16)
N3—Ru1—C12 148.73 (7) C13—C14—C20 119.5 (2)
N1—Ru1—C12 90.31 (7) C15—C14—C20 120.1 (2)
C14—Ru1—C12 68.18 (7) C13—C14—Ru1 71.52 (10)
C13—Ru1—C12 38.00 (7) C15—C14—Ru1 72.80 (10)
C11—Ru1—C12 37.01 (7) C20—C14—Ru1 127.76 (15)
N3—Ru1—C16 125.66 (7) C16—C15—C14 119.30 (17)
N1—Ru1—C16 150.10 (7) C16—C15—C21 121.2 (2)
C14—Ru1—C16 67.90 (7) C14—C15—C21 119.49 (19)
C13—Ru1—C16 80.27 (7) C16—C15—Ru1 71.35 (10)
C11—Ru1—C16 37.78 (7) C14—C15—Ru1 69.15 (10)
C12—Ru1—C16 67.28 (7) C21—C15—Ru1 132.43 (14)
N3—Ru1—C15 96.32 (6) C15—C16—C11 120.49 (17)
N1—Ru1—C15 161.23 (7) C15—C16—C22 120.23 (19)
C14—Ru1—C15 38.05 (8) C11—C16—C22 119.27 (18)
C13—Ru1—C15 68.16 (7) C15—C16—Ru1 71.64 (11)
C11—Ru1—C15 67.67 (7) C11—C16—Ru1 70.80 (10)
C12—Ru1—C15 79.85 (7) C22—C16—Ru1 129.16 (13)
C16—Ru1—C15 37.01 (7) C11—C17—H17A 109.5
N3—Ru1—Cl1 86.10 (4) C11—C17—H17B 109.5
N1—Ru1—Cl1 86.21 (4) H17A—C17—H17B 109.5
C14—Ru1—Cl1 149.52 (6) C11—C17—H17C 109.5
C13—Ru1—Cl1 162.15 (5) H17A—C17—H17C 109.5
C11—Ru1—Cl1 95.32 (5) H17B—C17—H17C 109.5
C12—Ru1—Cl1 124.22 (5) C12—C18—H18A 109.5
C16—Ru1—Cl1 90.41 (5) C12—C18—H18B 109.5
C15—Ru1—Cl1 112.55 (5) H18A—C18—H18B 109.5
C5—N1—C1 118.13 (16) C12—C18—H18C 109.5
C5—N1—Ru1 122.54 (12) H18A—C18—H18C 109.5
C1—N1—Ru1 118.56 (13) H18B—C18—H18C 109.5
C6—N2—C5 126.00 (15) C13—C19—H19A 109.5
C6—N2—H2A 113.3 (18) C13—C19—H19B 109.5
C5—N2—H2A 112.2 (18) H19A—C19—H19B 109.5
C6—N3—C10 117.98 (15) C13—C19—H19C 109.5
C6—N3—Ru1 122.58 (12) H19A—C19—H19C 109.5
C10—N3—Ru1 118.60 (12) H19B—C19—H19C 109.5
N1—C1—C2 122.70 (19) C14—C20—H20A 109.5
N1—C1—H1 118.6 C14—C20—H20B 109.5
C2—C1—H1 118.6 H20A—C20—H20B 109.5
C1—C2—C3 118.73 (19) C14—C20—H20C 109.5
C1—C2—H2 120.6 H20A—C20—H20C 109.5
C3—C2—H2 120.6 H20B—C20—H20C 109.5
C4—C3—C2 119.31 (19) C15—C21—H21A 109.5
C4—C3—H3 120.3 C15—C21—H21B 109.5
C2—C3—H3 120.3 H21A—C21—H21B 109.5
C3—C4—C5 119.19 (19) C15—C21—H21C 109.5
C3—C4—H4 120.4 H21A—C21—H21C 109.5
C5—C4—H4 120.4 H21B—C21—H21C 109.5
N1—C5—N2 119.67 (16) C16—C22—H22A 109.5
N1—C5—C4 121.75 (17) C16—C22—H22B 109.5
N2—C5—C4 118.57 (17) H22A—C22—H22B 109.5
N3—C6—N2 119.91 (15) C16—C22—H22C 109.5
N3—C6—C7 121.68 (17) H22A—C22—H22C 109.5
N2—C6—C7 118.40 (16) H22B—C22—H22C 109.5
C8—C7—C6 119.44 (18) F1—P1—F5 91.77 (14)
C8—C7—H7 120.3 F1—P1—F6 90.87 (15)
C6—C7—H7 120.3 F5—P1—F6 177.30 (15)
C7—C8—C9 119.08 (18) F1—P1—F2 88.70 (13)
C7—C8—H8 120.5 F5—P1—F2 89.24 (12)
C9—C8—H8 120.5 F6—P1—F2 90.24 (12)
C10—C9—C8 118.44 (19) F1—P1—F4 91.70 (11)
C10—C9—H9 120.8 F5—P1—F4 90.64 (11)
C8—C9—H9 120.8 F6—P1—F4 89.86 (11)
N3—C10—C9 123.26 (18) F2—P1—F4 179.59 (14)
N3—C10—H10 118.4 F1—P1—F3 179.65 (17)
C9—C10—H10 118.4 F5—P1—F3 87.92 (14)
C12—C11—C16 119.76 (16) F6—P1—F3 89.44 (15)
C12—C11—C17 121.06 (19) F2—P1—F3 91.45 (13)
C16—C11—C17 119.18 (18) F4—P1—F3 88.15 (11)
C12—C11—Ru1 71.52 (10) Cl2—C23—Cl3 110.21 (12)
C16—C11—Ru1 71.42 (10) Cl2—C23—H23A 109.6
C17—C11—Ru1 128.81 (14) Cl3—C23—H23A 109.6
C11—C12—C13 120.36 (17) Cl2—C23—H23B 109.6
C11—C12—C18 121.75 (19) Cl3—C23—H23B 109.6
C13—C12—C18 117.87 (19) H23A—C23—H23B 108.1
N3—Ru1—N1—C5 40.39 (14) N1—Ru1—C13—C14 143.33 (11)
C14—Ru1—N1—C5 −45.02 (16) C11—Ru1—C13—C14 −103.61 (12)
C13—Ru1—N1—C5 −71.01 (14) C12—Ru1—C13—C14 −131.67 (17)
C11—Ru1—N1—C5 −138.95 (13) C16—Ru1—C13—C14 −66.32 (11)
C12—Ru1—N1—C5 −108.84 (14) C15—Ru1—C13—C14 −29.85 (11)
C16—Ru1—N1—C5 −148.91 (14) Cl1—Ru1—C13—C14 −125.76 (17)
C15—Ru1—N1—C5 −51.0 (3) N3—Ru1—C13—C12 −170.01 (11)
Cl1—Ru1—N1—C5 126.88 (14) N1—Ru1—C13—C12 −85.01 (12)
N3—Ru1—N1—C1 −149.88 (14) C14—Ru1—C13—C12 131.67 (17)
C14—Ru1—N1—C1 124.71 (14) C11—Ru1—C13—C12 28.06 (11)
C13—Ru1—N1—C1 98.72 (14) C16—Ru1—C13—C12 65.35 (12)
C11—Ru1—N1—C1 30.78 (15) C15—Ru1—C13—C12 101.82 (12)
C12—Ru1—N1—C1 60.89 (14) Cl1—Ru1—C13—C12 5.9 (3)
C16—Ru1—N1—C1 20.8 (2) N3—Ru1—C13—C19 −55.6 (2)
C15—Ru1—N1—C1 118.8 (2) N1—Ru1—C13—C19 29.4 (2)
Cl1—Ru1—N1—C1 −63.39 (13) C14—Ru1—C13—C19 −113.9 (3)
N1—Ru1—N3—C6 −39.46 (13) C11—Ru1—C13—C19 142.5 (2)
C14—Ru1—N3—C6 84.14 (14) C12—Ru1—C13—C19 114.4 (3)
C13—Ru1—N3—C6 52.69 (15) C16—Ru1—C13—C19 179.8 (2)
C11—Ru1—N3—C6 138.4 (2) C15—Ru1—C13—C19 −143.7 (2)
C12—Ru1—N3—C6 40.8 (2) Cl1—Ru1—C13—C19 120.3 (2)
C16—Ru1—N3—C6 146.23 (13) C12—C13—C14—C15 1.3 (3)
C15—Ru1—N3—C6 121.66 (14) C19—C13—C14—C15 −178.40 (18)
Cl1—Ru1—N3—C6 −126.06 (13) Ru1—C13—C14—C15 56.12 (16)
N1—Ru1—N3—C10 151.27 (14) C12—C13—C14—C20 −178.35 (18)
C14—Ru1—N3—C10 −85.14 (14) C19—C13—C14—C20 1.9 (3)
C13—Ru1—N3—C10 −116.59 (14) Ru1—C13—C14—C20 −123.56 (18)
C11—Ru1—N3—C10 −30.8 (3) C12—C13—C14—Ru1 −54.79 (15)
C12—Ru1—N3—C10 −128.45 (15) C19—C13—C14—Ru1 125.48 (18)
C16—Ru1—N3—C10 −23.04 (16) N3—Ru1—C14—C13 −127.75 (11)
C15—Ru1—N3—C10 −47.61 (14) N1—Ru1—C14—C13 −45.46 (13)
Cl1—Ru1—N3—C10 64.67 (13) C11—Ru1—C14—C13 65.98 (11)
C5—N1—C1—C2 3.9 (3) C12—Ru1—C14—C13 29.69 (11)
Ru1—N1—C1—C2 −166.30 (16) C16—Ru1—C14—C13 103.05 (12)
N1—C1—C2—C3 −0.4 (3) C15—Ru1—C14—C13 131.44 (16)
C1—C2—C3—C4 −1.8 (3) Cl1—Ru1—C14—C13 150.63 (10)
C2—C3—C4—C5 0.5 (3) N3—Ru1—C14—C15 100.80 (11)
C1—N1—C5—N2 175.93 (16) N1—Ru1—C14—C15 −176.91 (10)
Ru1—N1—C5—N2 −14.3 (2) C13—Ru1—C14—C15 −131.44 (16)
C1—N1—C5—C4 −5.2 (3) C11—Ru1—C14—C15 −65.46 (11)
Ru1—N1—C5—C4 164.55 (14) C12—Ru1—C14—C15 −101.75 (12)
C6—N2—C5—N1 −34.9 (3) C16—Ru1—C14—C15 −28.40 (10)
C6—N2—C5—C4 146.20 (19) Cl1—Ru1—C14—C15 19.19 (17)
C3—C4—C5—N1 3.1 (3) N3—Ru1—C14—C20 −14.3 (2)
C3—C4—C5—N2 −178.03 (18) N1—Ru1—C14—C20 68.0 (2)
C10—N3—C6—N2 −178.17 (16) C13—Ru1—C14—C20 113.5 (3)
Ru1—N3—C6—N2 12.5 (2) C11—Ru1—C14—C20 179.5 (2)
C10—N3—C6—C7 3.0 (3) C12—Ru1—C14—C20 143.2 (2)
Ru1—N3—C6—C7 −166.33 (13) C16—Ru1—C14—C20 −143.5 (2)
C5—N2—C6—N3 36.0 (3) C15—Ru1—C14—C20 −115.1 (3)
C5—N2—C6—C7 −145.18 (18) Cl1—Ru1—C14—C20 −95.9 (2)
N3—C6—C7—C8 0.0 (3) C13—C14—C15—C16 −2.8 (3)
N2—C6—C7—C8 −178.84 (18) C20—C14—C15—C16 176.85 (18)
C6—C7—C8—C9 −2.3 (3) Ru1—C14—C15—C16 52.69 (15)
C7—C8—C9—C10 1.6 (3) C13—C14—C15—C21 176.60 (18)
C6—N3—C10—C9 −3.8 (3) C20—C14—C15—C21 −3.7 (3)
Ru1—N3—C10—C9 165.96 (16) Ru1—C14—C15—C21 −127.89 (18)
C8—C9—C10—N3 1.5 (3) C13—C14—C15—Ru1 −55.51 (15)
N3—Ru1—C11—C12 −121.3 (2) C20—C14—C15—Ru1 124.16 (19)
N1—Ru1—C11—C12 56.45 (12) N3—Ru1—C15—C16 145.85 (11)
C14—Ru1—C11—C12 −65.90 (12) N1—Ru1—C15—C16 −124.88 (19)
C13—Ru1—C11—C12 −28.76 (11) C14—Ru1—C15—C16 −132.94 (16)
C16—Ru1—C11—C12 −131.64 (16) C13—Ru1—C15—C16 −103.26 (12)
C15—Ru1—C11—C12 −103.21 (12) C11—Ru1—C15—C16 −28.99 (10)
Cl1—Ru1—C11—C12 144.58 (10) C12—Ru1—C15—C16 −65.52 (11)
N3—Ru1—C11—C16 10.4 (3) Cl1—Ru1—C15—C16 57.46 (11)
N1—Ru1—C11—C16 −171.91 (9) N3—Ru1—C15—C14 −81.21 (11)
C14—Ru1—C11—C16 65.74 (11) N1—Ru1—C15—C14 8.1 (2)
C13—Ru1—C11—C16 102.89 (11) C13—Ru1—C15—C14 29.68 (11)
C12—Ru1—C11—C16 131.64 (16) C11—Ru1—C15—C14 103.96 (12)
C15—Ru1—C11—C16 28.43 (10) C12—Ru1—C15—C14 67.42 (11)
Cl1—Ru1—C11—C16 −83.78 (9) C16—Ru1—C15—C14 132.94 (16)
N3—Ru1—C11—C17 123.3 (2) Cl1—Ru1—C15—C14 −169.60 (9)
N1—Ru1—C11—C17 −59.0 (2) N3—Ru1—C15—C21 30.2 (2)
C14—Ru1—C11—C17 178.7 (2) N1—Ru1—C15—C21 119.5 (3)
C13—Ru1—C11—C17 −144.2 (2) C14—Ru1—C15—C21 111.4 (3)
C12—Ru1—C11—C17 −115.4 (2) C13—Ru1—C15—C21 141.1 (2)
C16—Ru1—C11—C17 112.9 (2) C11—Ru1—C15—C21 −144.6 (2)
C15—Ru1—C11—C17 141.4 (2) C12—Ru1—C15—C21 178.9 (2)
Cl1—Ru1—C11—C17 29.2 (2) C16—Ru1—C15—C21 −115.6 (3)
C16—C11—C12—C13 −2.6 (3) Cl1—Ru1—C15—C21 −58.2 (2)
C17—C11—C12—C13 176.89 (18) C14—C15—C16—C11 1.6 (3)
Ru1—C11—C12—C13 52.13 (15) C21—C15—C16—C11 −177.77 (18)
C16—C11—C12—C18 178.88 (18) Ru1—C15—C16—C11 53.32 (15)
C17—C11—C12—C18 −1.7 (3) C14—C15—C16—C22 −176.89 (18)
Ru1—C11—C12—C18 −126.43 (19) C21—C15—C16—C22 3.7 (3)
C16—C11—C12—Ru1 −54.68 (15) Ru1—C15—C16—C22 −125.22 (17)
C17—C11—C12—Ru1 124.76 (18) C14—C15—C16—Ru1 −51.68 (15)
N3—Ru1—C12—C11 151.63 (13) C21—C15—C16—Ru1 128.92 (18)
N1—Ru1—C12—C11 −129.88 (11) C12—C11—C16—C15 1.0 (3)
C14—Ru1—C12—C11 103.99 (12) C17—C11—C16—C15 −178.42 (18)
C13—Ru1—C12—C11 133.55 (17) Ru1—C11—C16—C15 −53.70 (15)
C16—Ru1—C12—C11 29.75 (11) C12—C11—C16—C22 179.58 (18)
C15—Ru1—C12—C11 66.19 (12) C17—C11—C16—C22 0.1 (3)
Cl1—Ru1—C12—C11 −44.26 (13) Ru1—C11—C16—C22 124.85 (17)
N3—Ru1—C12—C13 18.08 (19) C12—C11—C16—Ru1 54.73 (15)
N1—Ru1—C12—C13 96.56 (12) C17—C11—C16—Ru1 −124.72 (17)
C14—Ru1—C12—C13 −29.56 (12) N3—Ru1—C16—C15 −43.37 (13)
C11—Ru1—C12—C13 −133.55 (17) N1—Ru1—C16—C15 148.04 (12)
C16—Ru1—C12—C13 −103.80 (12) C14—Ru1—C16—C15 29.14 (11)
C15—Ru1—C12—C13 −67.37 (12) C13—Ru1—C16—C15 66.44 (12)
Cl1—Ru1—C12—C13 −177.81 (9) C11—Ru1—C16—C15 132.97 (15)
N3—Ru1—C12—C18 −92.0 (2) C12—Ru1—C16—C15 103.78 (12)
N1—Ru1—C12—C18 −13.6 (2) Cl1—Ru1—C16—C15 −128.87 (10)
C14—Ru1—C12—C18 −139.7 (2) N3—Ru1—C16—C11 −176.34 (9)
C13—Ru1—C12—C18 −110.1 (2) N1—Ru1—C16—C11 15.07 (17)
C11—Ru1—C12—C18 116.3 (2) C14—Ru1—C16—C11 −103.83 (11)
C16—Ru1—C12—C18 146.1 (2) C13—Ru1—C16—C11 −66.53 (11)
C15—Ru1—C12—C18 −177.5 (2) C12—Ru1—C16—C11 −29.19 (10)
Cl1—Ru1—C12—C18 72.1 (2) C15—Ru1—C16—C11 −132.97 (15)
C11—C12—C13—C14 1.4 (3) Cl1—Ru1—C16—C11 98.17 (9)
C18—C12—C13—C14 180.00 (18) N3—Ru1—C16—C22 71.1 (2)
Ru1—C12—C13—C14 54.17 (15) N1—Ru1—C16—C22 −97.5 (2)
C11—C12—C13—C19 −178.90 (18) C14—Ru1—C16—C22 143.6 (2)
C18—C12—C13—C19 −0.3 (3) C13—Ru1—C16—C22 −179.1 (2)
Ru1—C12—C13—C19 −126.10 (18) C11—Ru1—C16—C22 −112.6 (2)
C11—C12—C13—Ru1 −52.79 (16) C12—Ru1—C16—C22 −141.8 (2)
C18—C12—C13—Ru1 125.83 (18) C15—Ru1—C16—C22 114.5 (2)
N3—Ru1—C13—C14 58.32 (12) Cl1—Ru1—C16—C22 −14.42 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···Cl1i 0.85 (3) 2.51 (3) 3.3493 (17) 170 (3)
C3—H3···F3ii 0.95 2.52 3.351 (3) 146
C8—H8···F5i 0.95 2.55 3.435 (3) 155
C20—H20A···Cl3iii 0.98 2.78 3.626 (2) 144
C20—H20B···F2iv 0.98 2.54 3.424 (3) 151

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+2, −y, −z+2; (iii) x, y+1, z; (iv) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2411).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Gupta, G., Gloria, S., Das, B. & Mohan Rao, K. (2010). J. Mol. Struct. 979, 205–213.
  4. Gupta, G., Gloria, S., Therrien, B., Das, B. & Mohan Rao, K. (2011). J. Organomet. Chem. 696, 702–708.
  5. Romain, C., Gaillard, S., Elmkaddem, M. K., Toupet, L., Fischmeister, C., Thomas, C. M. & Renaud, J.-L. (2010). Organometallics, 29, 1992–1995.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Singh, A., Chandra, M., Sahay, A. N., Pandey, D. S., Pandey, K. K., Mobin, S. M., Puerta, M. C. & Valerga, P. (2004). J. Organomet. Chem. 689, 1821–1834.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011640/om2411sup1.cif

e-67-0m548-sup1.cif (33.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011640/om2411Isup2.hkl

e-67-0m548-Isup2.hkl (456.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES