Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):o1110–o1111. doi: 10.1107/S1600536811013043

5,17-Dibromo-26,28-dihy­droxy-25,27-diprop­oxy-2,8,14,20-tetra­thia­calix[4]arene

Ling-Ling Liu a, Lu-Sheng Chen a, Jian-Ping Ma a, Dian-Shun Guo a,*
PMCID: PMC3089239  PMID: 21754428

Abstract

In the title compound, C30H26Br2O4S4, the thia­calix[4]arene unit adopts a pinched cone conformation, with one of the ether-substituted rings bent towards the calix cavity and the two phenolic rings bent outwards. The phenyl rings make dihedral angles of 27.12 (9), 36.71 (10), 75.04 (8), and 76.01 (7)° with the virtual plane defined by the four bridging S atoms. The two opposite ether-substituted rings are almost parallel to each other, with an inter­planar anagle of 2.99 (12)°, while the two phenolic rings are nearly perpendicular to each other, making a dihedral angle of 74.52 (11)° and a Br⋯Br distance of 13.17 (2) Å. Two intra­molecular O—H⋯O hydrogen bonds between the OH groups and the same ether O atom stabilize the cone conformation. In the crystal, two different chains of mol­ecules, one with alternating and the other with tail-to-tail orientations, are formed by inter­molecular offset-face-to-face π–π stacking inter­actions with distances of 3.606 (3) to 4.488 (4) Å between the centroids of the aromatic rings.

Related literature

For general background to the chemistry of thia­calix[4]arenes, see: Shokova & Kovalev (2003); Lhoták (2004); Morohashi et al. (2006); Kajiwara et al. (2007); Guo et al. (2007). For the synthesis and related structures, see: Lhoták et al. (2001); Kasyan et al. (2003); Desroches et al. (2004); Kasyan et al. (2006); Morohashi et al. (2006); Xu et al. (2008); Chen et al. (2010). For π–π stacking inter­actions, see: Tsuzuki et al. (2002).graphic file with name e-67-o1110-scheme1.jpg

Experimental

Crystal data

  • C30H26Br2O4S4

  • M r = 738.57

  • Triclinic, Inline graphic

  • a = 9.3788 (16) Å

  • b = 11.712 (2) Å

  • c = 14.768 (3) Å

  • α = 97.904 (2)°

  • β = 95.614 (1)°

  • γ = 107.738 (2)°

  • V = 1513.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.99 mm−1

  • T = 298 K

  • 0.29 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.478, T max = 0.586

  • 7993 measured reflections

  • 5513 independent reflections

  • 4162 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.108

  • S = 1.05

  • 5513 reflections

  • 365 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013043/im2275sup1.cif

e-67-o1110-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013043/im2275Isup2.hkl

e-67-o1110-Isup2.hkl (269.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3 0.82 2.20 2.926 (3) 148
O2—H2A⋯O3 0.82 2.12 2.849 (3) 148

Acknowledgments

Financial support from the National Natural Science Foundation of China (grant No. 20572064) and the Natural Science Foundation of Shandong Province (grant No. ZR2010BM022) is gratefully acknowledged.

supplementary crystallographic information

Comment

Thiacalix[4]arenes are new versatile scaffolds for constructing highly organized receptors via appropriate chemical modifications at the upper or/and lower rim (Shokova & Kovalev, 2003; Lhoták, 2004; Morohashi et al., 2006; Kajiwara et al., 2007; Guo et al., 2007). Usually, it can be attained by electrophilic bromination at the upper rim to yield the corresponding bromosubstituted thiacalix[4]arene derivatives (Lhoták et al., 2001; Kasyan et al., 2003; Xu et al., 2008; Chen et al., 2010), which can be further used to create more elaborate molecules and novel supramolecular systems. Only a few cyrstal structures of such derivatives are known, however, most of which are tetrabromothiacalix[4]arenes. Recently, Lhoták et al. (2001) presented the synthesis of a dibromothiacalix[4]arene, namely 5,17-dibromo-25,27-dipropoxy-26,28-dihydroxy-2,8,14,20-tetrathiacalix[4]arene, by a selective bromination reaction. We now report the crystal structure of this compound.

In the crystal structure of the title compound, as illustrated in Fig. 1, the thiacalix[4]arene unit is found in a pinched cone conformation. Two opposite ether-substituted rings, one of which is bent towards the calix cavity, are almost parallel to each other, forming a dihedral anagle of 2.99 (12)°. On the other hand, both phenolic rings are bent outwards and nearly perpendicular to each other, with an interplanar angle of 74.52 (11)° and a Br···Br distance of 13.17 (2) Å. The dihedral angles between the virtual plane defined by the four bridging S atoms and C1–C6, C7–C12, C13–C18 and C19–C24 rings are 75.04 (8), 27.12 (9), 76.01 (7) and 36.71 (10) °, respectively. Two intramolecular O—H···O hydrogen bonds (Table 1) stabilizing the cone conformation, are formed in the crystal structure. Interestingly, both OH groups make the hydrogen bonds to the same ethereal O atom, O3 (Fig. 2). A similar arrangement of such hydrogen bonds was discussed by Kasyan et al. (2006), while a different pattern, in which one OH group forms the hydrogen bonds to its both adjacent ethereal O atoms, was reported by Desroches et al. (2004).

In the packing, two different chains of molecules are formed by aromatic-aromatic interactions (Tsuzuki et al., 2002). One chain, with alternating orientation, extends along the a axis (Fig. 3), and is established by intermolecular offset-face-to-face π-π stackings between the phenolic rings. Separations between the centroids of the phenolic rings C19–C24 and C19–C24 at (-x, -y, -z + 1), C7–C12 and C7–C12 at (-x + 1, -y + 1, -z + 2) are 3.606 (3) and 4.488 (4) Å, respectively, and the corresponding perpendicular distances are 3.454 (2) and 3.568 (2) Å. The other chain, with tail-to-tail orientation, is running along the b axis, with intermolecular offset-face-to-face π-π contacts between the ether-substituted rings. The distance between the centroids of the rings C1–C6 and C13–C18 at (x - 1, y, z) is 4.195 (2) Å, and the corresponding perpendicular distance is 3.611 (2) Å.

Experimental

The title compound was prepared by a published procedure (Lhoták et al., 2001). Single crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in CH2Cl2 and CH3OH (v: v = 2: 1) at 273 K.

Refinement

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms attached to refined atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methylene and methyl H, respectively, and Uiso(H) = 1.5Ueq(C) for methyl H, and Uiso(H) =1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms. Hydrogen atoms are omitted for clarity.

Fig. 2.

Fig. 2.

Array of intramolecular hydrogen-bonded rings of the title molecule. For the sake of clarity, H atoms not involved in hydrogen bonds have been omitted.

Fig. 3.

Fig. 3.

Packing diagram of the title compound, viewed along the a axis, showing offset-face-to-face π-π stacking motifs. Hydrogen atoms are omitted for clarity.

Crystal data

C30H26Br2O4S4 Z = 2
Mr = 738.57 F(000) = 744
Triclinic, P1 Dx = 1.621 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.3788 (16) Å Cell parameters from 2882 reflections
b = 11.712 (2) Å θ = 2.5–26.7°
c = 14.768 (3) Å µ = 2.99 mm1
α = 97.904 (2)° T = 298 K
β = 95.614 (1)° Block, colourless
γ = 107.738 (2)° 0.29 × 0.21 × 0.20 mm
V = 1513.5 (4) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 5513 independent reflections
Radiation source: fine-focus sealed tube 4162 reflections with I > 2σ(I)
graphite Rint = 0.017
phi and ω scans θmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −10→11
Tmin = 0.478, Tmax = 0.586 k = −12→14
7993 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.5589P] where P = (Fo2 + 2Fc2)/3
5513 reflections (Δ/σ)max = 0.001
365 parameters Δρmax = 0.74 e Å3
0 restraints Δρmin = −0.54 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.51306 (5) 0.32748 (4) 1.28607 (3) 0.06261 (15)
Br2 −0.19390 (6) −0.37147 (4) 0.49367 (3) 0.07472 (17)
C1 −0.1371 (4) 0.0988 (3) 0.7904 (2) 0.0413 (8)
C2 −0.2029 (4) 0.0044 (3) 0.8354 (3) 0.0525 (9)
H2 −0.2691 −0.0686 0.8016 0.063*
C3 −0.1711 (5) 0.0178 (4) 0.9301 (3) 0.0570 (10)
H3 −0.2138 −0.0469 0.9596 0.068*
C4 −0.0766 (4) 0.1264 (4) 0.9810 (3) 0.0526 (10)
H4 −0.0574 0.1352 1.0450 0.063*
C5 −0.0097 (4) 0.2227 (3) 0.9378 (2) 0.0434 (8)
C6 −0.0376 (4) 0.2078 (3) 0.8419 (2) 0.0387 (8)
C7 0.2766 (4) 0.3469 (3) 1.0398 (2) 0.0414 (8)
C8 0.3184 (4) 0.3436 (3) 1.1317 (2) 0.0451 (9)
H8 0.2522 0.3474 1.1741 0.054*
C9 0.4581 (4) 0.3349 (3) 1.1600 (2) 0.0440 (8)
C10 0.5564 (4) 0.3273 (3) 1.0981 (2) 0.0449 (8)
H10 0.6499 0.3201 1.1181 0.054*
C11 0.5164 (4) 0.3305 (3) 1.0062 (2) 0.0412 (8)
C12 0.3760 (4) 0.3422 (3) 0.9761 (2) 0.0408 (8)
C13 0.5253 (4) 0.1679 (3) 0.8624 (2) 0.0367 (7)
C14 0.4575 (4) 0.0772 (3) 0.9097 (2) 0.0439 (8)
H14 0.4753 0.0914 0.9739 0.053*
C15 0.3638 (4) −0.0341 (3) 0.8626 (3) 0.0505 (9)
H15 0.3194 −0.0953 0.8948 0.061*
C16 0.3362 (4) −0.0543 (3) 0.7679 (2) 0.0453 (8)
H16 0.2729 −0.1297 0.7361 0.054*
C17 0.4008 (4) 0.0357 (3) 0.7190 (2) 0.0357 (7)
C18 0.5011 (4) 0.1471 (3) 0.7661 (2) 0.0344 (7)
C19 0.1502 (4) −0.0465 (3) 0.5925 (2) 0.0387 (8)
C20 0.0703 (4) −0.1655 (3) 0.5527 (2) 0.0443 (8)
H20 0.1209 −0.2168 0.5282 0.053*
C21 −0.0847 (4) −0.2084 (3) 0.5492 (2) 0.0467 (9)
C22 −0.1623 (4) −0.1353 (3) 0.5865 (2) 0.0465 (9)
H22 −0.2667 −0.1656 0.5841 0.056*
C23 −0.0828 (4) −0.0161 (3) 0.6278 (2) 0.0399 (8)
C24 0.0744 (4) 0.0297 (3) 0.6307 (2) 0.0401 (8)
C25 −0.0263 (4) 0.3907 (3) 0.7817 (3) 0.0548 (10)
H25A −0.1217 0.3545 0.7407 0.066*
H25B −0.0457 0.4288 0.8398 0.066*
C26 0.0777 (6) 0.4811 (4) 0.7405 (4) 0.0778 (14)
H26A 0.0879 0.4421 0.6803 0.093*
H26B 0.1763 0.5068 0.7784 0.093*
C27 0.0364 (6) 0.5914 (4) 0.7288 (4) 0.0860 (16)
H27A −0.0710 0.5689 0.7107 0.129*
H27B 0.0877 0.6287 0.6819 0.129*
H27C 0.0658 0.6480 0.7861 0.129*
C28 0.5073 (4) 0.3165 (3) 0.6889 (3) 0.0496 (9)
H28A 0.4971 0.3710 0.7417 0.059*
H28B 0.4071 0.2716 0.6553 0.059*
C29 0.6031 (4) 0.3874 (3) 0.6276 (3) 0.0506 (9)
H29A 0.7014 0.4335 0.6632 0.061*
H29B 0.5568 0.4453 0.6080 0.061*
C30 0.6257 (6) 0.3113 (4) 0.5436 (3) 0.0728 (13)
H30A 0.6726 0.2542 0.5621 0.109*
H30B 0.6895 0.3629 0.5083 0.109*
H30C 0.5295 0.2679 0.5063 0.109*
O1 0.5815 (3) 0.2325 (2) 0.71942 (15) 0.0412 (5)
O2 0.3429 (3) 0.3459 (2) 0.88626 (15) 0.0491 (6)
H2A 0.2598 0.3551 0.8768 0.074*
O3 0.0416 (2) 0.2975 (2) 0.79765 (16) 0.0423 (5)
O4 0.1557 (3) 0.1454 (2) 0.66895 (17) 0.0474 (6)
H4A 0.0986 0.1822 0.6857 0.071*
S4 0.64004 (10) 0.31392 (8) 0.92504 (6) 0.0459 (2)
S3 0.35097 (10) 0.00864 (8) 0.59664 (6) 0.0453 (2)
S2 −0.18282 (10) 0.08270 (9) 0.66809 (6) 0.0486 (2)
S1 0.10033 (11) 0.36788 (9) 1.00496 (7) 0.0512 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0684 (3) 0.0745 (3) 0.0419 (2) 0.0225 (2) 0.00312 (19) 0.00470 (19)
Br2 0.0791 (3) 0.0426 (2) 0.0834 (3) 0.0006 (2) 0.0035 (3) −0.0026 (2)
C1 0.0335 (18) 0.048 (2) 0.0477 (19) 0.0186 (16) 0.0124 (15) 0.0088 (16)
C2 0.045 (2) 0.047 (2) 0.068 (3) 0.0160 (18) 0.0165 (19) 0.0109 (19)
C3 0.057 (3) 0.059 (3) 0.068 (3) 0.024 (2) 0.024 (2) 0.030 (2)
C4 0.053 (2) 0.068 (3) 0.049 (2) 0.030 (2) 0.0175 (19) 0.019 (2)
C5 0.0358 (19) 0.052 (2) 0.049 (2) 0.0241 (17) 0.0109 (16) 0.0067 (17)
C6 0.0328 (18) 0.0460 (19) 0.0454 (19) 0.0214 (16) 0.0119 (15) 0.0108 (16)
C7 0.0396 (19) 0.0395 (19) 0.045 (2) 0.0158 (16) 0.0072 (16) −0.0006 (15)
C8 0.048 (2) 0.045 (2) 0.0416 (19) 0.0154 (17) 0.0140 (17) 0.0007 (15)
C9 0.048 (2) 0.0415 (19) 0.0390 (18) 0.0144 (17) 0.0035 (16) −0.0005 (15)
C10 0.042 (2) 0.044 (2) 0.046 (2) 0.0143 (17) 0.0018 (16) −0.0012 (16)
C11 0.0351 (19) 0.0409 (19) 0.0448 (19) 0.0112 (15) 0.0085 (15) −0.0008 (15)
C12 0.042 (2) 0.0375 (18) 0.0420 (19) 0.0143 (15) 0.0063 (16) 0.0016 (15)
C13 0.0290 (17) 0.0390 (18) 0.0446 (19) 0.0153 (14) 0.0079 (14) 0.0042 (15)
C14 0.048 (2) 0.049 (2) 0.0393 (18) 0.0201 (18) 0.0081 (16) 0.0118 (16)
C15 0.061 (3) 0.041 (2) 0.054 (2) 0.0167 (19) 0.0138 (19) 0.0193 (17)
C16 0.047 (2) 0.0356 (18) 0.053 (2) 0.0128 (16) 0.0079 (17) 0.0065 (16)
C17 0.0349 (18) 0.0389 (18) 0.0384 (17) 0.0178 (15) 0.0094 (14) 0.0076 (14)
C18 0.0294 (17) 0.0378 (17) 0.0409 (18) 0.0155 (14) 0.0107 (14) 0.0088 (14)
C19 0.0409 (19) 0.0436 (19) 0.0302 (16) 0.0117 (16) 0.0070 (14) 0.0051 (14)
C20 0.054 (2) 0.046 (2) 0.0348 (18) 0.0190 (18) 0.0084 (16) 0.0064 (15)
C21 0.053 (2) 0.0346 (18) 0.0427 (19) 0.0037 (17) −0.0003 (17) 0.0039 (15)
C22 0.040 (2) 0.047 (2) 0.047 (2) 0.0054 (17) 0.0043 (16) 0.0118 (17)
C23 0.0362 (19) 0.046 (2) 0.0383 (18) 0.0118 (16) 0.0075 (15) 0.0103 (15)
C24 0.040 (2) 0.0428 (19) 0.0366 (17) 0.0113 (16) 0.0056 (15) 0.0076 (15)
C25 0.041 (2) 0.054 (2) 0.076 (3) 0.0204 (18) 0.0100 (19) 0.023 (2)
C26 0.071 (3) 0.060 (3) 0.111 (4) 0.017 (2) 0.034 (3) 0.037 (3)
C27 0.065 (3) 0.067 (3) 0.125 (4) 0.008 (2) 0.005 (3) 0.049 (3)
C28 0.047 (2) 0.048 (2) 0.064 (2) 0.0217 (18) 0.0218 (19) 0.0181 (18)
C29 0.048 (2) 0.045 (2) 0.062 (2) 0.0138 (17) 0.0131 (18) 0.0164 (18)
C30 0.093 (4) 0.072 (3) 0.064 (3) 0.027 (3) 0.038 (3) 0.028 (2)
O1 0.0362 (13) 0.0439 (13) 0.0472 (13) 0.0125 (11) 0.0154 (11) 0.0156 (11)
O2 0.0443 (15) 0.0672 (17) 0.0424 (14) 0.0265 (13) 0.0083 (11) 0.0109 (12)
O3 0.0342 (13) 0.0456 (13) 0.0503 (14) 0.0144 (11) 0.0116 (11) 0.0113 (11)
O4 0.0373 (13) 0.0400 (13) 0.0595 (15) 0.0085 (11) 0.0113 (12) −0.0035 (11)
S4 0.0334 (5) 0.0504 (5) 0.0491 (5) 0.0100 (4) 0.0085 (4) −0.0014 (4)
S3 0.0415 (5) 0.0544 (5) 0.0383 (5) 0.0137 (4) 0.0129 (4) 0.0011 (4)
S2 0.0390 (5) 0.0596 (6) 0.0484 (5) 0.0207 (4) 0.0022 (4) 0.0051 (4)
S1 0.0480 (6) 0.0588 (6) 0.0516 (5) 0.0303 (5) 0.0067 (4) −0.0043 (4)

Geometric parameters (Å, °)

Br1—C9 1.904 (3) C17—S3 1.781 (3)
Br2—C21 1.893 (3) C18—O1 1.369 (4)
C1—C2 1.382 (5) C19—C20 1.379 (5)
C1—C6 1.395 (5) C19—C24 1.396 (5)
C1—S2 1.786 (4) C19—S3 1.787 (3)
C2—C3 1.377 (6) C20—C21 1.379 (5)
C2—H2 0.9300 C20—H20 0.9300
C3—C4 1.374 (6) C21—C22 1.376 (5)
C3—H3 0.9300 C22—C23 1.386 (5)
C4—C5 1.386 (5) C22—H22 0.9300
C4—H4 0.9300 C23—C24 1.400 (5)
C5—C6 1.392 (5) C23—S2 1.776 (3)
C5—S1 1.790 (4) C24—O4 1.346 (4)
C6—O3 1.375 (4) C25—C26 1.451 (5)
C7—C8 1.383 (5) C25—O3 1.456 (4)
C7—C12 1.395 (5) C25—H25A 0.9700
C7—S1 1.782 (4) C25—H25B 0.9700
C8—C9 1.374 (5) C26—C27 1.485 (6)
C8—H8 0.9300 C26—H26A 0.9700
C9—C10 1.373 (5) C26—H26B 0.9700
C10—C11 1.381 (5) C27—H27A 0.9600
C10—H10 0.9300 C27—H27B 0.9600
C11—C12 1.401 (5) C27—H27C 0.9600
C11—S4 1.779 (3) C28—O1 1.461 (4)
C12—O2 1.343 (4) C28—C29 1.492 (5)
C13—C14 1.378 (5) C28—H28A 0.9700
C13—C18 1.394 (4) C28—H28B 0.9700
C13—S4 1.785 (3) C29—C30 1.498 (5)
C14—C15 1.373 (5) C29—H29A 0.9700
C14—H14 0.9300 C29—H29B 0.9700
C15—C16 1.372 (5) C30—H30A 0.9600
C15—H15 0.9300 C30—H30B 0.9600
C16—C17 1.379 (5) C30—H30C 0.9600
C16—H16 0.9300 O2—H2A 0.8200
C17—C18 1.395 (4) O4—H4A 0.8200
C2—C1—C6 119.3 (3) C21—C20—H20 120.0
C2—C1—S2 120.3 (3) C19—C20—H20 120.0
C6—C1—S2 120.4 (3) C22—C21—C20 121.3 (3)
C3—C2—C1 120.5 (4) C22—C21—Br2 118.9 (3)
C3—C2—H2 119.8 C20—C21—Br2 119.8 (3)
C1—C2—H2 119.8 C21—C22—C23 119.2 (3)
C4—C3—C2 120.2 (4) C21—C22—H22 120.4
C4—C3—H3 119.9 C23—C22—H22 120.4
C2—C3—H3 119.9 C22—C23—C24 120.4 (3)
C3—C4—C5 120.6 (4) C22—C23—S2 119.6 (3)
C3—C4—H4 119.7 C24—C23—S2 119.8 (3)
C5—C4—H4 119.7 O4—C24—C19 118.4 (3)
C4—C5—C6 119.2 (3) O4—C24—C23 122.4 (3)
C4—C5—S1 120.3 (3) C19—C24—C23 119.2 (3)
C6—C5—S1 120.3 (3) C26—C25—O3 108.5 (3)
O3—C6—C5 119.6 (3) C26—C25—H25A 110.0
O3—C6—C1 120.0 (3) O3—C25—H25A 110.0
C5—C6—C1 120.2 (3) C26—C25—H25B 110.0
C8—C7—C12 120.3 (3) O3—C25—H25B 110.0
C8—C7—S1 119.5 (3) H25A—C25—H25B 108.4
C12—C7—S1 120.1 (3) C25—C26—C27 116.5 (4)
C9—C8—C7 119.8 (3) C25—C26—H26A 108.2
C9—C8—H8 120.1 C27—C26—H26A 108.2
C7—C8—H8 120.1 C25—C26—H26B 108.2
C10—C9—C8 121.0 (3) C27—C26—H26B 108.2
C10—C9—Br1 119.6 (3) H26A—C26—H26B 107.3
C8—C9—Br1 119.4 (3) C26—C27—H27A 109.5
C9—C10—C11 120.0 (3) C26—C27—H27B 109.5
C9—C10—H10 120.0 H27A—C27—H27B 109.5
C11—C10—H10 120.0 C26—C27—H27C 109.5
C10—C11—C12 120.1 (3) H27A—C27—H27C 109.5
C10—C11—S4 120.0 (3) H27B—C27—H27C 109.5
C12—C11—S4 119.9 (3) O1—C28—C29 107.6 (3)
O2—C12—C7 123.3 (3) O1—C28—H28A 110.2
O2—C12—C11 117.8 (3) C29—C28—H28A 110.2
C7—C12—C11 118.9 (3) O1—C28—H28B 110.2
C14—C13—C18 120.3 (3) C29—C28—H28B 110.2
C14—C13—S4 119.8 (3) H28A—C28—H28B 108.5
C18—C13—S4 119.9 (2) C28—C29—C30 114.4 (3)
C15—C14—C13 120.5 (3) C28—C29—H29A 108.7
C15—C14—H14 119.7 C30—C29—H29A 108.7
C13—C14—H14 119.7 C28—C29—H29B 108.7
C16—C15—C14 119.6 (3) C30—C29—H29B 108.7
C16—C15—H15 120.2 H29A—C29—H29B 107.6
C14—C15—H15 120.2 C29—C30—H30A 109.5
C15—C16—C17 121.0 (3) C29—C30—H30B 109.5
C15—C16—H16 119.5 H30A—C30—H30B 109.5
C17—C16—H16 119.5 C29—C30—H30C 109.5
C16—C17—C18 119.7 (3) H30A—C30—H30C 109.5
C16—C17—S3 119.3 (3) H30B—C30—H30C 109.5
C18—C17—S3 121.0 (2) C18—O1—C28 116.7 (2)
O1—C18—C13 120.0 (3) C12—O2—H2A 109.5
O1—C18—C17 121.2 (3) C6—O3—C25 116.5 (2)
C13—C18—C17 118.7 (3) C24—O4—H4A 109.5
C20—C19—C24 119.9 (3) C11—S4—C13 97.33 (15)
C20—C19—S3 119.8 (3) C17—S3—C19 97.63 (15)
C24—C19—S3 120.3 (3) C23—S2—C1 101.49 (15)
C21—C20—C19 120.0 (3) C7—S1—C5 103.06 (15)
C6—C1—C2—C3 0.2 (5) C16—C17—C18—C13 −4.5 (5)
S2—C1—C2—C3 −178.2 (3) S3—C17—C18—C13 174.0 (2)
C1—C2—C3—C4 1.7 (6) C24—C19—C20—C21 1.1 (5)
C2—C3—C4—C5 −1.3 (6) S3—C19—C20—C21 −179.9 (3)
C3—C4—C5—C6 −0.9 (5) C19—C20—C21—C22 −1.3 (5)
C3—C4—C5—S1 174.7 (3) C19—C20—C21—Br2 179.5 (2)
C4—C5—C6—O3 −172.5 (3) C20—C21—C22—C23 0.4 (5)
S1—C5—C6—O3 11.9 (4) Br2—C21—C22—C23 179.6 (3)
C4—C5—C6—C1 2.9 (5) C21—C22—C23—C24 0.5 (5)
S1—C5—C6—C1 −172.8 (2) C21—C22—C23—S2 175.1 (3)
C2—C1—C6—O3 172.8 (3) C20—C19—C24—O4 −179.9 (3)
S2—C1—C6—O3 −8.8 (4) S3—C19—C24—O4 1.1 (4)
C2—C1—C6—C5 −2.5 (5) C20—C19—C24—C23 −0.2 (5)
S2—C1—C6—C5 175.9 (2) S3—C19—C24—C23 −179.1 (2)
C12—C7—C8—C9 −0.5 (5) C22—C23—C24—O4 179.1 (3)
S1—C7—C8—C9 −176.1 (3) S2—C23—C24—O4 4.5 (5)
C7—C8—C9—C10 −1.1 (5) C22—C23—C24—C19 −0.6 (5)
C7—C8—C9—Br1 −178.9 (3) S2—C23—C24—C19 −175.2 (2)
C8—C9—C10—C11 1.1 (5) O3—C25—C26—C27 −173.3 (4)
Br1—C9—C10—C11 178.9 (3) O1—C28—C29—C30 59.9 (4)
C9—C10—C11—C12 0.4 (5) C13—C18—O1—C28 −96.9 (3)
C9—C10—C11—S4 −177.2 (3) C17—C18—O1—C28 86.8 (4)
C8—C7—C12—O2 −179.5 (3) C29—C28—O1—C18 −171.2 (3)
S1—C7—C12—O2 −3.9 (5) C5—C6—O3—C25 −91.0 (4)
C8—C7—C12—C11 1.9 (5) C1—C6—O3—C25 93.7 (4)
S1—C7—C12—C11 177.5 (2) C26—C25—O3—C6 176.1 (3)
C10—C11—C12—O2 179.4 (3) C10—C11—S4—C13 111.1 (3)
S4—C11—C12—O2 −2.9 (4) C12—C11—S4—C13 −66.5 (3)
C10—C11—C12—C7 −1.9 (5) C14—C13—S4—C11 −44.9 (3)
S4—C11—C12—C7 175.8 (3) C18—C13—S4—C11 133.3 (3)
C18—C13—C14—C15 −0.9 (5) C16—C17—S3—C19 49.0 (3)
S4—C13—C14—C15 177.3 (3) C18—C17—S3—C19 −129.5 (3)
C13—C14—C15—C16 −0.8 (5) C20—C19—S3—C17 −114.9 (3)
C14—C15—C16—C17 −0.2 (5) C24—C19—S3—C17 64.0 (3)
C15—C16—C17—C18 2.9 (5) C22—C23—S2—C1 109.2 (3)
C15—C16—C17—S3 −175.6 (3) C24—C23—S2—C1 −76.2 (3)
C14—C13—C18—O1 −172.8 (3) C2—C1—S2—C23 −74.2 (3)
S4—C13—C18—O1 9.0 (4) C6—C1—S2—C23 107.5 (3)
C14—C13—C18—C17 3.6 (5) C8—C7—S1—C5 −110.4 (3)
S4—C13—C18—C17 −174.6 (2) C12—C7—S1—C5 74.0 (3)
C16—C17—C18—O1 171.8 (3) C4—C5—S1—C7 78.8 (3)
S3—C17—C18—O1 −9.7 (4) C6—C5—S1—C7 −105.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4A···O3 0.82 2.20 2.926 (3) 148
O2—H2A···O3 0.82 2.12 2.849 (3) 148

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2275).

References

  1. Bruker (1999). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, Y.-F., Liu, Y., Ma, J.-P. & Guo, D.-S. (2010). Acta Cryst. E66, o871–o872. [DOI] [PMC free article] [PubMed]
  3. Desroches, C., Kessler, V. G. & Parola, S. (2004). Tetrahedron Lett. 45, 6329–6331.
  4. Guo, D.-S., Liu, Z.-P., Ma, J.-P. & Huang, R.-Q. (2007). Tetrahedron Lett. 48, 1221–1224.
  5. Kajiwara, T., Iki, N. & Yamashita, M. (2007). Coord. Chem. Rev. 251, 1734–1746.
  6. Kasyan, O., Swierczynski, D., Drapailo, A., Suwinska, K., Lipkowski, J. & Kalchenko, V. (2003). Tetrahedron Lett. 44, 7167–7170.
  7. Kasyan, O., Thondorf, I., Bolte, M., Kalchenko, V. & Böhmer, V. (2006). Acta Cryst. C62, o289–o294. [DOI] [PubMed]
  8. Lhoták, P. (2004). Eur. J. Org. Chem. pp. 1675–1692.
  9. Lhoták, P., Himl, M., Stibor, I., Sykora, J. & Cisarová, I. (2001). Tetrahedron Lett. 42, 7107–7110.
  10. Morohashi, N., Narumi, F., Iki, N., Hattori, T. & Miyano, S. (2006). Chem. Rev. 106, 5291–5316. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shokova, E. A. & Kovalev, V. V. (2003). Russ. J. Org. Chem 39, 1–28.
  13. Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2002). J. Am. Chem. Soc. 124, 104–112. [DOI] [PubMed]
  14. Xu, W.-N., Yuan, J.-M., Liu, Y., Ma, J.-P. & Guo, D.-S. (2008). Acta Cryst. C64, o349–o352. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013043/im2275sup1.cif

e-67-o1110-sup1.cif (25.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013043/im2275Isup2.hkl

e-67-o1110-Isup2.hkl (269.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES