Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):m584–m585. doi: 10.1107/S1600536811012700

Tetra­kis(μ-3-aza­niumylbenzoato)-κ3 O:O,O′;κ3 O,O′:O4 O:O′-bis­[tetra­aqua­neodymium(III)] hexa­chloride tetra­hydrate

Meriem Benslimane a,*, Hocine Merazig a, Jean-Claude Daran b
PMCID: PMC3089227  PMID: 21754308

Abstract

The structure of the title compound, [Nd2(C7H7NO2)4(H2O)8]Cl6·4H2O, consists of dimeric cationic units related by an inversion centre. The two NdIII atoms are linked by two bridging bidentate carboxyl­ate groups and two bidentate chelating bridging carboxyl­ate groups, with an Nd⋯Nd separation of 4.1259 (4) Å. Each NdIII atom is nine-coordin­ated by five O atoms from the carboxyl­ate groups of the zwitterionic azaniumylbenzoate ligands and four from water mol­ecules. They adopt a distorted tricapped trigonal–prismatic arrangement. The dihedral angle between the mean planes of the benzene ring and the carboxlate groups are 7.7 (6) and 24.4 (5)°. The two carboxyl­ate groups are almost perpendicular to one another with a dihedral angle of 84.0 (7)°, while the two benzene rings are inclined to one another by 81.8 (2)°. The mol­ecular packing is stabilized by O—Hwater⋯Cl, O—Hwater⋯N, N—H⋯Cl, N—H⋯O, and O—Hwater⋯O hydrogen bonds and π–π stacking inter­actions [centroid–centroid distance = 3.500 (3) Å] between symmetry-related benzene rings. All of the Cl anions and the uncoordinated water molecules are disordered over two sets of sites with different occupancy ratios.

Related literature

For applications of lanthanide complexes, see: Yan et al. (1997); Scott & Horrocks (1992). For lanthanide complexes with aromatic carb­oxy­lic acids, see: Ma et al. (1994). For similar complexes, see: Qin et al. (2005, 2006); Sun et al. (2002); Benslimane et al. (2011).graphic file with name e-67-0m584-scheme1.jpg

Experimental

Crystal data

  • [Nd2(C7H7NO2)4(H2O)8]Cl6·4H2O

  • M r = 1265.92

  • Monoclinic, Inline graphic

  • a = 12.1717 (1) Å

  • b = 19.8544 (1) Å

  • c = 10.5170 (1) Å

  • β = 112.018 (1)°

  • V = 2356.19 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.59 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.16 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (Blessing, 1997) T min = 0.410, T max = 0.444

  • 7192 measured reflections

  • 6852 independent reflections

  • 4724 reflections with I > 2σ(I)

  • R int = 0.031

  • 2 standard reflections every 60 min intensity decay: 3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.096

  • S = 1.02

  • 6852 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −1.15 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012700/su2265sup1.cif

e-67-0m584-sup1.cif (34.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012700/su2265Isup2.hkl

e-67-0m584-Isup2.hkl (335.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6WA 0.89 2.16 3.007 (12) 160
N1—H1B⋯Cl1 0.89 2.30 3.174 (5) 168
N1—H1C⋯O6WAi 0.89 1.98 2.828 (12) 159
N2—H2A⋯O4ii 0.89 2.22 2.967 (6) 141
N2—H2B⋯Cl2iii 0.89 2.31 3.166 (5) 161
N2—H2C⋯Cl3Aiv 0.89 2.26 3.129 (5) 167
O1W—H11⋯Cl2v 0.97 2.21 3.170 (4) 172
O2W—H12⋯O5W 1.04 2.28 2.960 (7) 121
O2W—H12⋯Cl2v 1.04 2.65 3.443 (5) 132
O3W—H13⋯Cl2 0.95 2.26 3.190 (5) 169
O4W—H14⋯Cl3Avi 0.86 2.58 3.240 (5) 134
O5W—H15W⋯Cl1vii 0.85 2.68 3.208 (7) 122
O1W—H21⋯Cl1iv 0.78 2.52 3.215 (4) 148
O2W—H22⋯Cl2 0.90 2.26 3.104 (4) 156
O3W—H23⋯Cl3A 0.80 2.56 3.244 (4) 144
O4W—H24⋯Cl1viii 0.93 2.23 3.134 (5) 163
O5W—H25W⋯N1iii 0.85 2.52 3.247 (8) 144
C10—H01⋯Cl1iv 0.93 2.81 3.724 (6) 169
C14—H04⋯O2Wiii 0.93 2.59 3.504 (7) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

This work was supported by Mentouri-Constantine University, Algeria.

supplementary crystallographic information

Comment

In recent years, much research has been done on lanthanide coordination compounds with some organic ligands, which have chelated structures and exhibit photophysical properties for the application in luminescence probes for chemical or biological macromolecules and the active center for molecular based luminescent materials (Yan et al., 1997; Scott et al., 1992). Especially lanthanide complexes with aromatic carboxylic acids show higher thermal and luminescent stability for practical applications than other lanthanide complexes because they readily form dimer or infinite chain polymeric structures (Ma et al., 1994).We report herein on the preparation and crystal structure of the title compound.

The molecular structure of the title compound consists of dimeric units related by an inversion centre (Fig. 1). The two NdIII atoms are linked by two bridging bidentate carboxylate groups and two bidentate chelating bridging carboxylate groups. Each NdIII atom is nine-coordinated by five O atoms from carboxylate groups of the 3-ammoniumbenzoate, and four O atoms from the water molecules. They adopt a distorted tricapped trigonal-prismatic arrangement. A similar coordination environment was observed previously for lanthanoid(III) complexes, such as [(pyridine-3,4-dicarboxylate)2(NO3)2(H2O)3] (Qin et al., 2006) and [Ln2(imidazole-4,5-dicarboxylate)2(H2O)3]1.5H2O (Ln = Sm and Eu; Qin et al., 2005). The Nd-O distances involving the carboxylate groups range from 2.394 (3) Å to 2.458 (4) Å and those of the Nd-Owater bonds from 2.506 (4)Å to 2.525 (4) Å. The Nd1-O1-Nd1i (Symmetry codes: (i) -x+1, -y+1, -z+1) angle is 101.96 (13)°, the resulting Nd···Nd intradimer separation is 4.1259 (4) Å indicates that the metal···metal distances are primarily governed by the nature and mode of the coordination of the bridging groups (Sun et al., 2002). The carboxylate group shows a distortion from the molecular plane; the dihedral angle between the mean-planes of the benzene ring (C2-C7; plane 1) and the carboxlate group (O2/C1/O3i) is 7.7 (6)°, and that between the mean-planes of benzene ring (C9-C14; plane 2) and the O1/C8/O4 carboxlate group is 24.4 (5)°. The two carboxylate groups are almost perpendicular to one another with a dihedral angle of 84.0 (7) °, and planes 1 and 2 are inclined to one another by 81.8 (2) ° compared with the corresponding value found in the complex [La2(C7H7NO2)4Cl2(H2O)6]Cl4.2H2O [(Benslimane et al., 2011) 80.0 (2)].

In the crystal hydrogen bonds involving the free and the coordinated water molecules, the ammonium group NH3 and the Cl atoms build up a three dimensionnal network (Fig. 2, Table 1). There is also slipped π -π stacking interactions between the symetry related C9—C14 phenyl ring (Table 2). Both hydrogen-bonding and π-π interactions combine to stabilize the three-dimensional network.

Experimental

NdCl3(0.25 g, 1mmol) was dissolved in an aqueous solution of NaOH (0.5 M, 25 ml) with constant stirring. 3-aminobenzoic acid (0.14 g, 1 mmol) was added to the mixture and the pH was adjusted to ca. 3 using 4M HCl. The mixture was refluxed at 353K for about 1 h and then cooled to room temperature. Slow evaporation of the solvent at room temperature lead to the formation of prismatic purple crystals of the title compound.

Refinement

The chloride anion Cl3 is disordered over three sites, Cl3A, Cl3B and Cl3C, which were refined with occupancies of 0.75, 0.15 and 0.10, respectively. The water molecule O6W is also disordered over two positions (O6WA and O6WB), which were refined with occupancy factors 0.72/0.28, so no H-atoms could be reliably defined. All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.89 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(N). The H-atoms of the coordinated water molecules were initially refined using distance restraints [O—H = 0.85 (2) Å, and H···H = 1.40 (2) Å] with Uiso(H) = 1.5Ueq(O). However, in the last cycles of refinement, they were treated as riding on their parent O atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [Symmetry code: (i) -x + 1, -y + 1, -z + 1; Hydrogen atoms have been omitted for clarity].

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed approximately down the a axis. Hydrogen bonds are shown as dashed lines [see Table 1 for details; hydrogen atoms not involved in hydrogen bonding have been omitted for clarity].

Crystal data

[Nd2(C7H7NO2)4(H2O)8]Cl6·4H2O F(000) = 1260
Mr = 1265.92 Dx = 1.784 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7192 reflections
a = 12.1717 (1) Å θ = 1.0–30.0°
b = 19.8544 (1) Å µ = 2.59 mm1
c = 10.5170 (1) Å T = 293 K
β = 112.018 (1)° Prism, violet
V = 2356.19 (4) Å3 0.30 × 0.24 × 0.16 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.031
graphite θmax = 30.0°, θmin = 1.8°
non–profiled ω/2τ scans h = −15→17
Absorption correction: multi-scan (Blessing, 1997) k = −27→0
Tmin = 0.410, Tmax = 0.444 l = −14→0
7192 measured reflections 2 standard reflections every 60 min
6852 independent reflections intensity decay: 3%
4724 reflections with I > 2σ(I)

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0201P)2] where P = (Fo2 + 2Fc2)/3
6852 reflections (Δ/σ)max = 0.002
300 parameters Δρmax = 0.81 e Å3
0 restraints Δρmin = −1.15 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Nd1 0.67791 (2) 0.47629 (1) 0.58312 (3) 0.0236 (1)
O1 0.5246 (3) 0.48149 (15) 0.3573 (4) 0.0328 (10)
O1W 0.8553 (3) 0.53988 (16) 0.7384 (4) 0.0470 (13)
O2 0.5576 (2) 0.38174 (14) 0.5941 (4) 0.0338 (12)
O2W 0.7992 (3) 0.51554 (18) 0.4499 (5) 0.0522 (14)
O3 0.6299 (3) 0.59263 (14) 0.5323 (4) 0.0318 (10)
O3W 0.7348 (3) 0.37860 (16) 0.4667 (5) 0.0516 (16)
O4 0.6548 (3) 0.50923 (15) 0.7970 (4) 0.0336 (13)
O4W 0.8127 (3) 0.40099 (16) 0.7663 (5) 0.0518 (16)
N1 0.1193 (4) 0.2246 (2) 0.5525 (7) 0.063 (2)
N2 0.2428 (3) 0.5776 (2) 0.9569 (5) 0.0432 (16)
C1 0.4479 (4) 0.36950 (19) 0.5480 (5) 0.0264 (14)
C2 0.4066 (4) 0.30648 (19) 0.5946 (5) 0.0265 (14)
C3 0.4840 (4) 0.2636 (2) 0.6904 (6) 0.0334 (16)
C4 0.4435 (5) 0.2104 (2) 0.7436 (6) 0.0422 (18)
C5 0.3240 (5) 0.1978 (2) 0.7016 (7) 0.0450 (19)
C6 0.2491 (4) 0.2391 (2) 0.6034 (7) 0.0410 (18)
C7 0.2861 (4) 0.2928 (2) 0.5493 (6) 0.0354 (16)
C8 0.5479 (4) 0.5265 (2) 0.7622 (5) 0.0258 (14)
C9 0.5114 (4) 0.5576 (2) 0.8680 (5) 0.0266 (14)
C10 0.5955 (4) 0.5888 (2) 0.9817 (6) 0.0315 (14)
C11 0.5631 (4) 0.6181 (2) 1.0799 (6) 0.0391 (19)
C12 0.4470 (4) 0.6159 (2) 1.0698 (6) 0.0410 (19)
C13 0.3648 (4) 0.5835 (2) 0.9597 (6) 0.0332 (14)
C14 0.3941 (4) 0.5556 (2) 0.8575 (6) 0.0300 (14)
O5W 0.9028 (5) 0.6248 (3) 0.3390 (7) 0.126 (3)
Cl1 0.08111 (11) 0.07403 (8) 0.44309 (19) 0.0593 (6)
Cl2 0.93715 (13) 0.40966 (10) 0.3509 (2) 0.0708 (7)
Cl3A 0.8142 (3) 0.22254 (14) 0.4682 (4) 0.0718 (12) 0.750
O6WA 0.0280 (8) 0.2247 (5) 0.7815 (11) 0.081 (4) 0.720
Cl3B 0.7983 (15) 0.2369 (6) 0.5423 (16) 0.068 (5) 0.150
Cl3C 0.8035 (14) 0.2679 (7) 0.731 (3) 0.076 (8) 0.100
O6WB 0.042 (2) 0.2654 (13) 0.750 (3) 0.101 (11) 0.280
H01 0.67440 0.58980 0.99080 0.0380*
H1A 0.09130 0.23580 0.61660 0.0940*
H1B 0.10720 0.18090 0.53370 0.0940*
H1C 0.08210 0.24840 0.47680 0.0940*
H2 0.61980 0.63960 1.15420 0.0470*
H02 0.42470 0.63590 1.13640 0.0490*
H2A 0.23900 0.54320 1.00940 0.0650*
H2B 0.19280 0.57050 0.87110 0.0650*
H2C 0.22310 0.61540 0.98840 0.0650*
H3 0.56510 0.27100 0.71920 0.0400*
H04 0.33630 0.53550 0.78210 0.0360*
H4 0.49720 0.18260 0.80860 0.0500*
H5 0.29540 0.16250 0.73860 0.0540*
H7 0.23170 0.31980 0.48320 0.0420*
H11 0.92430 0.55420 0.72050 0.0700*
H12 0.84330 0.56120 0.48200 0.0790*
H13 0.78720 0.38670 0.42090 0.0770*
H14 0.79880 0.35900 0.77100 0.0500*
H21 0.87730 0.53200 0.81700 0.0700*
H22 0.83660 0.47750 0.44180 0.0790*
H23 0.74080 0.34060 0.49470 0.0770*
H24 0.88800 0.41770 0.81750 0.0500*
H15W 0.94470 0.63530 0.29310 0.1890*
H25W 0.86390 0.65960 0.34420 0.1890*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Nd1 0.0204 (1) 0.0285 (1) 0.0211 (2) −0.0019 (1) 0.0066 (1) −0.0007 (1)
O1 0.0360 (16) 0.0417 (17) 0.019 (2) −0.0037 (14) 0.0085 (16) −0.0053 (16)
O1W 0.0292 (16) 0.069 (2) 0.037 (3) −0.0175 (15) 0.0057 (18) −0.0001 (19)
O2 0.0273 (15) 0.0316 (16) 0.040 (3) −0.0036 (12) 0.0097 (16) 0.0021 (15)
O2W 0.064 (2) 0.054 (2) 0.052 (3) −0.0250 (18) 0.037 (2) −0.020 (2)
O3 0.0314 (15) 0.0278 (15) 0.031 (2) −0.0023 (12) 0.0057 (16) −0.0001 (14)
O3W 0.073 (2) 0.0372 (19) 0.064 (4) 0.0064 (17) 0.048 (3) 0.0026 (19)
O4 0.0321 (16) 0.0421 (18) 0.028 (3) 0.0005 (13) 0.0129 (17) −0.0040 (15)
O4W 0.0349 (17) 0.047 (2) 0.056 (4) 0.0004 (15) −0.003 (2) 0.007 (2)
N1 0.047 (3) 0.061 (3) 0.082 (6) −0.023 (2) 0.026 (3) 0.004 (3)
N2 0.041 (2) 0.055 (3) 0.041 (3) 0.0043 (19) 0.024 (2) −0.002 (2)
C1 0.035 (2) 0.0224 (19) 0.025 (3) −0.0056 (16) 0.015 (2) −0.0054 (18)
C2 0.031 (2) 0.025 (2) 0.024 (3) −0.0044 (16) 0.011 (2) −0.0034 (18)
C3 0.037 (2) 0.028 (2) 0.031 (4) −0.0027 (17) 0.008 (2) −0.007 (2)
C4 0.059 (3) 0.028 (2) 0.034 (4) 0.000 (2) 0.011 (3) 0.003 (2)
C5 0.059 (3) 0.035 (3) 0.045 (4) −0.010 (2) 0.024 (3) 0.006 (2)
C6 0.037 (2) 0.041 (3) 0.050 (4) −0.012 (2) 0.022 (3) −0.008 (3)
C7 0.032 (2) 0.032 (2) 0.040 (4) −0.0040 (18) 0.011 (2) 0.000 (2)
C8 0.032 (2) 0.0269 (19) 0.019 (3) −0.0076 (18) 0.010 (2) −0.005 (2)
C9 0.036 (2) 0.026 (2) 0.017 (3) 0.0001 (17) 0.009 (2) 0.0003 (18)
C10 0.032 (2) 0.037 (2) 0.025 (3) 0.0012 (18) 0.010 (2) −0.004 (2)
C11 0.045 (3) 0.045 (3) 0.026 (4) −0.006 (2) 0.012 (3) −0.016 (2)
C12 0.051 (3) 0.045 (3) 0.028 (4) 0.007 (2) 0.016 (3) −0.010 (2)
C13 0.034 (2) 0.037 (2) 0.031 (3) 0.0070 (19) 0.015 (2) 0.003 (2)
C14 0.034 (2) 0.033 (2) 0.021 (3) −0.0010 (18) 0.008 (2) −0.001 (2)
O5W 0.140 (5) 0.124 (5) 0.118 (7) 0.037 (4) 0.052 (5) 0.024 (5)
Cl1 0.0401 (7) 0.0667 (9) 0.0549 (13) −0.0080 (6) −0.0009 (8) 0.0083 (8)
Cl2 0.0441 (8) 0.1218 (14) 0.0541 (14) −0.0135 (8) 0.0270 (9) −0.0161 (11)
Cl3A 0.0611 (13) 0.0457 (14) 0.099 (3) −0.0090 (11) 0.0190 (19) 0.0111 (15)
O6WA 0.058 (4) 0.129 (8) 0.060 (7) 0.000 (5) 0.027 (5) −0.006 (6)
Cl3B 0.093 (10) 0.023 (5) 0.056 (11) 0.000 (5) −0.008 (9) 0.007 (5)
Cl3C 0.071 (10) 0.042 (8) 0.12 (2) 0.013 (7) 0.042 (12) 0.001 (9)
O6WB 0.086 (15) 0.15 (2) 0.07 (2) 0.007 (16) 0.034 (14) 0.029 (18)

Geometric parameters (Å, °)

Nd1—O1 2.411 (4) N1—H1A 0.8900
Nd1—O1W 2.506 (4) N2—H2A 0.8900
Nd1—O2 2.410 (3) N2—H2B 0.8900
Nd1—O2W 2.510 (4) N2—H2C 0.8900
Nd1—O3 2.394 (3) C1—C2 1.498 (6)
Nd1—O3W 2.525 (4) C2—C3 1.384 (7)
Nd1—O4 2.458 (4) C2—C7 1.389 (7)
Nd1—O4W 2.504 (4) C3—C4 1.371 (7)
Nd1—O1i 2.886 (4) C4—C5 1.375 (9)
O1—C8i 1.246 (6) C5—C6 1.365 (8)
O2—C1 1.262 (6) C6—C7 1.362 (7)
O3—C1i 1.255 (6) C8—C9 1.479 (7)
O4—C8 1.260 (6) C9—C14 1.391 (8)
O1W—H11 0.9700 C9—C10 1.394 (7)
O1W—H21 0.7800 C10—C11 1.366 (8)
O2W—H12 1.0400 C11—C12 1.378 (8)
O2W—H22 0.9000 C12—C13 1.374 (8)
O3W—H23 0.8000 C13—C14 1.370 (8)
O3W—H13 0.9500 C3—H3 0.9300
O4W—H14 0.8600 C4—H4 0.9300
O4W—H24 0.9300 C5—H5 0.9300
O5W—H25W 0.8500 C7—H7 0.9300
O5W—H15W 0.8500 C10—H01 0.9300
N1—C6 1.494 (8) C11—H2 0.9300
N2—C13 1.479 (7) C12—H02 0.9300
N1—H1C 0.8900 C14—H04 0.9300
N1—H1B 0.8900
O1—Nd1—O1W 141.27 (11) C6—N1—H1C 109.00
O1—Nd1—O2 79.67 (12) C6—N1—H1A 110.00
O1—Nd1—O2W 80.61 (14) C6—N1—H1B 109.00
O1—Nd1—O3 72.82 (12) H1A—N1—H1B 109.00
O1—Nd1—O3W 78.87 (13) H1B—N1—H1C 109.00
O1—Nd1—O4 125.33 (13) H1A—N1—H1C 110.00
O1—Nd1—O4W 145.66 (11) H2B—N2—H2C 110.00
O1—Nd1—O1i 78.04 (12) H2A—N2—H2B 109.00
O1W—Nd1—O2 138.75 (12) C13—N2—H2A 109.00
O1W—Nd1—O2W 70.36 (14) C13—N2—H2B 109.00
O1W—Nd1—O3 74.80 (12) H2A—N2—H2C 109.00
O1W—Nd1—O3W 112.16 (13) C13—N2—H2C 110.00
O1W—Nd1—O4 68.64 (13) O2—C1—C2 118.2 (4)
O1W—Nd1—O4W 69.11 (12) O2—C1—O3i 124.5 (4)
O1i—Nd1—O1W 108.03 (11) O3i—C1—C2 117.4 (4)
O2—Nd1—O2W 139.79 (12) C3—C2—C7 118.2 (4)
O2—Nd1—O3 131.34 (12) C1—C2—C3 122.1 (5)
O2—Nd1—O3W 72.96 (12) C1—C2—C7 119.5 (4)
O2—Nd1—O4 83.30 (12) C2—C3—C4 121.4 (5)
O2—Nd1—O4W 74.50 (12) C3—C4—C5 120.5 (5)
O1i—Nd1—O2 68.41 (9) C4—C5—C6 117.4 (5)
O2W—Nd1—O3 73.81 (13) N1—C6—C5 118.2 (5)
O2W—Nd1—O3W 69.04 (12) N1—C6—C7 118.2 (5)
O2W—Nd1—O4 136.16 (13) C5—C6—C7 123.7 (5)
O2W—Nd1—O4W 105.19 (14) C2—C7—C6 118.8 (5)
O1i—Nd1—O2W 139.46 (11) O1i—C8—O4 121.5 (5)
O3—Nd1—O3W 136.17 (14) O1i—C8—C9 120.9 (5)
O3—Nd1—O4 81.11 (12) O4—C8—C9 117.6 (4)
O3—Nd1—O4W 141.52 (13) C10—C9—C14 118.9 (5)
O1i—Nd1—O3 67.12 (11) C8—C9—C14 121.2 (4)
O3W—Nd1—O4 142.60 (12) C8—C9—C10 120.0 (5)
O3W—Nd1—O4W 72.23 (14) C9—C10—C11 120.7 (5)
O1i—Nd1—O3W 137.75 (11) C10—C11—C12 120.5 (5)
O4—Nd1—O4W 73.83 (13) C11—C12—C13 118.8 (5)
O1i—Nd1—O4 47.46 (12) N2—C13—C14 120.5 (5)
O1i—Nd1—O4W 111.90 (12) C12—C13—C14 122.0 (5)
Nd1—O1—Nd1i 101.96 (13) N2—C13—C12 117.6 (5)
Nd1—O1—C8i 169.3 (3) C9—C14—C13 119.2 (5)
Nd1i—O1—C8i 85.2 (3) C2—C3—H3 119.00
Nd1—O2—C1 134.9 (3) C4—C3—H3 119.00
Nd1—O3—C1i 142.0 (3) C5—C4—H4 120.00
Nd1—O4—C8 105.5 (3) C3—C4—H4 120.00
H11—O1W—H21 107.00 C4—C5—H5 121.00
Nd1—O1W—H11 128.00 C6—C5—H5 121.00
Nd1—O1W—H21 117.00 C6—C7—H7 121.00
H12—O2W—H22 123.00 C2—C7—H7 121.00
Nd1—O2W—H22 102.00 C9—C10—H01 120.00
Nd1—O2W—H12 115.00 C11—C10—H01 120.00
Nd1—O3W—H23 123.00 C12—C11—H2 120.00
H13—O3W—H23 111.00 C10—C11—H2 120.00
Nd1—O3W—H13 118.00 C11—C12—H02 121.00
Nd1—O4W—H24 117.00 C13—C12—H02 121.00
H14—O4W—H24 119.00 C9—C14—H04 120.00
Nd1—O4W—H14 123.00 C13—C14—H04 120.00
H15W—O5W—H25W 108.00
O1W—Nd1—O1—Nd1i −103.98 (19) O4W—Nd1—O4—C8 −146.0 (3)
O2—Nd1—O1—Nd1i 69.90 (11) O1i—Nd1—O4—C8 −3.6 (2)
O2W—Nd1—O1—Nd1i −145.32 (12) Nd1—O1i—C8—C9 173.3 (4)
O3—Nd1—O1—Nd1i −69.49 (12) Nd1—O1i—C8—O4 −5.9 (4)
O3W—Nd1—O1—Nd1i 144.37 (13) Nd1—O2—C1—O3i 6.6 (8)
O4—Nd1—O1—Nd1i −4.17 (16) Nd1—O2—C1—C2 −171.7 (3)
O4W—Nd1—O1—Nd1i 111.5 (2) Nd1i—O3i—C1—C2 142.4 (4)
O1i—Nd1—O1—Nd1i 0.00 (9) Nd1i—O3i—C1—O2 −35.9 (9)
O1i—Nd1i—O1—Nd1 0.00 (11) Nd1—O4—C8—O1i 7.1 (5)
O1Wi—Nd1i—O1—Nd1 −140.33 (11) Nd1—O4—C8—C9 −172.1 (3)
O2i—Nd1i—O1—Nd1 83.50 (13) O3i—C1—C2—C7 −0.6 (7)
O2Wi—Nd1i—O1—Nd1 −59.7 (2) O2—C1—C2—C7 177.8 (5)
O3i—Nd1i—O1—Nd1 −76.21 (13) O2—C1—C2—C3 3.0 (7)
O3Wi—Nd1i—O1—Nd1 58.2 (2) O3i—C1—C2—C3 −175.4 (5)
O4i—Nd1i—O1—Nd1 −175.39 (17) C1—C2—C3—C4 172.4 (5)
O4Wi—Nd1i—O1—Nd1 145.54 (12) C1—C2—C7—C6 −173.3 (5)
O1—Nd1—O2—C1 −36.4 (4) C7—C2—C3—C4 −2.4 (8)
O1W—Nd1—O2—C1 137.8 (4) C3—C2—C7—C6 1.7 (7)
O2W—Nd1—O2—C1 −98.2 (5) C2—C3—C4—C5 0.7 (8)
O3—Nd1—O2—C1 19.5 (5) C3—C4—C5—C6 1.6 (8)
O3W—Nd1—O2—C1 −117.8 (5) C4—C5—C6—N1 177.7 (5)
O4—Nd1—O2—C1 91.4 (4) C4—C5—C6—C7 −2.4 (9)
O4W—Nd1—O2—C1 166.5 (5) C5—C6—C7—C2 0.7 (9)
O1i—Nd1—O2—C1 44.7 (4) N1—C6—C7—C2 −179.3 (5)
O1—Nd1—O3—C1i 15.9 (5) O4—C8—C9—C10 23.0 (6)
O1W—Nd1—O3—C1i 174.4 (6) O1i—C8—C9—C14 24.7 (6)
O2—Nd1—O3—C1i −42.6 (6) O4—C8—C9—C14 −156.1 (4)
O2W—Nd1—O3—C1i 100.9 (6) O1i—C8—C9—C10 −156.2 (4)
O3W—Nd1—O3—C1i 68.0 (6) C8—C9—C10—C11 179.6 (4)
O4—Nd1—O3—C1i −115.5 (6) C14—C9—C10—C11 −1.3 (7)
O4W—Nd1—O3—C1i −165.0 (5) C8—C9—C14—C13 178.3 (4)
O1i—Nd1—O3—C1i −68.1 (6) C10—C9—C14—C13 −0.8 (6)
O1—Nd1—O4—C8 2.0 (3) C9—C10—C11—C12 1.5 (7)
O1W—Nd1—O4—C8 140.5 (3) C10—C11—C12—C13 0.3 (7)
O2—Nd1—O4—C8 −70.3 (3) C11—C12—C13—N2 175.6 (4)
O2W—Nd1—O4—C8 118.7 (3) C11—C12—C13—C14 −2.5 (7)
O3—Nd1—O4—C8 63.5 (3) N2—C13—C14—C9 −175.3 (4)
O3W—Nd1—O4—C8 −120.5 (3) C12—C13—C14—C9 2.7 (7)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O6WA 0.89 2.16 3.007 (12) 160
N1—H1B···Cl1 0.89 2.30 3.174 (5) 168
N1—H1C···O6WAii 0.89 1.98 2.828 (12) 159
N2—H2A···O4iii 0.89 2.22 2.967 (6) 141
N2—H2B···Cl2i 0.89 2.31 3.166 (5) 161
N2—H2C···Cl3Aiv 0.89 2.26 3.129 (5) 167
O1W—H11···Cl2v 0.97 2.21 3.170 (4) 172
O2W—H12···O5W 1.04 2.28 2.960 (7) 121
O2W—H12···Cl2v 1.04 2.65 3.443 (5) 132
O3W—H13···Cl2 0.95 2.26 3.190 (5) 169
O4W—H14···Cl3Avi 0.86 2.58 3.240 (5) 134
O5W—H15W···Cl1vii 0.85 2.68 3.208 (7) 122
O1W—H21···Cl1iv 0.78 2.52 3.215 (4) 148
O2W—H22···Cl2 0.90 2.26 3.104 (4) 156
O3W—H23···Cl3A 0.80 2.56 3.244 (4) 144
O4W—H24···Cl1viii 0.93 2.23 3.134 (5) 163
O5W—H25W···N1i 0.85 2.52 3.247 (8) 144
C10—H01···Cl1iv 0.93 2.81 3.724 (6) 169
C14—H04···O2Wi 0.93 2.59 3.504 (7) 170

Symmetry codes: (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z+2; (i) −x+1, −y+1, −z+1; (iv) −x+1, y+1/2, −z+3/2; (v) −x+2, −y+1, −z+1; (vi) x, −y+1/2, z+1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) x+1, −y+1/2, z+1/2.

Table 2 Table 2 π-π stacking interactions (Å)

Cg1 is the centroid of the C9—C14 ring.

CgI CgJ CgI···CgJa CgI···P(J)b CgJ···P(I)c Slippage
Cg1 Cg1ii 3.499 (2) 3.2720 (18) 3.2721 (18) 1.240

Symmetry code: (ii) 1-x,1-y,2-z. Notes: (a) Distance between centroids; (b) Perpendicular distance of CgI on ring plan J; (c) Perpendicular distance of CgJ on ring plan I. Slippage = vertical displacement between ring centroids.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2265).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Benslimane, M., Merazig, H. & Daran, J.-C. (2011). Acta Cryst. E67, m115–m116. [DOI] [PMC free article] [PubMed]
  3. Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Harms, K. & Wocadlo, S. (1996). XCAD4 University of Marburg, Germany.
  8. Ma, J.-F., Jin, Z.-S. & Ni, J.-Z. (1994). Acta Cryst. C50, 1010–1012.
  9. Qin, C., Wang, X.-L., Wang, E.-B. & Xu, L. (2005). Inorg. Chem. Commun 8, 669-672.
  10. Qin, C., Wang, X.-L., Wang, E.-B. & Xu, L. (2006). Inorg. Chim. Acta, 359, 417–423.
  11. Scott, L. K. & Horrocks, W. D. (1992). J. Inorg. Biochem 46, 193–205. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sun, Z.-G., Ren, Y.-P., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2002). Inorg. Chem. Commun 5, 629-632.
  14. Yan, B., Zhang, H.-J., Wang, S.-B. & Ni, J.-Z. (1997). Mater. Chem. Phys. 51, 92–96.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012700/su2265sup1.cif

e-67-0m584-sup1.cif (34.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012700/su2265Isup2.hkl

e-67-0m584-Isup2.hkl (335.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES