Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1131–o1132. doi: 10.1107/S1600536811013250

8-(2,2,2-Trifluoro­ethoxy)quinolinium perchlorate–8-(2,2,2-trifluoro­ethoxy)quinoline (1/1)

Jun Wu a, Lu-Sheng Chen a, Qi-Kui Liu a, Dian-Shun Guo a,*
PMCID: PMC3089229  PMID: 21754442

Abstract

The title compound, C11H9F3NO+·ClO4 ·C11H8F3NO or [(C11H8F3NO)H(C11H8F3NO)]ClO4, contains two 8-(2,2,2-trifluoro­eth­­oxy)quinoline molecules, one of which combines a proton from perchloric acid to form the corresponding quinolinium cation. The quinolinium and quinoline rings form a cationic unit via an inter­molecular N—H⋯N hydrogen bond. The heterocyclic units are almost perpendicular to each other [inter­planar angle 86.97 (6)°]. In the crystal, each perchlorate anion bridges two adjacent cationic units and creates a chain by a combination of C—H⋯O hydrogen bonds. Two inversion-related chains associate into a mol­ecular column by π–π stacking inter­actions between the quinolinium rings. The perpendicular and centroid–centroid distances between adjacent quinolinium rings are 3.501 (3) and 3.634 (9) Å, respectively. The molecular column is linked to its neighbors, creating a two-dimensional network via the weak π–π stacking between the quinoline rings [perpendicular and centroid–centroid separations 3.340 (4) and 4.408 (4) Å, respectively]. Finally, a three-dimensional framework is formed by a combination of intermolecular C—F⋯π contacts. One –CF3 group is disordered over two positions of equal occupancy.

Related literature

For background to quinoline derivatives, see: Moret et al. (2006); Kalita et al. (2009). For related structures, see: Ouyang & Khoo et al. (1998); Karmakar et al. (2009); Al-Mandhary & Steel (2003); Zhang et al. (2006); Zheng et al. (2006). For π–π stacking, see: Kalita & Baruah (2010); Chen et al. (2005); Liang et al. (2002). For C—F⋯π contacts, see: Prasanna & Row (2000); Saraogi et al. (2003); Choudhury & Row (2004). graphic file with name e-67-o1131-scheme1.jpg

Experimental

Crystal data

  • C11H9F3NO+·ClO4 ·C11H8F3NO

  • M r = 554.83

  • Triclinic, Inline graphic

  • a = 9.462 (2) Å

  • b = 11.229 (3) Å

  • c = 11.832 (3) Å

  • α = 82.910 (3)°

  • β = 77.048 (3)°

  • γ = 74.536 (3)°

  • V = 1178.0 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.50 × 0.32 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.884, T max = 0.940

  • 6301 measured reflections

  • 4364 independent reflections

  • 3400 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.137

  • S = 1.02

  • 4364 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013250/im2278sup1.cif

e-67-o1131-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013250/im2278Isup2.hkl

e-67-o1131-Isup2.hkl (213.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the midpoints of the N1–C5, C5–C9 and C17–C18 bonds, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2 0.86 1.87 2.684 (3) 158
C22—F5⋯Cg1 1.33 3.10 3.796 (3) 111
C22—F6⋯Cg2 1.33 3.17 3.804 (4) 109
C13—H13⋯O3i 0.93 2.60 3.393 (6) 144
C21—H21B⋯O4ii 0.97 2.48 3.437 (7) 169
C22—F5⋯Cg3iii 1.33 3.24 3.860 (8) 108

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Financial support from the National Natural Science Foundation of China (grant No. 20572064) and the Natural Science Foundation of Shandong Province (grant No. ZR2010BM022) is gratefully acknowledged.

supplementary crystallographic information

Comment

Molecules containing quinoline moieties have attracted much interest due to their significant bioactivities (Moret et al., 2006) and potential applications for constructing supramolecular systems by various hydrogen bonds and π–π interactions (Kalita et al., 2009). Numerous crystal structures of 8-substituented quinolines, most of which are 8-alkyloxyquinoline derivatives have been reported (Karmakar et al., 2009; Al-Mandhary et al., 2003; Zhang et al., 2006; Zheng et al., 2006), while the crystal structures of such compounds exhibiting fluorinated alkyl groups have rarely been described. We synthesized a new trifluoroethoxyquinoline derivative and attempted to prepare its Ni(II)-complex. Surprisingly, a complex without the Ni(II) ion, namely 8-(2,2,2-trifluoroethoxy)-quinolinium-[8-(2,2,2-trifluoroethoxy)-quinoline] perchlorate, was obtained. Here, we report its crystal structure.

In the crystal structure of the title complex the asymmetric unit contains one perchlorate anion and one organic cation consisting of two 8-(2,2,2-trifluoroethoxy)-quinolines and a proton (Fig. 1). In the cationic unit, one quinoline ring is protonated forming a quinolinium and is connected to the other one via a N—H···N hydrogen bond (N–H···N angle 155.33 (5)°, N1···N2 2.684 (3) Å, Fig. 2, Table 1). This distance is shorter than 2.729 Å reported for a similar quinoline derivative (Ouyang et al., 1998). Such a short distance may be ascribed to the presence of two weak C—F···π contacts (Prasanna & Row, 2000; Saraogi et al., 2003; Choudhury & Row, 2004) between the non-disordered trifluoromethyl group and the quinoline ring. Separations of F5···Cg1 and F6···Cg2 (Cg1 and Cg2 are the centroids of N1–C5 and C5–C9 bonds, respectively) are 3.099 (3) and 3.166 (3) Å, respectively. The quinolinium and quinoline rings are almost perpendicular to each other, with a dihedral angle of 86.97 (6)°. The other trifluoromethyl group is disordered over two orientations, with refined site-occupancy factors of 0.5.

In the packing of the title complex, there exist intermolecular C—H···O hydrogen bonds, C—F···π contacts (Table 1) and π–π stackings (Kalita & Baruah, 2010; Chen et al., 2005; Liang et al., 2002). The cationic units are alternately bridged by perchlorate anions with intermolecular C—H···O hydrogen bonds and form an infinite one-dimensional chain along the c axis (Fig. 3). Hydrogen bonds arise from atoms C13—H13 and C21—H21B in the molecule at (x, y, z) acting as hydrogen bond donors towards atoms O3 at (-x + 1, -y + 1, -z + 1) and O4 (-x + 1, -y + 1, -z + 2), respectively. Two adjacent chains running along the alternate orientation are further combined to a molecular column by π–π stacking interactions between the quinolinium rings, with perpendicular and centroid-centroid distances of 3.501 (3) and 3.634 (9) Å, respectively, between neighboring phenyl rings of the quinolinium units. Finally, a complicated three-dimensional framework is formed by a combination of C—F···π contacts, with a F5···Cg3 (Cg3 is the centroid of C17–C18 bond) distance of 3.240 (7) Å (Table 1), and weak π–π stackings between adjacent phenyl rings of the quinoline moieties, with perpendicular and centroid-centroid separations of 3.340 (4) and 4.408 (4) Å, respectively.

Experimental

A suspension of 8-hydroxyquinoline (0.200 g, 1.378 mmol), anhydrous KOH (0.093 g, 1.657 mmol) and 2,2,2-trifluoroethyl-4-methylbenzenesulfonate (0.385 g, 1.514 mmol) in dry NMP (5 ml) was stirred for 5 h at 393 K and then cooled to room temperature. The resulting mixture was neutralized with 5% aqueous HCl and extracted with CH2Cl2. The organic layer was separated and washed with saturated sodium hydrogen carbonate and brine, and dried over anhydrous MgSO4. Removal of the solvent under reduced pressure gave 8-(2,2,2-trifluoroethoxy)-quinoline as a yellow solid (yield 73%), which was purified by flash column chromatography (EtOAc/petroleum ether = 1:3, RF = 1/2).

Single crystals of the title complex suitable for X-ray analysis were obtained from a solution of Ni(ClO4)2 (0.013 g, 0.050 mmol) in MeOH (1 ml) which was layered onto a solution of 8-(2,2,2-trifluoroethoxy)-quinoline (0.012 g, 0.053 mmol) in CH2Cl2 (1 ml) at 298 K.

Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to anisotropically refined atoms were placed in geometrically idealized positions and included as riding atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) (aromatic); C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) (methylene); N—H = 0.86Å and Uiso(H) = 1.2Ueq(N). In the title molecule, one trifluoromethyl group was disordered over two orientations, with refined site occupation factors of 0.5: 0.5.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title complex, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Hydrogen-bonded cationic unit, with weak C—F···π contacts. For the sake of clarity, the disordered moieties and the H atoms not involved in hydrogen bonding have been omitted.

Fig. 3.

Fig. 3.

Molecular column formed by hydrogen bonds and π–π stackings, viewed along the a axis. The disordered moieties and H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 2].

Crystal data

C11H9F3NO+·ClO4·C11H8F3NO Z = 2
Mr = 554.83 F(000) = 564
Triclinic, P1 Dx = 1.564 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.462 (2) Å Cell parameters from 2404 reflections
b = 11.229 (3) Å θ = 2.5–25.1°
c = 11.832 (3) Å µ = 0.25 mm1
α = 82.910 (3)° T = 293 K
β = 77.048 (3)° Block, colourless
γ = 74.536 (3)° 0.50 × 0.32 × 0.25 mm
V = 1178.0 (5) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 4364 independent reflections
Radiation source: fine-focus sealed tube 3400 reflections with I > 2σ(I)
graphite Rint = 0.021
phi and ω scans θmax = 25.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −11→8
Tmin = 0.884, Tmax = 0.940 k = −13→9
6301 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.068P)2 + 0.293P] where P = (Fo2 + 2Fc2)/3
4364 reflections (Δ/σ)max < 0.001
361 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Experimental. ^1Ĥ NMR (300 MHz, CDCl~3~):δ 8.97 (dd, 1H, J = 4.04 Hz, 1.52 Hz), 8.17 (d, 1H, J = 7.52 Hz), 7.54–7.44 (m, 3H), 7.25 (d, H, J = 7.65 Hz), 4.78 (q, 2H, J = 8.33 Hz).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 1.1468 (3) 0.6885 (3) 0.6473 (2) 0.0583 (6)
H1 1.1569 0.6034 0.6558 0.070*
C2 1.2727 (3) 0.7332 (3) 0.6049 (2) 0.0694 (8)
H2 1.3662 0.6791 0.5845 0.083*
C3 1.2575 (3) 0.8571 (3) 0.5937 (2) 0.0682 (8)
H3 1.3416 0.8880 0.5653 0.082*
C4 1.1164 (3) 0.9399 (2) 0.6243 (2) 0.0548 (6)
C5 0.9930 (3) 0.8878 (2) 0.66440 (18) 0.0448 (5)
C6 1.0927 (4) 1.0696 (3) 0.6165 (2) 0.0677 (8)
H6 1.1731 1.1056 0.5909 0.081*
C7 0.9530 (4) 1.1412 (3) 0.6463 (2) 0.0738 (8)
H7 0.9385 1.2268 0.6415 0.089*
C8 0.8288 (3) 1.0905 (2) 0.6843 (2) 0.0643 (7)
H8 0.7334 1.1424 0.7027 0.077*
C9 0.8474 (3) 0.9661 (2) 0.6943 (2) 0.0505 (6)
C10 0.5911 (3) 0.9754 (3) 0.7691 (3) 0.0844 (10)
H10A 0.5518 1.0228 0.7037 0.101*
H10B 0.5902 1.0325 0.8245 0.101*
C12 0.7912 (3) 0.5853 (2) 0.6481 (2) 0.0637 (7)
H12 0.8219 0.6259 0.5770 0.076*
C13 0.7078 (4) 0.4983 (3) 0.6515 (3) 0.0731 (8)
H13 0.6806 0.4839 0.5845 0.088*
C14 0.6678 (3) 0.4362 (2) 0.7528 (3) 0.0687 (8)
H14 0.6140 0.3772 0.7557 0.082*
C15 0.7062 (3) 0.4590 (2) 0.8546 (2) 0.0533 (6)
C16 0.7845 (2) 0.55191 (19) 0.8454 (2) 0.0449 (5)
C17 0.6663 (3) 0.3978 (2) 0.9643 (3) 0.0664 (7)
H17 0.6164 0.3355 0.9710 0.080*
C18 0.7003 (3) 0.4296 (2) 1.0592 (3) 0.0670 (7)
H18 0.6739 0.3884 1.1308 0.080*
C19 0.7750 (3) 0.5238 (2) 1.0520 (2) 0.0574 (6)
H19 0.7962 0.5450 1.1188 0.069*
C20 0.8163 (2) 0.5841 (2) 0.9478 (2) 0.0465 (5)
C21 0.9028 (3) 0.7245 (2) 1.0323 (2) 0.0550 (6)
H21A 0.9774 0.6653 1.0687 0.066*
H21B 0.8083 0.7397 1.0876 0.066*
C22 0.9496 (3) 0.8415 (3) 0.9960 (2) 0.0621 (7)
Cl1 0.35067 (7) 0.30823 (6) 0.64594 (5) 0.0564 (2)
F4 0.9743 (3) 0.88475 (17) 1.08657 (15) 0.0965 (6)
F5 1.07304 (19) 0.82890 (16) 0.91311 (15) 0.0783 (5)
F6 0.8460 (2) 0.92888 (15) 0.95375 (16) 0.0850 (5)
N1 1.0134 (2) 0.76298 (17) 0.67574 (16) 0.0463 (4)
H1A 0.9374 0.7321 0.7021 0.056*
N2 0.8280 (2) 0.61195 (17) 0.74111 (17) 0.0482 (5)
O1 0.73864 (18) 0.90405 (15) 0.73088 (16) 0.0613 (5)
O2 0.88758 (18) 0.67771 (15) 0.93048 (13) 0.0526 (4)
O3 0.4147 (3) 0.4098 (2) 0.6013 (2) 0.0932 (7)
O4 0.4074 (2) 0.25456 (19) 0.74758 (18) 0.0835 (6)
O5 0.3897 (3) 0.2197 (2) 0.5613 (2) 0.0979 (8)
O6 0.1932 (2) 0.3522 (2) 0.6752 (2) 0.0888 (7)
C11 0.4994 (4) 0.8884 (4) 0.8241 (4) 0.0902 (10) 0.50
F1 0.5026 (16) 0.8110 (15) 0.7456 (17) 0.177 (7) 0.50
F2 0.3618 (17) 0.9521 (18) 0.8772 (11) 0.131 (4) 0.50
F3 0.5473 (15) 0.8205 (11) 0.9134 (14) 0.118 (5) 0.50
C11W 0.4994 (4) 0.8884 (4) 0.8241 (4) 0.0902 (10) 0.50
F1W 0.5117 (10) 0.7933 (8) 0.7704 (12) 0.105 (4) 0.50
F2W 0.3555 (16) 0.9444 (18) 0.8260 (11) 0.109 (3) 0.50
F3W 0.5318 (19) 0.8454 (16) 0.9246 (13) 0.142 (6) 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0535 (15) 0.0587 (15) 0.0562 (15) −0.0040 (12) −0.0086 (12) −0.0055 (12)
C2 0.0472 (15) 0.085 (2) 0.0672 (18) −0.0088 (14) −0.0025 (13) −0.0029 (15)
C3 0.0540 (16) 0.094 (2) 0.0623 (17) −0.0336 (15) −0.0074 (13) −0.0012 (15)
C4 0.0612 (16) 0.0688 (16) 0.0412 (13) −0.0279 (13) −0.0108 (11) −0.0022 (11)
C5 0.0539 (13) 0.0484 (13) 0.0347 (11) −0.0179 (11) −0.0090 (10) −0.0007 (9)
C6 0.087 (2) 0.0718 (18) 0.0563 (16) −0.0452 (17) −0.0110 (15) 0.0005 (13)
C7 0.116 (3) 0.0494 (15) 0.0600 (17) −0.0323 (17) −0.0124 (17) −0.0016 (13)
C8 0.0779 (18) 0.0474 (14) 0.0599 (16) −0.0087 (13) −0.0078 (14) −0.0004 (12)
C9 0.0564 (14) 0.0476 (13) 0.0445 (13) −0.0114 (11) −0.0081 (11) 0.0008 (10)
C10 0.0535 (17) 0.0661 (18) 0.111 (3) 0.0037 (14) 0.0015 (16) 0.0071 (17)
C12 0.0788 (19) 0.0615 (16) 0.0556 (16) −0.0193 (14) −0.0209 (14) −0.0046 (12)
C13 0.085 (2) 0.0695 (18) 0.080 (2) −0.0252 (16) −0.0348 (17) −0.0145 (16)
C14 0.0658 (18) 0.0522 (15) 0.099 (2) −0.0214 (13) −0.0283 (16) −0.0109 (15)
C15 0.0451 (13) 0.0400 (12) 0.0764 (17) −0.0112 (10) −0.0144 (12) −0.0041 (11)
C16 0.0404 (12) 0.0361 (11) 0.0566 (14) −0.0069 (9) −0.0101 (10) −0.0027 (10)
C17 0.0574 (16) 0.0501 (15) 0.093 (2) −0.0240 (12) −0.0120 (15) 0.0066 (14)
C18 0.0654 (17) 0.0598 (16) 0.0700 (18) −0.0220 (14) −0.0037 (14) 0.0135 (13)
C19 0.0573 (15) 0.0566 (15) 0.0567 (15) −0.0169 (12) −0.0069 (12) 0.0003 (12)
C20 0.0437 (12) 0.0412 (12) 0.0534 (14) −0.0109 (10) −0.0062 (10) −0.0035 (10)
C21 0.0618 (15) 0.0595 (15) 0.0467 (13) −0.0199 (12) −0.0097 (11) −0.0066 (11)
C22 0.0790 (19) 0.0619 (16) 0.0541 (15) −0.0259 (15) −0.0184 (14) −0.0094 (12)
Cl1 0.0547 (4) 0.0556 (4) 0.0571 (4) −0.0178 (3) −0.0036 (3) −0.0017 (3)
F4 0.1570 (19) 0.0919 (12) 0.0696 (11) −0.0634 (13) −0.0396 (12) −0.0119 (9)
F5 0.0817 (11) 0.0814 (11) 0.0788 (11) −0.0408 (9) −0.0069 (9) −0.0032 (9)
F6 0.1038 (13) 0.0591 (10) 0.0926 (13) −0.0115 (9) −0.0315 (11) −0.0039 (9)
N1 0.0444 (11) 0.0473 (11) 0.0459 (11) −0.0131 (9) −0.0054 (8) −0.0011 (8)
N2 0.0519 (11) 0.0442 (10) 0.0500 (11) −0.0117 (9) −0.0124 (9) −0.0051 (8)
O1 0.0449 (9) 0.0506 (10) 0.0792 (12) −0.0075 (8) −0.0004 (8) −0.0011 (9)
O2 0.0648 (10) 0.0551 (9) 0.0453 (9) −0.0284 (8) −0.0091 (8) −0.0050 (7)
O3 0.1065 (17) 0.0857 (15) 0.1007 (17) −0.0546 (14) −0.0250 (13) 0.0195 (12)
O4 0.0875 (15) 0.0769 (13) 0.0738 (13) −0.0045 (11) −0.0184 (11) 0.0110 (11)
O5 0.0924 (16) 0.1109 (18) 0.0948 (16) −0.0381 (14) 0.0101 (13) −0.0478 (14)
O6 0.0554 (12) 0.0968 (16) 0.1055 (17) −0.0104 (11) −0.0081 (11) −0.0077 (13)
C11 0.0475 (18) 0.089 (3) 0.120 (4) −0.0082 (17) 0.0047 (19) −0.010 (3)
F1 0.109 (7) 0.217 (14) 0.235 (12) −0.025 (7) −0.069 (7) −0.097 (10)
F2 0.054 (5) 0.124 (6) 0.179 (12) 0.000 (4) 0.034 (7) −0.030 (9)
F3 0.084 (5) 0.082 (3) 0.155 (12) −0.026 (3) 0.021 (5) 0.038 (5)
C11W 0.0475 (18) 0.089 (3) 0.120 (4) −0.0082 (17) 0.0047 (19) −0.010 (3)
F1W 0.056 (4) 0.077 (4) 0.181 (9) −0.031 (3) 0.001 (4) −0.023 (5)
F2W 0.045 (3) 0.128 (5) 0.143 (8) −0.010 (3) 0.007 (5) −0.041 (7)
F3W 0.142 (11) 0.194 (13) 0.093 (7) −0.070 (9) −0.007 (6) 0.002 (7)

Geometric parameters (Å, °)

C1—N1 1.312 (3) C14—H14 0.9300
C1—C2 1.383 (4) C15—C16 1.413 (3)
C1—H1 0.9300 C15—C17 1.414 (4)
C2—C3 1.352 (4) C16—N2 1.364 (3)
C2—H2 0.9300 C16—C20 1.421 (3)
C3—C4 1.408 (4) C17—C18 1.346 (4)
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.406 (3) C18—C19 1.404 (4)
C4—C6 1.408 (4) C18—H18 0.9300
C5—N1 1.357 (3) C19—C20 1.361 (3)
C5—C9 1.418 (3) C19—H19 0.9300
C6—C7 1.346 (4) C20—O2 1.365 (3)
C6—H6 0.9300 C21—O2 1.422 (3)
C7—C8 1.401 (4) C21—C22 1.480 (4)
C7—H7 0.9300 C21—H21A 0.9700
C8—C9 1.354 (3) C21—H21B 0.9700
C8—H8 0.9300 C22—F4 1.319 (3)
C9—O1 1.357 (3) C22—F6 1.326 (3)
C10—O1 1.416 (3) C22—F5 1.334 (3)
C10—C11 1.474 (5) Cl1—O6 1.415 (2)
C10—H10A 0.9700 Cl1—O5 1.418 (2)
C10—H10B 0.9700 Cl1—O3 1.423 (2)
C12—N2 1.316 (3) Cl1—O4 1.427 (2)
C12—C13 1.402 (4) N1—H1A 0.8600
C12—H12 0.9300 C11—F3 1.317 (15)
C13—C14 1.341 (4) C11—F1 1.338 (17)
C13—H13 0.9300 C11—F2 1.359 (15)
C14—C15 1.403 (4)
N1—C1—C2 121.7 (3) N2—C16—C15 121.5 (2)
N1—C1—H1 119.1 N2—C16—C20 119.7 (2)
C2—C1—H1 119.1 C15—C16—C20 118.8 (2)
C3—C2—C1 118.9 (3) C18—C17—C15 120.2 (2)
C3—C2—H2 120.6 C18—C17—H17 119.9
C1—C2—H2 120.6 C15—C17—H17 119.9
C2—C3—C4 121.0 (3) C17—C18—C19 121.3 (3)
C2—C3—H3 119.5 C17—C18—H18 119.4
C4—C3—H3 119.5 C19—C18—H18 119.4
C5—C4—C6 119.0 (3) C20—C19—C18 120.3 (3)
C5—C4—C3 116.9 (2) C20—C19—H19 119.8
C6—C4—C3 124.1 (3) C18—C19—H19 119.8
N1—C5—C4 120.2 (2) C19—C20—O2 125.5 (2)
N1—C5—C9 120.1 (2) C19—C20—C16 120.1 (2)
C4—C5—C9 119.8 (2) O2—C20—C16 114.40 (19)
C7—C6—C4 119.7 (3) O2—C21—C22 107.24 (19)
C7—C6—H6 120.2 O2—C21—H21A 110.3
C4—C6—H6 120.2 C22—C21—H21A 110.3
C6—C7—C8 121.9 (3) O2—C21—H21B 110.3
C6—C7—H7 119.0 C22—C21—H21B 110.3
C8—C7—H7 119.0 H21A—C21—H21B 108.5
C9—C8—C7 120.1 (3) F4—C22—F6 107.2 (2)
C9—C8—H8 119.9 F4—C22—F5 108.3 (2)
C7—C8—H8 119.9 F6—C22—F5 105.6 (2)
C8—C9—O1 126.7 (2) F4—C22—C21 109.5 (2)
C8—C9—C5 119.5 (2) F6—C22—C21 112.6 (2)
O1—C9—C5 113.7 (2) F5—C22—C21 113.3 (2)
O1—C10—C11 107.3 (2) O6—Cl1—O5 109.93 (14)
O1—C10—H10A 110.3 O6—Cl1—O3 109.00 (14)
C11—C10—H10A 110.3 O5—Cl1—O3 109.86 (15)
O1—C10—H10B 110.3 O6—Cl1—O4 109.81 (14)
C11—C10—H10B 110.3 O5—Cl1—O4 110.33 (15)
H10A—C10—H10B 108.5 O3—Cl1—O4 107.87 (14)
N2—C12—C13 122.8 (3) C1—N1—C5 121.2 (2)
N2—C12—H12 118.6 C1—N1—H1A 119.4
C13—C12—H12 118.6 C5—N1—H1A 119.4
C14—C13—C12 118.9 (3) C12—N2—C16 118.9 (2)
C14—C13—H13 120.5 C9—O1—C10 117.2 (2)
C12—C13—H13 120.5 C20—O2—C21 116.17 (18)
C13—C14—C15 120.8 (3) F3—C11—F1 107.5 (10)
C13—C14—H14 119.6 F3—C11—F2 100.6 (10)
C15—C14—H14 119.6 F1—C11—F2 116.5 (9)
C14—C15—C16 117.0 (2) F3—C11—C10 113.4 (7)
C14—C15—C17 123.7 (2) F1—C11—C10 108.9 (8)
C16—C15—C17 119.3 (2) F2—C11—C10 109.9 (9)
N1—C1—C2—C3 0.6 (4) C16—C15—C17—C18 1.2 (4)
C1—C2—C3—C4 0.0 (4) C15—C17—C18—C19 0.3 (4)
C2—C3—C4—C5 −1.3 (4) C17—C18—C19—C20 −0.8 (4)
C2—C3—C4—C6 179.0 (3) C18—C19—C20—O2 179.2 (2)
C6—C4—C5—N1 −178.2 (2) C18—C19—C20—C16 −0.2 (4)
C3—C4—C5—N1 2.1 (3) N2—C16—C20—C19 −179.2 (2)
C6—C4—C5—C9 1.1 (3) C15—C16—C20—C19 1.7 (3)
C3—C4—C5—C9 −178.7 (2) N2—C16—C20—O2 1.3 (3)
C5—C4—C6—C7 −0.7 (4) C15—C16—C20—O2 −177.81 (19)
C3—C4—C6—C7 179.0 (3) O2—C21—C22—F4 −176.1 (2)
C4—C6—C7—C8 −0.6 (4) O2—C21—C22—F6 64.7 (3)
C6—C7—C8—C9 1.4 (4) O2—C21—C22—F5 −55.0 (3)
C7—C8—C9—O1 179.3 (2) C2—C1—N1—C5 0.2 (4)
C7—C8—C9—C5 −0.9 (4) C4—C5—N1—C1 −1.6 (3)
N1—C5—C9—C8 179.0 (2) C9—C5—N1—C1 179.1 (2)
C4—C5—C9—C8 −0.3 (3) C13—C12—N2—C16 0.6 (4)
N1—C5—C9—O1 −1.2 (3) C15—C16—N2—C12 2.4 (3)
C4—C5—C9—O1 179.6 (2) C20—C16—N2—C12 −176.7 (2)
N2—C12—C13—C14 −2.4 (4) C8—C9—O1—C10 −3.9 (4)
C12—C13—C14—C15 1.1 (4) C5—C9—O1—C10 176.3 (2)
C13—C14—C15—C16 1.6 (4) C11—C10—O1—C9 −169.7 (3)
C13—C14—C15—C17 179.3 (3) C19—C20—O2—C21 −7.9 (3)
C14—C15—C16—N2 −3.5 (3) C16—C20—O2—C21 171.53 (19)
C17—C15—C16—N2 178.8 (2) C22—C21—O2—C20 −167.1 (2)
C14—C15—C16—C20 175.6 (2) O1—C10—C11—F3 59.6 (8)
C17—C15—C16—C20 −2.2 (3) O1—C10—C11—F1 −60.0 (9)
C14—C15—C17—C18 −176.4 (3) O1—C10—C11—F2 171.3 (6)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the midpoints of the N1–C5, C5–C9 and C17–C18 bonds, respectively.
D—H···A D—H H···A D···A D—H···A
N1—H1A···N2 0.86 1.87 2.684 (3) 158
C22—F5···Cg1 1.33 3.10 3.796 (3) 111
C22—F6···Cg2 1.33 3.17 3.804 (4) 109
C13—H13···O3i 0.93 2.60 3.393 (6) 144.
C21—H21B···O4ii 0.97 2.48 3.437 (7) 169
C22—F5···Cg3iii 1.33 3.24 3.860 (8) 108

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2278).

References

  1. Al-Mandhary, M. R. A. & Steel, P. J. (2003). Inorg. Chim. Acta, 351, 7–11.
  2. Bruker (1999). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, C.-L., Zhang, J.-A., Li, X.-P., Chen, Z.-N., Kang, B.-S. & Su, C.-Y. (2005). Inorg. Chim. Acta, 358, 4527–4533.
  4. Choudhury, A. R. & Row, T. N. G. (2004). Cryst. Growth Des. 4, 47–52.
  5. Kalita, D. & Baruah, J. B. (2010). CrystEngComm, 12, 1562–1567.
  6. Kalita, D., Sarma, R. & Baruah, J. B. (2009). CrystEngComm, 11, 803–810.
  7. Karmakar, A., Kalita, D. & Baruah, J. B. (2009). J. Mol. Struct. 935, 47–52.
  8. Liang, F., Xie, Z., Wang, L., Jing, X. & Wang, F. (2002). Tetrahedron Lett. 43, 3427–3430.
  9. Moret, V., Dereudre-Bosquet, N., Clayette, P., Laras, Y., Pietrancosta, N., Rolland, A., Weck, C., Marc, S. & Kraus, J.-L. (2006). Bioorg. Med. Chem. Lett. 16, 5988–5992. [DOI] [PubMed]
  10. Ouyang, J., Xu, Y. & Khoo, L. E. (1998). J. Organomet. Chem. 561, 143–152.
  11. Prasanna, M. D. & Row, T. N. G. (2000). Cryst. Eng. 3, 135–154.
  12. Saraogi, I., Vijay, V. G., Das, S., Sekar, K. & Row, T. N. G. (2003). Cryst. Eng. 6, 69–77.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Zhang, S.-S., Xu, L.-L., Wen, H.-L., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, o3071–o3072.
  15. Zheng, Z.-B., Li, J.-K., Wu, R.-T. & Sun, Y.-F. (2006). Acta Cryst. E62, o4611–o4612.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013250/im2278sup1.cif

e-67-o1131-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013250/im2278Isup2.hkl

e-67-o1131-Isup2.hkl (213.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES