Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):i31. doi: 10.1107/S1600536811012979

Diammonium tricadmium tris­(sulfate) dihydroxide dihydrate

Xin Yin a,*
PMCID: PMC3089235  PMID: 21754257

Abstract

The title compound, (NH4)2Cd3(SO4)3(OH)2(H2O)2, has been obtained serendipitously. It is isotypic with the heavier alkali analogues M 2Cd3(SO4)3(OH)2(H2O)2 (M = K, Rb, Cs). The structure contains two Cd2+ ions, one in a general position and one with site symmetry m. The former Cd2+ ion is coordinated by three O atoms of three SO4 groups, two hydroxide O atoms and one water O atom, the latter Cd2+ ion by four O atoms of four SO4 groups and two hydroxide O atoms, both in a distorted octa­hedral coordination geometry. This arrangement leads to the formation of a layered framework extending parallel to (100), with the ammonium cations situated in the voids. O—H⋯O hydrogen bonds involving the water mol­ecules, hydroxide groups and sulfate O atoms, as well as N—H⋯O hydrogen bonds between ammonium cations and sulfate O atoms consolidate the crystal packing.

Related literature

For the isotypic K and Cs analogues, see: Louer & Louer (1982), and for the Rb analogue, see: Swain & Guru Row (2006).

Experimental

Crystal data

  • (NH4)2Cd3(SO4)3(OH)2(H2O)2

  • M r = 731.51

  • Orthorhombic, Inline graphic

  • a = 18.906 (3) Å

  • b = 7.9483 (11) Å

  • c = 9.9809 (13) Å

  • V = 1499.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.72 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.601, T max = 0.704

  • 7060 measured reflections

  • 1770 independent reflections

  • 1739 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.066

  • S = 1.08

  • 1770 reflections

  • 118 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −1.31 e Å−3

  • Absolute structure: Flack (1983), 825 Friedel pairs

  • Flack parameter: −0.07 (4)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012979/wm2470sup1.cif

e-67-00i31-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012979/wm2470Isup2.hkl

e-67-00i31-Isup2.hkl (87.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10B⋯O7i 0.85 2.25 3.087 (5) 167
O10—H10B⋯O5ii 0.85 2.36 2.985 (6) 131
O9—H9A⋯O6iii 0.85 2.18 3.029 (7) 173
O8—H8A⋯O5ii 0.85 2.56 3.322 (9) 150
O8—H8A⋯O5i 0.85 2.56 3.322 (9) 150
N1—H1B⋯O10iv 0.90 2.26 2.948 (6) 133
N1—H1D⋯O4ii 0.90 2.18 3.077 (5) 180
N1—H1C⋯O4v 0.90 2.19 3.074 (7) 168
N1—H1A⋯O3vi 0.90 2.38 2.995 (6) 126
N1—H1D⋯O2ii 0.90 2.64 3.196 (7) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

supplementary crystallographic information

Comment

The title compound, (NH4)2Cd3(SO4)3(OH)2(H2O)2, (I), formed accidentally under hydrothermal reaction conditions. Our intended target product was to synthesis a coordination compound from 1H-benzimidazole-5,6-dicarboxylate and CdSO4.8/3H2O. The presence of ammonium ions in the finally obtained compound points to an internal redox process that presumably has caused a (partly) reduction of the nitrogen atoms of 1H-benzimidazole-5,6-dicarboxylate or the nitrate anions. (NH4)2Cd3(SO4)3(OH)2(H2O)2 is isotypic with other M2Cd3(SO4)3(OH)2(H2O)2 members (M = K, Cs (Louer & Louer, 1982); M = Rb (Swain & Guru Row, 2006)).

The asymmetric unit of (I) is illustrated in Fig. 1. The crystal structure of (NH4)2Cd3(SO4)3(OH)2(H2O)2 is made up from two different Cd2+ ions (one on a general position (Cd1), one with site symmetry m (Cd2)), two sulfate ions (likewise one on a general position and the other with site symmetry m), two hydroxide groups, one water molecule and one NH4+ cation. Both Cd2+ cations are six-coordinated in an octahedral coordination geometry. Cd2 is coordinated by four sulfate ions and two hydroxide ions, while Cd1 is coordinated by three sulfate ons, two hydroxide anions and one water molecule. There are four types of oxygen atoms in the crystal structure of the title compound. The O3 atom of one SO42- anion is solely bound to the S atom, O8 and O9 represent the oxygen atoms of hydroxide groups shared by three Cd atoms, O10 is the water O atom bound to one Cd atom and all other O atoms represent sulfate O atoms coordinated to only one Cd atom.

As can be seen in Fig. 2, the Cd(1)O6 polyhedra are connected by sharing edges of OH groups. Cd(2)O6 octahedra and SO4 tetrahedra are linked to these dimers via common corners, thus forming a two-dimensional network extending parallel to the bc plane. The NH4+ cations are situated in the voids of the layers. Through formation of N—H···O and O—H···O hydrogen bonds a three-dimensional structure is formed. Since all water and hydroxide groups and most of the sulfate O atoms are involved in hydrogen bonding, the resulting network can be considered as relatively stable (Table 2, Fig. 3).

Experimental

All reagents were obtained from commercial sources and used without further purification. A mixture of CdSO4.8/3H2O (0.2565 g, 1.0 mmol), 1H-benzimidazole-5,6-dicarboxylate (0.1236 g,0.6 mmol), CH3CN (6 ml) and 4 ml water were added to a 23 ml Teflon-lined stainless container, which was heated to 423 K and held at that temperature for 5 days. After cooling to room temperature in 24 h, colourless crystals were recovered by filtration (yield 49% based on CdSO4.8/3H2O).

Refinement

The H atoms were localized from a difference Fourier map. Their coordinates were refined independently with O—H distances restrained to 0.85 (2) Å and the H—H = 1.30 (2)Å for the water H atoms. The isotropic temperature parameters of the H atoms were refined with 1.2Ueq of the parent atom. H atoms of the ammonium cation were placed in calculated positions, with N—H = 0.90Å, Uiso(H) = 1.2 Ueq(N). The deepest hole in the final Fourier map is 0.8 Å from Cd2.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), with displacement parameters shown at the 30% probability level.

Fig. 2.

Fig. 2.

View of the two-dimensional network structure of (I) parallel to (100) in the polyhedral representation.

Fig. 3.

Fig. 3.

Three-dimensional supramolecular structure of (I), built up through hydrogen bonding. NH4+ ions have been omitted for clarity.

Crystal data

Cd3H6O16S3·2NH4 F(000) = 1392
Mr = 731.51 Dx = 3.240 Mg m3
Orthorhombic, Cmc21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2c -2 Cell parameters from 12815 reflections
a = 18.906 (3) Å θ = 1.7–27.5°
b = 7.9483 (11) Å µ = 4.72 mm1
c = 9.9809 (13) Å T = 296 K
V = 1499.8 (4) Å3 Block, colourless
Z = 4 0.12 × 0.10 × 0.08 mm

Data collection

Bruker SMART CCD diffractometer 1770 independent reflections
Radiation source: fine-focus sealed tube 1739 reflections with I > 2σ(I)
graphite Rint = 0.051
φ and ω–scans θmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −24→24
Tmin = 0.601, Tmax = 0.704 k = −10→10
7060 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0328P)2 + 1.1583P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
1770 reflections Δρmax = 0.68 e Å3
118 parameters Δρmin = −1.31 e Å3
1 restraint Absolute structure: Flack (1983), 825 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.07 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.588435 (18) 0.46065 (4) 0.29502 (5) 0.01981 (11)
Cd2 0.5000 0.19102 (5) 0.58110 (4) 0.01744 (12)
S1 0.67635 (6) 0.30002 (13) 0.57340 (14) 0.0184 (2)
S2 0.5000 0.8103 (2) 0.41513 (16) 0.0192 (4)
O1 0.6589 (3) 0.4252 (6) 0.4718 (4) 0.0387 (11)
O2 0.6223 (2) 0.1661 (4) 0.5730 (5) 0.0299 (8)
O3 0.7446 (2) 0.2229 (5) 0.5454 (5) 0.0357 (11)
O4 0.6794 (2) 0.3814 (5) 0.7053 (4) 0.0299 (9)
O5 0.5621 (3) 0.7036 (8) 0.4165 (6) 0.0583 (18)
O6 0.5000 0.9205 (6) 0.3000 (7) 0.0500 (19)
O7 0.5000 0.9098 (6) 0.5395 (5) 0.0303 (13)
O8 0.5000 0.5445 (5) 0.1571 (5) 0.0192 (11)
H8A 0.5000 0.4922 0.0828 0.029*
O9 0.5000 0.2910 (6) 0.3712 (5) 0.0201 (10)
H9A 0.5000 0.1896 0.3440 0.030*
O10 0.6329 (2) 0.2327 (5) 0.1789 (4) 0.0293 (8)
H10A 0.6695 0.2468 0.1308 0.044*
H10B 0.5985 0.2025 0.1297 0.044*
N1 0.6921 (3) 0.9615 (4) 0.3464 (5) 0.0238 (10)
H1A 0.6950 0.9457 0.4356 0.029*
H1B 0.6538 1.0244 0.3276 0.029*
H1C 0.7312 1.0147 0.3174 0.029*
H1D 0.6883 0.8612 0.3052 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.02190 (18) 0.01799 (18) 0.01954 (18) 0.00123 (11) −0.00023 (14) 0.00305 (13)
Cd2 0.0246 (3) 0.0116 (2) 0.0161 (2) 0.000 0.000 −0.00027 (18)
S1 0.0206 (6) 0.0174 (5) 0.0172 (5) 0.0020 (4) −0.0014 (5) 0.0002 (4)
S2 0.0299 (10) 0.0120 (7) 0.0157 (8) 0.000 0.000 −0.0020 (5)
O1 0.051 (3) 0.034 (2) 0.032 (2) −0.014 (2) −0.024 (2) 0.0156 (18)
O2 0.028 (2) 0.0217 (15) 0.040 (2) −0.0028 (14) −0.0029 (18) −0.0014 (18)
O3 0.027 (2) 0.036 (3) 0.045 (2) 0.0036 (19) 0.0040 (16) −0.0123 (17)
O4 0.036 (2) 0.034 (2) 0.0201 (17) 0.0036 (18) −0.0002 (15) −0.0073 (15)
O5 0.059 (4) 0.066 (3) 0.051 (3) 0.042 (3) −0.027 (3) −0.034 (3)
O6 0.120 (6) 0.016 (2) 0.014 (2) 0.000 0.000 −0.001 (3)
O7 0.063 (4) 0.011 (2) 0.016 (2) 0.000 0.000 −0.0070 (19)
O8 0.031 (3) 0.014 (2) 0.012 (2) 0.000 0.000 −0.0018 (16)
O9 0.023 (3) 0.016 (2) 0.021 (2) 0.000 0.000 0.0034 (17)
O10 0.024 (2) 0.0293 (19) 0.034 (2) 0.0021 (16) −0.0009 (16) −0.0066 (17)
N1 0.034 (3) 0.016 (2) 0.022 (2) 0.0022 (15) −0.0038 (19) −0.0032 (17)

Geometric parameters (Å, °)

Cd1—O1 2.228 (4) S2—O6 1.444 (6)
Cd1—O8 2.266 (3) S2—O5ii 1.449 (5)
Cd1—O9 2.278 (3) S2—O5 1.449 (5)
Cd1—O10 2.309 (4) S2—O7 1.472 (5)
Cd1—O4i 2.310 (4) O4—Cd1v 2.310 (4)
Cd1—O5 2.333 (5) O6—Cd2vi 2.358 (6)
Cd1—Cd1ii 3.3439 (8) O7—Cd2vii 2.274 (5)
Cd2—O8iii 2.235 (4) O8—Cd2vi 2.235 (4)
Cd2—O9 2.241 (5) O8—Cd1ii 2.266 (3)
Cd2—O7iv 2.274 (5) O8—H8A 0.8500
Cd2—O2 2.323 (4) O9—Cd1ii 2.278 (3)
Cd2—O2ii 2.323 (4) O9—H9A 0.8501
Cd2—O6iii 2.358 (6) O10—H10A 0.8500
Cd2—H9A 2.3665 O10—H10B 0.8501
S1—O3 1.456 (4) N1—H1A 0.9000
S1—O1 1.459 (4) N1—H1B 0.9001
S1—O4 1.468 (4) N1—H1C 0.9001
S1—O2 1.475 (4) N1—H1D 0.9000
O1—Cd1—O8 163.57 (18) O2—Cd2—Cd1iii 120.64 (10)
O1—Cd1—O9 95.73 (17) O2ii—Cd2—Cd1iii 69.55 (10)
O8—Cd1—O9 80.52 (14) O6iii—Cd2—Cd1iii 76.00 (12)
O1—Cd1—O10 94.62 (17) Cd1v—Cd2—Cd1iii 51.115 (14)
O8—Cd1—O10 101.21 (15) O8iii—Cd2—H9A 110.1
O9—Cd1—O10 88.27 (16) O9—Cd2—H9A 21.0
O1—Cd1—O4i 86.03 (15) O7iv—Cd2—H9A 79.2
O8—Cd1—O4i 98.85 (13) O2—Cd2—H9A 88.0
O9—Cd1—O4i 175.79 (16) O2ii—Cd2—H9A 88.0
O10—Cd1—O4i 87.77 (15) O6iii—Cd2—H9A 157.7
O1—Cd1—O5 79.68 (19) Cd1v—Cd2—H9A 123.7
O8—Cd1—O5 85.11 (16) Cd1iii—Cd2—H9A 123.7
O9—Cd1—O5 99.2 (2) O3—S1—O1 110.7 (3)
O10—Cd1—O5 171.0 (2) O3—S1—O4 108.8 (3)
O4i—Cd1—O5 84.9 (2) O1—S1—O4 109.4 (3)
O1—Cd1—Cd1ii 126.71 (14) O3—S1—O2 108.0 (2)
O8—Cd1—Cd1ii 42.45 (9) O1—S1—O2 109.5 (3)
O9—Cd1—Cd1ii 42.79 (8) O4—S1—O2 110.3 (3)
O10—Cd1—Cd1ii 111.34 (10) O6—S2—O5ii 111.2 (3)
O4i—Cd1—Cd1ii 138.11 (10) O6—S2—O5 111.2 (3)
O5—Cd1—Cd1ii 77.68 (16) O5ii—S2—O5 108.3 (6)
O1—Cd1—Cd2vi 141.66 (12) O6—S2—O7 110.2 (3)
O8—Cd1—Cd2vi 30.33 (10) O5ii—S2—O7 107.9 (2)
O9—Cd1—Cd2vi 106.86 (9) O5—S2—O7 107.9 (2)
O10—Cd1—Cd2vi 116.18 (10) S1—O1—Cd1 140.5 (3)
O4i—Cd1—Cd2vi 73.69 (10) S1—O2—Cd2 128.9 (2)
O5—Cd1—Cd2vi 66.61 (14) S1—O4—Cd1v 123.9 (2)
Cd1ii—Cd1—Cd2vi 64.443 (7) S2—O5—Cd1 130.8 (3)
O8iii—Cd2—O9 89.07 (18) S2—O6—Cd2vi 120.6 (3)
O8iii—Cd2—O7iv 170.68 (18) S2—O7—Cd2vii 133.0 (3)
O9—Cd2—O7iv 100.25 (17) Cd2vi—O8—Cd1ii 118.87 (13)
O8iii—Cd2—O2 95.29 (9) Cd2vi—O8—Cd1 118.87 (13)
O9—Cd2—O2 89.88 (12) Cd1ii—O8—Cd1 95.09 (18)
O7iv—Cd2—O2 84.82 (8) Cd2vi—O8—H8A 99.4
O8iii—Cd2—O2ii 95.29 (9) Cd1ii—O8—H8A 112.7
O9—Cd2—O2ii 89.88 (12) Cd1—O8—H8A 112.7
O7iv—Cd2—O2ii 84.82 (9) Cd2—O9—Cd1ii 121.45 (15)
O2—Cd2—O2ii 169.42 (18) Cd2—O9—Cd1 121.45 (15)
O8iii—Cd2—O6iii 92.24 (18) Cd1ii—O9—Cd1 94.41 (17)
O9—Cd2—O6iii 178.69 (19) Cd2—O9—H9A 87.8
O7iv—Cd2—O6iii 78.44 (18) Cd1ii—O9—H9A 117.0
O2—Cd2—O6iii 90.00 (12) Cd1—O9—H9A 117.0
O2ii—Cd2—O6iii 90.00 (12) Cd1—O10—H10A 118.4
O8iii—Cd2—Cd1v 30.80 (7) Cd1—O10—H10B 103.5
O9—Cd2—Cd1v 105.18 (11) H10A—O10—H10B 109.5
O7iv—Cd2—Cd1v 143.41 (9) H1A—N1—H1B 109.5
O2—Cd2—Cd1v 69.55 (10) H1A—N1—H1C 109.5
O2ii—Cd2—Cd1v 120.64 (10) H1B—N1—H1C 109.5
O6iii—Cd2—Cd1v 76.00 (12) H1A—N1—H1D 109.5
O8iii—Cd2—Cd1iii 30.80 (7) H1B—N1—H1D 109.5
O9—Cd2—Cd1iii 105.18 (11) H1C—N1—H1D 109.5
O7iv—Cd2—Cd1iii 143.41 (9)
O3—S1—O1—Cd1 105.4 (5) O5—S2—O7—Cd2vii 121.6 (4)
O4—S1—O1—Cd1 −134.6 (5) O1—Cd1—O8—Cd2vi 72.2 (6)
O2—S1—O1—Cd1 −13.6 (6) O9—Cd1—O8—Cd2vi 150.2 (2)
O8—Cd1—O1—S1 106.0 (6) O10—Cd1—O8—Cd2vi −123.5 (2)
O9—Cd1—O1—S1 30.2 (6) O4i—Cd1—O8—Cd2vi −34.0 (2)
O10—Cd1—O1—S1 −58.5 (6) O5—Cd1—O8—Cd2vi 50.0 (3)
O4i—Cd1—O1—S1 −146.0 (6) Cd1ii—Cd1—O8—Cd2vi 127.1 (3)
O5—Cd1—O1—S1 128.5 (6) O1—Cd1—O8—Cd1ii −54.8 (6)
Cd1ii—Cd1—O1—S1 62.5 (6) O9—Cd1—O8—Cd1ii 23.12 (17)
Cd2vi—Cd1—O1—S1 156.8 (4) O10—Cd1—O8—Cd1ii 109.44 (16)
O3—S1—O2—Cd2 −171.0 (3) O4i—Cd1—O8—Cd1ii −161.09 (15)
O1—S1—O2—Cd2 −50.3 (4) O5—Cd1—O8—Cd1ii −77.1 (2)
O4—S1—O2—Cd2 70.2 (4) Cd2vi—Cd1—O8—Cd1ii −127.1 (3)
O8iii—Cd2—O2—S1 −18.0 (4) O8iii—Cd2—O9—Cd1ii −59.33 (18)
O9—Cd2—O2—S1 71.1 (4) O7iv—Cd2—O9—Cd1ii 120.67 (18)
O7iv—Cd2—O2—S1 171.4 (4) O2—Cd2—O9—Cd1ii −154.6 (2)
O2ii—Cd2—O2—S1 159.8 (9) O2ii—Cd2—O9—Cd1ii 36.0 (2)
O6iii—Cd2—O2—S1 −110.2 (4) Cd1v—Cd2—O9—Cd1ii −85.89 (17)
Cd1v—Cd2—O2—S1 −35.2 (3) Cd1iii—Cd2—O9—Cd1ii −32.8 (2)
Cd1iii—Cd2—O2—S1 −36.5 (4) O8iii—Cd2—O9—Cd1 59.33 (18)
O3—S1—O4—Cd1v 175.6 (3) O7iv—Cd2—O9—Cd1 −120.67 (18)
O1—S1—O4—Cd1v 54.5 (3) O2—Cd2—O9—Cd1 −36.0 (2)
O2—S1—O4—Cd1v −66.0 (3) O2ii—Cd2—O9—Cd1 154.6 (2)
O6—S2—O5—Cd1 −77.9 (6) Cd1v—Cd2—O9—Cd1 32.8 (2)
O5ii—S2—O5—Cd1 44.7 (8) Cd1iii—Cd2—O9—Cd1 85.89 (17)
O7—S2—O5—Cd1 161.1 (5) O1—Cd1—O9—Cd2 9.6 (2)
O1—Cd1—O5—S2 −156.4 (6) O8—Cd1—O9—Cd2 −154.3 (2)
O8—Cd1—O5—S2 17.4 (6) O10—Cd1—O9—Cd2 104.0 (2)
O9—Cd1—O5—S2 −62.2 (6) O5—Cd1—O9—Cd2 −70.9 (2)
O4i—Cd1—O5—S2 116.8 (6) Cd1ii—Cd1—O9—Cd2 −131.3 (3)
Cd1ii—Cd1—O5—S2 −24.9 (5) Cd2vi—Cd1—O9—Cd2 −139.10 (15)
Cd2vi—Cd1—O5—S2 42.3 (5) O1—Cd1—O9—Cd1ii 140.89 (19)
O5ii—S2—O6—Cd2vi −60.4 (3) O8—Cd1—O9—Cd1ii −22.97 (17)
O5—S2—O6—Cd2vi 60.4 (3) O10—Cd1—O9—Cd1ii −124.63 (17)
O7—S2—O6—Cd2vi 180.0 O5—Cd1—O9—Cd1ii 60.45 (19)
O6—S2—O7—Cd2vii 0.000 (2) Cd2vi—Cd1—O9—Cd1ii −7.76 (18)
O5ii—S2—O7—Cd2vii −121.6 (4)

Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1, y, z; (iii) −x+1, −y+1, z+1/2; (iv) x, y−1, z; (v) x, −y+1, z+1/2; (vi) −x+1, −y+1, z−1/2; (vii) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O10—H10B···O7vi 0.85 2.25 3.087 (5) 167
O10—H10B···O5i 0.85 2.36 2.985 (6) 131
O9—H9A···O6iv 0.85 2.18 3.029 (7) 173
O8—H8A···O5i 0.85 2.56 3.322 (9) 150
O8—H8A···O5vi 0.85 2.56 3.322 (9) 150
N1—H1B···O10vii 0.90 2.26 2.948 (6) 133
N1—H1D···O4i 0.90 2.18 3.077 (5) 180
N1—H1C···O4viii 0.90 2.19 3.074 (7) 168
N1—H1A···O3ix 0.90 2.38 2.995 (6) 126
N1—H1D···O2i 0.90 2.64 3.196 (7) 121

Symmetry codes: (vi) −x+1, −y+1, z−1/2; (i) x, −y+1, z−1/2; (iv) x, y−1, z; (vii) x, y+1, z; (viii) −x+3/2, −y+3/2, z−1/2; (ix) −x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2470).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Louer, M. & Louer, D. (1982). Rev. Chim. Miner. 19, 162-171.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Sheldrick, G. M. (2003). SADABS University of Gοttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Swain, D. & Guru Row, T. N. (2006). Acta Cryst. E62, i74–i76.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811012979/wm2470sup1.cif

e-67-00i31-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811012979/wm2470Isup2.hkl

e-67-00i31-Isup2.hkl (87.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES