Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1122. doi: 10.1107/S1600536811012384

Piperazine-1,4-diium pyridine-2,3-dicarboxyl­ate methanol monosolvate1

Faranak Manteghi a, Mohammad Ghadermazi b,*, Nasrin Kakaei b
PMCID: PMC3089228  PMID: 21754436

Abstract

The title solvated molecular salt, C4H12N2 2+·C7H3NO4 2−·CH3OH or (pipzH2)(py-2,3-dc)·MeOH, was prepared by the reaction of pyridine-2,3-dicarb­oxy­lic acid (py-2,3-dcH2) and piperazine (pipz) in methanol (MeOH) as solvent. One of the two carboxylate groups of the acid fragment is nearly perpendicular to the pyridine ring and the other is almost in its plane [C—C—C—O torsion angles = −85.50 (11) and 88.07 (11)° and N—C—C—O torsion angles = −176.31 (8) and 5.41 (13)°]. In the crystal, the components are linked by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

For similar ion pairs, see: Aghabozorg, Manteghi & Ghadermazi (2008); Aghabozorg, Manteghi & Sheshmani (2008). For related metal complexes, see: Barszcz et al. (2010); Li & Li (2004). graphic file with name e-67-o1122-scheme1.jpg

Experimental

Crystal data

  • C4H12N2 2+·C7H3NO4 2−·CH4O

  • M r = 285.30

  • Monoclinic, Inline graphic

  • a = 8.2541 (6) Å

  • b = 11.8988 (8) Å

  • c = 13.8197 (9) Å

  • β = 90.288 (2)°

  • V = 1357.27 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART APEXII diffractometer

  • 16044 measured reflections

  • 3579 independent reflections

  • 3189 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.085

  • S = 1.03

  • 3579 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012384/om2416sup1.cif

e-67-o1122-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012384/om2416Isup2.hkl

e-67-o1122-Isup2.hkl (175.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.90 1.74 2.6257 (11) 168
N2—H2B⋯O2 0.90 1.89 2.7274 (11) 155
N3—H3A⋯O1ii 0.90 1.85 2.7379 (11) 169
N3—H3B⋯O3iii 0.90 1.86 2.7393 (11) 166
O5—H5A⋯O1 0.85 1.84 2.6867 (10) 171
C3—H3⋯O5iv 0.95 2.41 3.3163 (13) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We acknowledge financial support of this work by the Iran University of Science and Technology and the University of Kurdistan.

supplementary crystallographic information

Comment

Pyridine-2,3-dicarboxylic acid is remarkably attractive for its flexible and variable coordination modes to construct polymeric architecture. It can act as monodicarboxylate chelating anion, or tridentate coordinating anion with acid hydrogen on nitrogen and doubly deprotonated, tridentate dicarboxylate anion (py-2,3-dc) and even in Mn(II) complexes as tetradenatate and pentadentate ligands (Barszcz et al., 2010; Li & Li, 2004). Preparation of ion pairs with the acid increases the chance of its coordination to metals. Therefore, in our work to obtain proton transfer ion pairs, we have reviewed many ion pairs and their metal complexes (Aghabozorg, Manteghi & Sheshmani, 2008). Also, we have reported a similar ion pair formulated as (pipzH2)(pydcH)2, (Aghabozorg, Manteghi & Ghadermazi, 2008). The title structure, as shown in Fig. 1, has an asymmetric unit constructed by (pipzH2)2+ and (py-2,3-dc)2– and a neutral methanol molecule with two hydrogen bonds. There are varieties of other strong and weak hydrogen bonds in the structure, shown in Table 1. Also, a C–O···π stacking, between C6–O2 and N1/C1-C5 ring (-x, -y + 2, -z) with the distance of 3.5240 (9) Å, and a C–H···π stacking, between C12–H1A and N1/C1-C5 ring (x +1/2, -y +3/2, z -1/2), with the distance of 2.791 (1) Å, shown in Fig. 2 are observed.

Experimental

The title compound was synthesized via reaction of 1670 mg (10 mmol) pyridine-2,3-dicarboxylic acid with 860 mg (10 mmol) piperazine in a methanol solution (60 ml). The obtained white precipitate was filtered out and dissolved in water to recrystallize. Colorless crystals of the title compound were obtained after 14 days.

Refinement

The H(N) and H(O) atoms were found from a difference Fourier map. The H(C) atom positions were calculated. All the hydrogen atoms were refined with isotropic displacement paramaters using a riding model with the Uiso(H) parameters equal to 1.2 times the equivalent isotropic thermal parameter of the bonded C(CH2) or N(NH2) or 1.5 times that of C(CH3) and O(H2O). Distances were 0.90 Å for N-H, 0.85 Å for O-H, and 0.95 - 0.99 Å for C-H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (pipzH2)(py-2,3-dc).MeOH

Fig. 2.

Fig. 2.

The C–H···π stacking between C12–H1A of methanol and N1/C1-C5 ring of py-2,3-dc.

Crystal data

C4H12N22+·C7H3NO42·CH4O F(000) = 608
Mr = 285.30 Dx = 1.396 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7483 reflections
a = 8.2541 (6) Å θ = 2.3–28.1°
b = 11.8988 (8) Å µ = 0.11 mm1
c = 13.8197 (9) Å T = 100 K
β = 90.288 (2)° Prism, colourless
V = 1357.27 (16) Å3 0.25 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer 3189 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.023
graphite θmax = 29.0°, θmin = 2.3°
Detector resolution: 8.3 pixels mm-1 h = −11→11
φ and ω scans k = −16→16
16044 measured reflections l = −18→18
3579 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: difference Fourier map
wR(F2) = 0.085 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.035P)2 + 0.650P] where P = (Fo2 + 2Fc2)/3
3579 reflections (Δ/σ)max = 0.001
182 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.16285 (8) 0.76486 (6) 0.03344 (5) 0.01401 (15)
O2 0.21626 (9) 0.91599 (6) 0.12414 (6) 0.01918 (16)
O3 −0.13943 (9) 0.61040 (6) 0.03291 (5) 0.01666 (16)
O4 −0.11791 (9) 0.70279 (6) −0.10648 (5) 0.01627 (15)
N1 −0.09833 (10) 0.97903 (7) 0.11968 (6) 0.01339 (17)
N2 0.17152 (10) 1.11819 (7) 0.21302 (6) 0.01264 (16)
H2A 0.1410 1.1746 0.1735 0.015*
H2B 0.1538 1.0523 0.1828 0.015*
N3 0.31476 (10) 1.05117 (7) 0.39424 (6) 0.01304 (16)
H3A 0.3349 1.1189 0.4206 0.016*
H3B 0.3473 0.9987 0.4371 0.016*
C1 −0.05754 (11) 0.88142 (8) 0.07675 (6) 0.01078 (17)
C2 −0.17210 (11) 0.80866 (8) 0.03586 (7) 0.01165 (18)
C3 −0.33567 (12) 0.83780 (9) 0.04316 (7) 0.01506 (19)
H3 −0.4169 0.7896 0.0175 0.018*
C4 −0.37860 (12) 0.93756 (9) 0.08809 (7) 0.0166 (2)
H4 −0.4891 0.9585 0.0943 0.020*
C5 −0.25545 (12) 1.00615 (9) 0.12379 (7) 0.01563 (19)
H5 −0.2845 1.0758 0.1525 0.019*
C6 0.12243 (11) 0.85332 (8) 0.07816 (7) 0.01183 (18)
C7 −0.13540 (11) 0.69936 (8) −0.01603 (7) 0.01243 (18)
C8 0.07828 (12) 1.12692 (9) 0.30451 (7) 0.01538 (19)
H8A −0.0383 1.1149 0.2908 0.018*
H8B 0.0914 1.2032 0.3320 0.018*
C9 0.34843 (12) 1.13038 (8) 0.23146 (7) 0.01367 (18)
H9A 0.3709 1.2059 0.2584 0.016*
H9B 0.4080 1.1231 0.1698 0.016*
C10 0.40670 (12) 1.04139 (8) 0.30194 (7) 0.01438 (19)
H10A 0.3901 0.9658 0.2737 0.017*
H10B 0.5239 1.0513 0.3148 0.017*
C11 0.13684 (12) 1.04015 (9) 0.37760 (7) 0.0162 (2)
H11A 0.0790 1.0508 0.4395 0.019*
H11B 0.1121 0.9637 0.3533 0.019*
O5 0.39165 (9) 0.71135 (8) −0.09625 (6) 0.02485 (19)
H5A 0.3255 0.7344 −0.0537 0.037*
C12 0.29401 (15) 0.65794 (12) −0.16692 (9) 0.0302 (3)
H1A 0.3427 0.6679 −0.2309 0.045*
H1B 0.1855 0.6913 −0.1667 0.045*
H1C 0.2861 0.5776 −0.1522 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0156 (3) 0.0103 (3) 0.0162 (3) 0.0017 (2) 0.0019 (3) −0.0011 (3)
O2 0.0139 (3) 0.0188 (4) 0.0248 (4) 0.0001 (3) −0.0031 (3) −0.0083 (3)
O3 0.0236 (4) 0.0110 (3) 0.0153 (3) −0.0009 (3) −0.0041 (3) 0.0011 (3)
O4 0.0233 (4) 0.0130 (3) 0.0124 (3) 0.0028 (3) −0.0019 (3) −0.0007 (3)
N1 0.0154 (4) 0.0117 (4) 0.0130 (4) 0.0005 (3) 0.0011 (3) −0.0010 (3)
N2 0.0152 (4) 0.0111 (4) 0.0116 (4) 0.0003 (3) −0.0022 (3) 0.0000 (3)
N3 0.0168 (4) 0.0105 (4) 0.0118 (4) −0.0007 (3) −0.0025 (3) 0.0007 (3)
C1 0.0128 (4) 0.0103 (4) 0.0093 (4) 0.0003 (3) 0.0007 (3) 0.0009 (3)
C2 0.0143 (4) 0.0109 (4) 0.0097 (4) 0.0003 (3) −0.0006 (3) 0.0008 (3)
C3 0.0135 (4) 0.0173 (5) 0.0144 (4) −0.0005 (3) −0.0013 (3) −0.0005 (4)
C4 0.0134 (4) 0.0201 (5) 0.0163 (4) 0.0037 (4) 0.0002 (3) 0.0002 (4)
C5 0.0181 (5) 0.0136 (4) 0.0152 (4) 0.0032 (4) 0.0023 (3) −0.0016 (3)
C6 0.0132 (4) 0.0111 (4) 0.0112 (4) 0.0005 (3) 0.0006 (3) 0.0015 (3)
C7 0.0117 (4) 0.0115 (4) 0.0141 (4) 0.0001 (3) −0.0035 (3) −0.0015 (3)
C8 0.0142 (4) 0.0172 (5) 0.0148 (4) 0.0009 (4) 0.0003 (3) 0.0002 (4)
C9 0.0142 (4) 0.0137 (4) 0.0132 (4) −0.0004 (3) −0.0002 (3) 0.0007 (3)
C10 0.0154 (4) 0.0146 (4) 0.0130 (4) 0.0021 (3) −0.0011 (3) −0.0002 (3)
C11 0.0160 (5) 0.0168 (5) 0.0159 (4) −0.0040 (4) −0.0006 (3) 0.0028 (4)
O5 0.0159 (4) 0.0345 (5) 0.0242 (4) −0.0027 (3) 0.0035 (3) −0.0117 (3)
C12 0.0239 (6) 0.0398 (7) 0.0269 (6) −0.0016 (5) 0.0002 (5) −0.0160 (5)

Geometric parameters (Å, °)

O1—C6 1.2662 (12) C3—H3 0.9500
O2—C6 1.2469 (12) C4—C5 1.3920 (14)
O3—C7 1.2566 (12) C4—H4 0.9500
O4—C7 1.2597 (12) C5—H5 0.9500
N1—C5 1.3379 (13) C8—C11 1.5215 (14)
N1—C1 1.3477 (12) C8—H8A 0.9900
N2—C8 1.4871 (12) C8—H8B 0.9900
N2—C9 1.4881 (12) C9—C10 1.5155 (13)
N2—H2A 0.9001 C9—H9A 0.9900
N2—H2B 0.9001 C9—H9B 0.9900
N3—C11 1.4911 (13) C10—H10A 0.9900
N3—C10 1.4920 (12) C10—H10B 0.9900
N3—H3A 0.9000 C11—H11A 0.9900
N3—H3B 0.9001 C11—H11B 0.9900
C1—C2 1.3992 (13) O5—C12 1.4139 (14)
C1—C6 1.5227 (13) O5—H5A 0.8500
C2—C3 1.3981 (13) C12—H1A 0.9800
C2—C7 1.5164 (13) C12—H1B 0.9800
C3—C4 1.3864 (14) C12—H1C 0.9800
C5—N1—C1 118.09 (8) O4—C7—C2 117.75 (8)
C8—N2—C9 111.05 (7) N2—C8—C11 110.67 (8)
C8—N2—H2A 108.6 N2—C8—H8A 109.5
C9—N2—H2A 107.6 C11—C8—H8A 109.5
C8—N2—H2B 111.9 N2—C8—H8B 109.5
C9—N2—H2B 108.8 C11—C8—H8B 109.5
H2A—N2—H2B 108.9 H8A—C8—H8B 108.1
C11—N3—C10 111.47 (7) N2—C9—C10 110.48 (8)
C11—N3—H3A 108.7 N2—C9—H9A 109.6
C10—N3—H3A 108.9 C10—C9—H9A 109.6
C11—N3—H3B 109.3 N2—C9—H9B 109.6
C10—N3—H3B 110.9 C10—C9—H9B 109.6
H3A—N3—H3B 107.5 H9A—C9—H9B 108.1
N1—C1—C2 122.77 (9) N3—C10—C9 109.50 (8)
N1—C1—C6 115.44 (8) N3—C10—H10A 109.8
C2—C1—C6 121.77 (8) C9—C10—H10A 109.8
C3—C2—C1 117.92 (9) N3—C10—H10B 109.8
C3—C2—C7 116.24 (8) C9—C10—H10B 109.8
C1—C2—C7 125.84 (8) H10A—C10—H10B 108.2
C4—C3—C2 119.59 (9) N3—C11—C8 110.61 (8)
C4—C3—H3 120.2 N3—C11—H11A 109.5
C2—C3—H3 120.2 C8—C11—H11A 109.5
C3—C4—C5 118.22 (9) N3—C11—H11B 109.5
C3—C4—H4 120.9 C8—C11—H11B 109.5
C5—C4—H4 120.9 H11A—C11—H11B 108.1
N1—C5—C4 123.36 (9) C12—O5—H5A 104.9
N1—C5—H5 118.3 O5—C12—H1A 109.5
C4—C5—H5 118.3 O5—C12—H1B 109.5
O2—C6—O1 125.55 (9) H1A—C12—H1B 109.5
O2—C6—C1 118.59 (8) O5—C12—H1C 109.5
O1—C6—C1 115.84 (8) H1A—C12—H1C 109.5
O3—C7—O4 124.39 (9) H1B—C12—H1C 109.5
O3—C7—C2 117.52 (8)
C5—N1—C1—C2 0.66 (14) N1—C1—C6—O1 −176.31 (8)
C5—N1—C1—C6 −177.60 (8) C2—C1—C6—O1 5.41 (13)
N1—C1—C2—C3 −2.12 (14) C3—C2—C7—O3 −85.50 (11)
C6—C1—C2—C3 176.03 (8) C1—C2—C7—O3 94.23 (12)
N1—C1—C2—C7 178.16 (9) C3—C2—C7—O4 88.07 (11)
C6—C1—C2—C7 −3.69 (14) C1—C2—C7—O4 −92.20 (12)
C1—C2—C3—C4 1.40 (14) C9—N2—C8—C11 −56.46 (10)
C7—C2—C3—C4 −178.84 (9) C8—N2—C9—C10 58.30 (10)
C2—C3—C4—C5 0.61 (15) C11—N3—C10—C9 57.68 (10)
C1—N1—C5—C4 1.56 (15) N2—C9—C10—N3 −58.17 (10)
C3—C4—C5—N1 −2.20 (15) C10—N3—C11—C8 −56.39 (11)
N1—C1—C6—O2 5.41 (13) N2—C8—C11—N3 55.14 (11)
C2—C1—C6—O2 −172.86 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O4i 0.90 1.74 2.6257 (11) 168
N2—H2B···O2 0.90 1.89 2.7274 (11) 155
N3—H3A···O1ii 0.90 1.85 2.7379 (11) 169
N3—H3B···O3iii 0.90 1.86 2.7393 (11) 166
O5—H5A···O1 0.85 1.84 2.6867 (10) 171
C3—H3···O5iv 0.95 2.41 3.3163 (13) 159

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1/2, −y+3/2, z+1/2; (iv) x−1, y, z.

Footnotes

1

In memory of our great professor, Dr Hossein Aghabozorg, who passed away recently.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2416).

References

  1. Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64, o230. [DOI] [PMC free article] [PubMed]
  2. Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.
  3. Barszcz, B., Hodorowicz, M., Jablonska-Wawrzycka, A., Masternak, J., Nitek, W. & Stadnicka, K. (2010). Polyhedron, 29, 1191–1200.
  4. Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Li, L.-J. & Li, Y. (2004). J. Mol. Struct. 697, 199–203.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012384/om2416sup1.cif

e-67-o1122-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012384/om2416Isup2.hkl

e-67-o1122-Isup2.hkl (175.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES