Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1185. doi: 10.1107/S1600536811013845

Diethyl 4,6-diacetamido­isophthalate

Peishen Li a, Xianghui Li a, Chao Chen a, Lihua Yuan a, Wen Feng a,*
PMCID: PMC3089246  PMID: 21754487

Abstract

In the title compound, C16H20N2O6, two intra­molecular N—H⋯O hydrogen bonds occur, in which the carbonyl O atoms of the ethyl acetate groups serve as the acceptor atoms; both motifs generate S(6) rings. In the crystal, mol­ecules are linked by weak C—H⋯O links (with the acceptor O atoms part of the amide groups), generating [001] chains.

Related literature

For background to intra­molecular hydrogen bonds this class of compound, see: Zhu et al. (2000); Yuan et al. (2004); Feng et al. (2009); Yan et al. (2010); Zhang et al. (2008). For a related structure, see: Zhang et al. (2006).graphic file with name e-67-o1185-scheme1.jpg

Experimental

Crystal data

  • C16H20N2O6

  • M r = 336.34

  • Triclinic, Inline graphic

  • a = 7.951 (3) Å

  • b = 10.249 (3) Å

  • c = 11.109 (4) Å

  • α = 76.70 (3)°

  • β = 77.42 (3)°

  • γ = 76.50 (2)°

  • V = 843.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 292 K

  • 0.50 × 0.46 × 0.40 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • 3149 measured reflections

  • 3094 independent reflections

  • 1826 reflections with I > 2σ(I)

  • R int = 0.004

  • 3 standard reflections every 150 reflections intensity decay: 4.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.079

  • wR(F 2) = 0.268

  • S = 1.09

  • 3094 reflections

  • 223 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.65 e Å−3

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013845/hb5828sup1.cif

e-67-o1185-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013845/hb5828Isup2.hkl

e-67-o1185-Isup2.hkl (151.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.88 (4) 1.92 (3) 2.676 (4) 144 (3)
N2—H2N⋯O6 0.81 (4) 1.96 (4) 2.656 (4) 143 (3)
C9—H9B⋯O3i 0.96 2.54 3.445 (6) 157
C16—H16A⋯O4ii 0.96 2.57 3.485 (7) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (20774059) for funding this work, and the Analytical & Testing Center of Sichuan University for the X-ray analysis.

supplementary crystallographic information

Comment

Hydrogen bonds play a vital role in assisting formation of aromatic oligoamide foldmers and macrocycles (Zhu et al., 2000; Yuan et al., 2004; Feng et al., 2009). It is important to examine the structural feature of the backbones that is responsible for the formation of foldmers and macrocycles. Research has focused on the role of intramolecular hydrogen bonds in regulating conformations and interactions both in solution and the solid state (Yan et al., 2010; Zhang et al. 2008). Herein, we report on the crystal structure of the aromatic monomer containing intramolecular hydrogen bonds, which could be applied as important building blocks to construct macrocycles.

The title compound comprises two similar six-member hydrogen bonds. There are two possible comformations: (a) one with the ethoxy O atoms involving in the intramolecular NH···OC2H5 six-member hydrogen bonds (conformation a), and (b) the other with carbonyl O atoms that form intramolecualr H-bonds (conformation b) (Fig. 1). However, the crystal structure revealed the existence of two six-member hydrogen bonds that involve carbonyl O atoms, indicating that conformation b is more stable and is sustained by two intromolecular hydrogen bond N1H1···O2 (Table1, Fig. 2). It is expected that this type of hydrogen bonds may be exploited to construct macrocyles and supamolecular architecture with folded conformations. In the crystal, the molecules are linked by C—H···O interactions.

Experimental

For synthesis of the title compound, Pd/C (50 mg) was added to the solution of diethyl 4,6-dinitroisophthalate (500 mg, 1.60 mmol) in CH2Cl2 and the mixture was stirred at room temperature under H2 atmosphere for 6 h. After removal of Pd/C and solvent, the white solid was obtained and then dissolved in CH2Cl2 (50 ml). Et3N (335 mg, 3.31 mmol) was added to the above solution followed by dropping acetyl chloride (350 mg, 4.46 mmol). After stirring 2 h at room temperature, the mixture was washed with distilled water, dried over anhydrous Na2SO4. Removal of solvent under reduced pressure gave the crude product, which was recrystallized from methanol to yield the white product (430 mg, yield 79.8%). 1H NMR (400 MHz, CDCl3): δ 10.95 (s, 2H), 9.98 (s, 1H), 8.74 (s, 1H), 4.35 (m, 4H), 2.25 (s, 6H), 1.20 (t, J = 6.4 Hz, 6H).

The crystal of the title compound was grown from the THF solution. This compound was dissolved in THF and filtered, then the filtrate was allowed to stand undisturbed to give the single-crystal.

Refinement

The H atoms bonded to atom N1 and N2 of the title compound were located from difference Fourier maps and refined isotropically [N1—H = 1.88 (4), N2—H = 0.81 (4) Å]. H atoms bonded to C atoms were placed in calculated positions and refined using a riding model, with C—H = 0.9300 Å and Uiso(H) = 1.2Ueq(C) for aryl H atoms, C—H = 0.9700 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, C—H = 0.9600 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The deepest difference hole of -0.65 e.Å-3 is 0.33 Å from atom C16.

Figures

Fig. 1.

Fig. 1.

The two possible intramolecular hydrogen bond conformations of the title compound.

Fig. 2.

Fig. 2.

A view of the title compound with displacement ellipsoids shown at the 50% probability level. Hydrogen bonds are indicated by broken lines.

Crystal data

C16H20N2O6 Z = 2
Mr = 336.34 F(000) = 356
Triclinic, P1 Dx = 1.324 Mg m3
a = 7.951 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.249 (3) Å Cell parameters from 20 reflections
c = 11.109 (4) Å θ = 5.4–6.7°
α = 76.70 (3)° µ = 0.10 mm1
β = 77.42 (3)° T = 292 K
γ = 76.50 (2)° Block, colourless
V = 843.7 (5) Å3 0.50 × 0.46 × 0.40 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.004
Radiation source: fine-focus sealed tube θmax = 25.5°, θmin = 1.9°
graphite h = −9→9
ω/2θ scans k = −1→12
3149 measured reflections l = −12→13
3094 independent reflections 3 standard reflections every 150 reflections
1826 reflections with I > 2σ(I) intensity decay: 4.5%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.268 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1639P)2 + 0.1078P] where P = (Fo2 + 2Fc2)/3
3094 reflections (Δ/σ)max < 0.001
223 parameters Δρmax = 0.59 e Å3
4 restraints Δρmin = −0.65 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9467 (4) −0.1465 (3) 0.6464 (2) 0.0692 (9)
O2 1.1334 (4) −0.2976 (3) 0.7586 (2) 0.0706 (9)
O3 1.0473 (5) −0.3487 (3) 1.2179 (3) 0.0988 (12)
O4 0.7415 (4) −0.0447 (3) 1.3243 (3) 0.0796 (9)
O5 0.5572 (4) 0.2164 (3) 0.7774 (3) 0.0692 (8)
O6 0.5009 (4) 0.2628 (3) 0.9676 (3) 0.0718 (8)
N1 1.0637 (4) −0.3063 (3) 1.0068 (3) 0.0503 (8)
H1N 1.113 (4) −0.338 (4) 0.938 (3) 0.046 (9)*
N2 0.6413 (4) 0.0776 (3) 1.1468 (3) 0.0514 (8)
H2N 0.581 (5) 0.150 (4) 1.120 (3) 0.044 (10)*
C1 0.9150 (4) −0.1332 (4) 0.8583 (3) 0.0477 (8)
C2 0.9442 (4) −0.1847 (3) 0.9824 (3) 0.0427 (8)
C3 0.8541 (4) −0.1138 (3) 1.0777 (3) 0.0440 (8)
H3 0.8745 −0.1477 1.1594 0.053*
C4 0.7336 (4) 0.0075 (3) 1.0518 (3) 0.0413 (8)
C5 0.7021 (4) 0.0591 (3) 0.9291 (3) 0.0449 (8)
C6 0.7941 (4) −0.0127 (3) 0.8356 (3) 0.0460 (8)
H6 0.7736 0.0216 0.7539 0.055*
C7 1.0103 (5) −0.2022 (4) 0.7527 (3) 0.0539 (9)
C8 1.0398 (7) −0.1987 (5) 0.5319 (4) 0.0871 (15)
H8A 1.1655 −0.2192 0.5310 0.104*
H8B 1.0160 −0.1303 0.4581 0.104*
C9 0.9772 (8) −0.3269 (6) 0.5304 (5) 0.1008 (17)
H9A 1.0175 −0.3987 0.5961 0.151*
H9B 1.0233 −0.3543 0.4507 0.151*
H9C 0.8512 −0.3090 0.5434 0.151*
C10 1.1082 (5) −0.3819 (4) 1.1169 (4) 0.0574 (10)
C11 1.2385 (6) −0.5100 (4) 1.1039 (4) 0.0680 (11)
H11A 1.2382 −0.5696 1.1844 0.102*
H11B 1.3533 −0.4888 1.0722 0.102*
H11C 1.2081 −0.5544 1.0466 0.102*
C12 0.6424 (5) 0.0486 (4) 1.2735 (3) 0.0544 (9)
C13 0.5091 (6) 0.1480 (5) 1.3433 (4) 0.0723 (12)
H13A 0.3951 0.1530 1.3249 0.108*
H13B 0.5399 0.2367 1.3177 0.108*
H13C 0.5073 0.1177 1.4320 0.108*
C14 0.5778 (5) 0.1888 (4) 0.8965 (4) 0.0531 (9)
C15 0.4366 (9) 0.3443 (6) 0.7425 (5) 0.1109 (14)
H15A 0.4848 0.4216 0.7463 0.133*
H15B 0.3245 0.3465 0.7987 0.133*
C16 0.4146 (9) 0.3488 (6) 0.6092 (5) 0.1109 (14)
H16A 0.3796 0.2666 0.6051 0.166*
H16B 0.5239 0.3565 0.5534 0.166*
H16C 0.3262 0.4263 0.5848 0.166*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0823 (19) 0.0772 (19) 0.0456 (15) 0.0082 (15) −0.0164 (13) −0.0255 (13)
O2 0.0655 (17) 0.0820 (19) 0.0598 (17) 0.0178 (15) −0.0127 (13) −0.0357 (14)
O3 0.130 (3) 0.084 (2) 0.0577 (19) 0.040 (2) −0.0244 (18) −0.0185 (16)
O4 0.094 (2) 0.082 (2) 0.0529 (16) 0.0193 (18) −0.0208 (15) −0.0222 (14)
O5 0.0774 (19) 0.0613 (16) 0.0625 (17) 0.0094 (14) −0.0272 (14) −0.0076 (13)
O6 0.083 (2) 0.0520 (15) 0.0749 (19) 0.0166 (14) −0.0225 (15) −0.0227 (14)
N1 0.0532 (17) 0.0460 (16) 0.0500 (17) 0.0046 (13) −0.0107 (14) −0.0184 (13)
N2 0.0526 (18) 0.0501 (18) 0.0507 (18) 0.0036 (15) −0.0115 (14) −0.0189 (14)
C1 0.0476 (19) 0.0513 (19) 0.0465 (19) −0.0098 (16) −0.0054 (15) −0.0161 (15)
C2 0.0392 (17) 0.0438 (17) 0.0469 (18) −0.0060 (14) −0.0068 (14) −0.0147 (14)
C3 0.0455 (18) 0.0449 (18) 0.0428 (18) −0.0052 (15) −0.0074 (14) −0.0147 (14)
C4 0.0353 (16) 0.0430 (17) 0.0480 (18) −0.0066 (14) −0.0029 (13) −0.0182 (14)
C5 0.0436 (18) 0.0433 (18) 0.0492 (19) −0.0035 (15) −0.0102 (15) −0.0143 (15)
C6 0.0485 (19) 0.0480 (18) 0.0430 (17) −0.0067 (15) −0.0100 (14) −0.0120 (14)
C7 0.055 (2) 0.058 (2) 0.051 (2) −0.0040 (18) −0.0062 (16) −0.0240 (17)
C8 0.105 (4) 0.096 (3) 0.054 (2) 0.007 (3) −0.009 (2) −0.032 (2)
C9 0.121 (4) 0.107 (4) 0.081 (3) 0.002 (3) −0.026 (3) −0.048 (3)
C10 0.058 (2) 0.051 (2) 0.062 (2) 0.0021 (17) −0.0145 (18) −0.0186 (18)
C11 0.076 (3) 0.048 (2) 0.077 (3) 0.0043 (19) −0.021 (2) −0.0148 (19)
C12 0.056 (2) 0.060 (2) 0.050 (2) −0.0067 (18) −0.0058 (17) −0.0237 (17)
C13 0.071 (3) 0.081 (3) 0.063 (2) 0.005 (2) −0.005 (2) −0.035 (2)
C14 0.058 (2) 0.0453 (19) 0.058 (2) −0.0045 (17) −0.0150 (17) −0.0146 (16)
C15 0.130 (3) 0.087 (3) 0.103 (3) 0.021 (2) −0.050 (3) −0.008 (2)
C16 0.130 (3) 0.087 (3) 0.103 (3) 0.021 (2) −0.050 (3) −0.008 (2)

Geometric parameters (Å, °)

O1—C7 1.338 (4) C5—C14 1.482 (5)
O1—C8 1.474 (5) C6—H6 0.9300
O2—C7 1.212 (4) C8—C9 1.514 (6)
O3—C10 1.212 (5) C8—H8A 0.9700
O4—C12 1.204 (5) C8—H8B 0.9700
O5—C14 1.326 (4) C9—H9A 0.9600
O5—C15 1.459 (5) C9—H9B 0.9600
O6—C14 1.192 (4) C9—H9C 0.9600
N1—C10 1.359 (5) C10—C11 1.485 (5)
N1—C2 1.390 (4) C11—H11A 0.9600
N1—H1N 0.88 (4) C11—H11B 0.9600
N2—C12 1.371 (5) C11—H11C 0.9600
N2—C4 1.391 (4) C12—C13 1.505 (5)
N2—H2N 0.81 (4) C13—H13A 0.9600
C1—C6 1.386 (5) C13—H13B 0.9600
C1—C2 1.408 (5) C13—H13C 0.9600
C1—C7 1.482 (5) C15—C16 1.517 (7)
C2—C3 1.393 (4) C15—H15A 0.9700
C3—C4 1.395 (4) C15—H15B 0.9700
C3—H3 0.9300 C16—H16A 0.9600
C4—C5 1.398 (5) C16—H16B 0.9600
C5—C6 1.388 (4) C16—H16C 0.9600
C7—O1—C8 117.5 (3) H9A—C9—H9B 109.5
C14—O5—C15 114.2 (3) C8—C9—H9C 109.5
C10—N1—C2 130.8 (3) H9A—C9—H9C 109.5
C10—N1—H1N 117 (2) H9B—C9—H9C 109.5
C2—N1—H1N 112 (2) O3—C10—N1 123.3 (3)
C12—N2—C4 131.2 (3) O3—C10—C11 122.3 (4)
C12—N2—H2N 116 (3) N1—C10—C11 114.4 (3)
C4—N2—H2N 112 (3) C10—C11—H11A 109.5
C6—C1—C2 118.0 (3) C10—C11—H11B 109.5
C6—C1—C7 119.7 (3) H11A—C11—H11B 109.5
C2—C1—C7 122.3 (3) C10—C11—H11C 109.5
N1—C2—C3 121.5 (3) H11A—C11—H11C 109.5
N1—C2—C1 118.7 (3) H11B—C11—H11C 109.5
C3—C2—C1 119.9 (3) O4—C12—N2 124.0 (3)
C2—C3—C4 120.7 (3) O4—C12—C13 122.9 (4)
C2—C3—H3 119.6 N2—C12—C13 113.1 (3)
C4—C3—H3 119.6 C12—C13—H13A 109.5
N2—C4—C3 121.0 (3) C12—C13—H13B 109.5
N2—C4—C5 119.0 (3) H13A—C13—H13B 109.5
C3—C4—C5 120.0 (3) C12—C13—H13C 109.5
C6—C5—C4 118.3 (3) H13A—C13—H13C 109.5
C6—C5—C14 119.7 (3) H13B—C13—H13C 109.5
C4—C5—C14 122.0 (3) O6—C14—O5 121.7 (3)
C1—C6—C5 123.0 (3) O6—C14—C5 125.2 (3)
C1—C6—H6 118.5 O5—C14—C5 113.1 (3)
C5—C6—H6 118.5 O5—C15—C16 106.1 (4)
O2—C7—O1 122.4 (3) O5—C15—H15A 110.5
O2—C7—C1 125.2 (3) C16—C15—H15A 110.5
O1—C7—C1 112.4 (3) O5—C15—H15B 110.5
O1—C8—C9 108.6 (4) C16—C15—H15B 110.5
O1—C8—H8A 110.0 H15A—C15—H15B 108.7
C9—C8—H8A 110.0 C15—C16—H16A 109.5
O1—C8—H8B 110.0 C15—C16—H16B 109.5
C9—C8—H8B 110.0 H16A—C16—H16B 109.5
H8A—C8—H8B 108.3 C15—C16—H16C 109.5
C8—C9—H9A 109.5 H16A—C16—H16C 109.5
C8—C9—H9B 109.5 H16B—C16—H16C 109.5
C10—N1—C2—C3 4.6 (6) C14—C5—C6—C1 178.7 (3)
C10—N1—C2—C1 −175.5 (3) C8—O1—C7—O2 −4.3 (6)
C6—C1—C2—N1 179.3 (3) C8—O1—C7—C1 175.0 (3)
C7—C1—C2—N1 −1.5 (5) C6—C1—C7—O2 170.3 (4)
C6—C1—C2—C3 −0.8 (5) C2—C1—C7—O2 −8.9 (6)
C7—C1—C2—C3 178.4 (3) C6—C1—C7—O1 −9.1 (5)
N1—C2—C3—C4 −179.5 (3) C2—C1—C7—O1 171.8 (3)
C1—C2—C3—C4 0.6 (5) C7—O1—C8—C9 83.1 (5)
C12—N2—C4—C3 −1.0 (6) C2—N1—C10—O3 −2.1 (7)
C12—N2—C4—C5 178.0 (3) C2—N1—C10—C11 177.7 (3)
C2—C3—C4—N2 179.0 (3) C4—N2—C12—O4 6.1 (7)
C2—C3—C4—C5 0.0 (5) C4—N2—C12—C13 −175.2 (3)
N2—C4—C5—C6 −179.4 (3) C15—O5—C14—O6 1.0 (6)
C3—C4—C5—C6 −0.4 (5) C15—O5—C14—C5 −179.4 (4)
N2—C4—C5—C14 2.1 (5) C6—C5—C14—O6 −174.9 (4)
C3—C4—C5—C14 −178.9 (3) C4—C5—C14—O6 3.6 (6)
C2—C1—C6—C5 0.4 (5) C6—C5—C14—O5 5.6 (5)
C7—C1—C6—C5 −178.8 (3) C4—C5—C14—O5 −176.0 (3)
C4—C5—C6—C1 0.2 (5) C14—O5—C15—C16 −173.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2 0.88 (4) 1.92 (3) 2.676 (4) 144 (3)
N2—H2N···O6 0.81 (4) 1.96 (4) 2.656 (4) 143 (3)
C9—H9B···O3i 0.96 2.54 3.445 (6) 157
C16—H16A···O4ii 0.96 2.57 3.485 (7) 160

Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5828).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  2. Feng, W., Yamato, K., Yang, L. Q., Ferguson, J. S., Zhong, L. J., Zou, S. L., Yuan, L. H., Zeng, X. C. & Gong, B. (2009). J. Am. Chem. Soc. 131, 2629–2637. [DOI] [PubMed]
  3. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
  4. Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC American Crystallographic Association, Pittsburgh Meeting Abstract, PA 104.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Yan, Y., Qin, B., Ren, C. L., Chen, X. Y., Yip, Y. K., Ye, R. J., Zhang, D. W., Su, H. B. & Zeng, H. Q. (2010). J. Am. Chem. Soc. 132, 5869–5879. [DOI] [PubMed]
  7. Yuan, L. H., Feng, W., Yamato, K., Sanford, A. R., Xu, D. G., Guo, H. & Gong, B. (2004). J. Am. Chem. Soc. 126, 11120–11121. [DOI] [PubMed]
  8. Zhang, A. M., Han, Y. H., Yamato, K., Zeng, X. C. & Gong, B. (2006). Org. Lett. 8, 803–806. [DOI] [PubMed]
  9. Zhang, Y. F., Yamato, K., Zhong, K., Zhu, J., Deng, J. G. & Gong, B. (2008). Org. Lett. 10, 4338–4342. [DOI] [PubMed]
  10. Zhu, J., Parra, R. D., Zeng, H. Q., Skrzypczak-Jankun, E., Zeng, X. C. & Gong, B. (2000). J. Am. Chem. Soc. 122, 4219–4220.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013845/hb5828sup1.cif

e-67-o1185-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013845/hb5828Isup2.hkl

e-67-o1185-Isup2.hkl (151.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES