Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 13;67(Pt 5):m581–m582. doi: 10.1107/S1600536811011470

(2-Methyl-4-oxo-4H-pyran-3-olato-κ2 O 3,O 4)bis­(triphenyl­phosphane-κP)copper(I)–triphenyl­phosphane–methanol (1/1/1)

Fabian M A Muller a, Theunis J Muller a, Gideon Steyl a,*
PMCID: PMC3089247  PMID: 21754306

Abstract

In the title compound, [Cu(C6H5O3)(C18H15P)2]·C18H15P·CH3OH, the pyran-4-one ring is appromimately planar (r.m.s deviation = 0.0138 Å), with the CuI atom 0.451 (5) Å out of the plane. The CuI atom has a distorted tetra­hedral coordination. The O—Cu—O angle is 80.07 (8)° and the P—Cu—P angle is 123.49 (3)°. The crystal packing is stablized by intra­molecular C—H⋯O inter­actions and inter­molecular C—H⋯O and O—H⋯O inter­actions.

Related literature

The title compound is structurally related to the flavonolato, nitro­sophenyl­hydroxy­laminato and tropolonato derivatives, see: Spier et al. (1990); Charalambous et al. (1984); Steyl (2009). For related diketonato complexes, see: Odoko et al. (2002, 2003). For general background to pyran­one ligands, see: Hider et al. (1984a,b ); Kontoghiorghes et al. (1990); Kontoghiorghes (1995); Hedlund & Öhman (1988); Creeth et al. (2000). graphic file with name e-67-0m581-scheme1.jpg

Experimental

Crystal data

  • [Cu(C6H5O3)(C18H15P)2]·C18H15P·CH4O

  • M r = 1007.49

  • Monoclinic, Inline graphic

  • a = 20.5253 (7) Å

  • b = 13.5716 (4) Å

  • c = 20.3129 (7) Å

  • β = 119.205 (1)°

  • V = 4939.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 150 K

  • 0.19 × 0.19 × 0.06 mm

Data collection

  • Bruker X8 APEXII 4K diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.894, T max = 0.965

  • 58551 measured reflections

  • 10787 independent reflections

  • 8326 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.127

  • S = 1.06

  • 10787 reflections

  • 625 parameters

  • H-atom parameters constrained

  • Δρmax = 1.51 e Å−3

  • Δρmin = −0.86 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2007); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011470/fi2105sup1.cif

e-67-0m581-sup1.cif (38KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011470/fi2105Isup2.hkl

e-67-0m581-Isup2.hkl (516.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—O1 2.046 (2)
Cu1—O2 2.175 (2)
Cu1—P1 2.2014 (7)
Cu1—P2 2.2692 (8)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1 0.84 1.8 2.637 (3) 174
C2—H2⋯O2 0.95 2.46 3.370 (3) 162
C12—H12⋯O2 0.95 2.54 3.412 (4) 153
C22—H22⋯O4i 0.95 2.51 3.144 (4) 125
C32—H32⋯O1 0.95 2.6 3.495 (3) 158
C53—H53⋯O4 0.95 2.52 3.398 (5) 154

Symmetry code: (i) Inline graphic.

Acknowledgments

The University of the Free State is gratefully acknowledged for financial support and Leo Kirsten for the data collection.

supplementary crystallographic information

Comment

Pyranone ligands have remarkable properties for clinical purposes (Odoko et al. 2003). These ligands are relevant to the control of metal levels in the body and have been tested for administration for the amelioration of anaemia (Hider et al. 1984a,b) and the removal of iron (Kontoghiorghes et al. 1990) and aluminium (Kontoghiorghes, 1995). 3-hydroxy-2-methyl-4H- pyran-4-one is a naturally occurring non-toxic compound typically added as a food flavour enhancer. It has the ability to be deprotonated readily (pKa = 8.38; Hedlund & Öhman, 1988) and can act as an anionic chelating O,O'-bidentate ligand towards a number of biologically active metal ions (Odoko et al. 2002). The efficacy of the CuII and SnII complexes in oral-care formations (Creeth et al. 2000) has also been reported. Only three other examples of copper triphenylphosphine complexes are known to date, which containes a five-membered O,O'-bidentate chelating ring system, i.e., the flavonolato, nitrosophenylhydroxylaminato and tropolonato derivatives (Spier et al., 1990; Charalambous et al. 1984; Steyl, 2009). In this paper, the structure of (2-methyl-4-oxo-4H-pyran-3-olato- κ2O3,O4) Copper(I) complex is reported (Fig. 1). The pyran-4-one ring is essentially planar (r.m.s = 0.0138 fitted atoms C55, C56, C57, C58, C59 and O3). The Cu atom is situated 0.4508 (48) Å above the pyran-4-one ring plane. The Cu—O1 and Cu—O2 bond lengths are 2.046 (2) Å and 2.175 Å, respectively, this correlates well with literature (Steyl, 2009). The bidentate bite angle O1—Cu—O2 is 80.07 (8) ° which correlates with the observed literature values (Odoko et al. 2003). The Cu—P1 and Cu—P2 bond length is 2.2014 (7) and 2.2692 (8) Å, respectively, this is within normal range (Spier et al. 1990; Charalambous et al. 1984). The P1—Cu—P2 bond angle is 123.49 (3) °. O4–H4A···O1 hydrogen interactions between the solvent molecule and the complex and C53—H53···O1 hydrogen interaction between the free phosphie and complex stabilze the crystal packing. The crystal is further stabilized by inter- and intramolecular C—H···O hydrogen interactions (Table 2).

Experimental

A solution of [Cu(NO3)(PPh3)2] (0.6502 g, 0.001 mol) in methanol (10 ml) was slowly added to a solution of 3-hydroxy-2-methyl-4H-pyran-4-one (0.1387 g, 0.0011 mol) in methanol (10 ml) and stirred for 30 minutes. Recrystallization from methanol gave X-Ray quality crystals. Yield 78%.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent) of the parent atom with a C—H distance of 0.93.The methyl H atoms were placed in geometrically idealized positions and constrained to ride on its parent atoms with Uiso(H) = 1.5Ueq(C) and at a distance of 0.96 Å. The highest peak in the Fourier map (1.51 e.Å–3) is located 0.83Å from Cu1.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Thermal ellipsoids at 50% probability.

Crystal data

[Cu(C6H5O3)(C18H15P)2]·C18H15P·CH4O F(000) = 2104
Mr = 1007.49 Dx = 1.355 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yc Cell parameters from 8938 reflections
a = 20.5253 (7) Å θ = 2.3–26.4°
b = 13.5716 (4) Å µ = 0.59 mm1
c = 20.3129 (7) Å T = 150 K
β = 119.205 (1)° Plate, colourless
V = 4939.1 (3) Å3 0.19 × 0.19 × 0.06 mm
Z = 4

Data collection

Bruker X8 APEXII 4K diffractometer 10787 independent reflections
Radiation source: fine-focus sealed tube 8326 reflections with I > 2σ(I)
graphite Rint = 0.058
φ and ω scans θmax = 27°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −26→26
Tmin = 0.894, Tmax = 0.965 k = −17→17
58551 measured reflections l = −24→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0475P)2 + 7.9566P] where P = (Fo2 + 2Fc2)/3
10787 reflections (Δ/σ)max = 0.001
625 parameters Δρmax = 1.51 e Å3
0 restraints Δρmin = −0.86 e Å3

Special details

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 688 frames were collected with a frame width of 0.5° covering up to θ = 28.24° with 99.1% completeness accomplished.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.214103 (18) 0.00326 (2) 0.261886 (19) 0.01908 (9)
P1 0.10439 (4) 0.06950 (5) 0.22835 (4) 0.01542 (14)
P2 0.23466 (4) −0.16169 (5) 0.26969 (4) 0.01741 (15)
P3 0.38902 (4) 0.48977 (6) 0.31013 (4) 0.02500 (17)
O1 0.29079 (11) 0.06514 (16) 0.23758 (11) 0.0265 (5)
O2 0.29997 (11) 0.04399 (15) 0.37487 (11) 0.0245 (4)
C1 0.08207 (15) 0.08316 (18) 0.30441 (15) 0.0164 (5)
C2 0.14009 (15) 0.08692 (19) 0.37862 (16) 0.0199 (6)
H2 0.1903 0.0819 0.3888 0.024*
C6 0.00836 (15) 0.09007 (18) 0.29104 (15) 0.0170 (5)
H6 −0.0319 0.0861 0.2409 0.02*
C5 −0.00614 (15) 0.10258 (19) 0.35027 (16) 0.0186 (5)
H5 −0.0562 0.1091 0.3405 0.022*
C3 0.12498 (16) 0.0979 (2) 0.43784 (16) 0.0217 (6)
H3 0.1649 0.1001 0.4883 0.026*
C4 0.05204 (16) 0.1056 (2) 0.42358 (16) 0.0210 (6)
H4 0.0419 0.113 0.4642 0.025*
C7 0.20878 (15) −0.2199 (2) 0.33478 (16) 0.0202 (6)
C8 0.18613 (16) −0.3169 (2) 0.33070 (17) 0.0261 (6)
H8 0.1824 −0.358 0.2911 0.031*
C10 0.17415 (17) −0.2963 (2) 0.44152 (18) 0.0298 (7)
H10 0.1616 −0.3219 0.4774 0.036*
C9 0.16883 (16) −0.3550 (2) 0.38402 (17) 0.0291 (7)
H9 0.1533 −0.4216 0.3806 0.035*
C12 0.21461 (19) −0.1614 (2) 0.39378 (19) 0.0316 (7)
H12 0.2302 −0.0947 0.3976 0.038*
C11 0.1978 (2) −0.2001 (3) 0.4469 (2) 0.0361 (8)
H11 0.2026 −0.16 0.4874 0.043*
C14 0.22245 (15) −0.3304 (2) 0.18224 (16) 0.0206 (6)
H14 0.2683 −0.3519 0.2234 0.025*
C13 0.19240 (15) −0.2392 (2) 0.18613 (15) 0.0185 (5)
C18 0.12553 (15) −0.2083 (2) 0.12403 (16) 0.0193 (6)
H18 0.1048 −0.1462 0.1254 0.023*
C17 0.08922 (15) −0.2673 (2) 0.06064 (16) 0.0215 (6)
H17 0.044 −0.2455 0.0187 0.026*
C15 0.18590 (16) −0.3892 (2) 0.11902 (16) 0.0217 (6)
H15 0.2067 −0.451 0.1171 0.026*
C16 0.11908 (16) −0.3586 (2) 0.05846 (16) 0.0216 (6)
H16 0.0937 −0.3998 0.0155 0.026*
C23 −0.05007 (16) −0.1488 (2) 0.13305 (17) 0.0223 (6)
H23 −0.0624 −0.2075 0.15 0.027*
C19 0.02499 (14) −0.00172 (19) 0.15983 (15) 0.0159 (5)
C24 0.00684 (15) −0.08956 (19) 0.18378 (16) 0.0196 (6)
H24 0.034 −0.1083 0.2353 0.023*
C20 −0.01466 (16) 0.0231 (2) 0.08419 (16) 0.0219 (6)
H20 −0.0029 0.082 0.067 0.026*
C22 −0.08934 (17) −0.1231 (2) 0.05755 (18) 0.0265 (6)
H22 −0.1284 −0.1643 0.0226 0.032*
C21 −0.07135 (17) −0.0373 (2) 0.03344 (17) 0.0262 (6)
H21 −0.0981 −0.0195 −0.0183 0.031*
C27 0.37303 (16) −0.2392 (2) 0.37962 (17) 0.0264 (6)
H27 0.3475 −0.2627 0.4049 0.032*
C25 0.33395 (14) −0.19082 (19) 0.31180 (15) 0.0183 (5)
C26 0.37255 (17) −0.1562 (2) 0.27614 (19) 0.0308 (7)
H26 0.3466 −0.1217 0.2297 0.037*
C28 0.44955 (17) −0.2538 (3) 0.41136 (18) 0.0333 (7)
H28 0.4759 −0.2875 0.4581 0.04*
C29 0.48730 (17) −0.2200 (2) 0.3756 (2) 0.0333 (7)
H29 0.5396 −0.23 0.3974 0.04*
C30 0.44870 (18) −0.1718 (3) 0.3081 (2) 0.0364 (8)
H30 0.4744 −0.1488 0.2829 0.044*
C31 0.08839 (15) 0.19196 (18) 0.18591 (15) 0.0165 (5)
C34 0.07028 (16) 0.3770 (2) 0.11999 (15) 0.0208 (6)
H34 0.0645 0.4404 0.098 0.025*
C35 0.02073 (15) 0.34515 (19) 0.14352 (15) 0.0187 (5)
H35 −0.0192 0.3865 0.1374 0.022*
C36 0.02951 (15) 0.25301 (19) 0.17593 (15) 0.0181 (5)
H36 −0.0048 0.2311 0.1915 0.022*
C32 0.13759 (15) 0.2245 (2) 0.16215 (16) 0.0211 (6)
H32 0.178 0.1837 0.1689 0.025*
C33 0.12819 (16) 0.3166 (2) 0.12855 (17) 0.0233 (6)
H33 0.1615 0.3379 0.1115 0.028*
C42 0.33225 (16) 0.4130 (2) 0.33699 (16) 0.0214 (6)
C41 0.25678 (17) 0.4336 (2) 0.30419 (18) 0.0285 (7)
H41 0.2355 0.4815 0.2652 0.034*
C40 0.21165 (17) 0.3860 (2) 0.32715 (19) 0.0314 (7)
H40 0.1598 0.4004 0.3033 0.038*
C39 0.24148 (18) 0.3180 (2) 0.3842 (2) 0.0328 (7)
H39 0.2107 0.2857 0.4004 0.039*
C38 0.3168 (2) 0.2969 (3) 0.4180 (2) 0.0418 (9)
H38 0.3381 0.2505 0.458 0.05*
C37 0.36142 (19) 0.3430 (3) 0.3936 (2) 0.0378 (8)
H37 0.4128 0.3263 0.4162 0.045*
C44 0.50530 (17) 0.3496 (2) 0.34617 (19) 0.0327 (7)
H44 0.472 0.3155 0.3014 0.039*
C43 0.48189 (16) 0.4346 (2) 0.36526 (17) 0.0263 (6)
C45 0.57669 (18) 0.3128 (3) 0.3913 (2) 0.0374 (8)
H45 0.5924 0.2551 0.3765 0.045*
C46 0.62451 (18) 0.3596 (3) 0.45730 (19) 0.0388 (8)
H46 0.673 0.3337 0.4888 0.047*
C47 0.60193 (19) 0.4443 (3) 0.4778 (2) 0.0451 (9)
H47 0.6348 0.4766 0.5237 0.054*
C48 0.53168 (18) 0.4823 (3) 0.43178 (19) 0.0371 (8)
H48 0.5171 0.5417 0.4456 0.045*
C49 0.36127 (16) 0.4483 (2) 0.21457 (17) 0.0283 (7)
C54 0.33106 (17) 0.3582 (3) 0.18496 (18) 0.0318 (7)
H54 0.3235 0.3112 0.2153 0.038*
C51 0.35207 (18) 0.4942 (3) 0.0952 (2) 0.0396 (8)
H51 0.3591 0.5409 0.0644 0.048*
C50 0.37123 (17) 0.5176 (3) 0.16850 (19) 0.0337 (7)
H50 0.3913 0.5807 0.1881 0.04*
C52 0.32287 (18) 0.4032 (3) 0.06709 (19) 0.0362 (8)
H52 0.3105 0.387 0.0168 0.043*
C53 0.31113 (18) 0.3348 (3) 0.1100 (2) 0.0373 (8)
H53 0.2898 0.2726 0.0893 0.045*
C55 0.35473 (16) 0.0786 (2) 0.29884 (17) 0.0236 (6)
C59 0.41971 (16) 0.0984 (2) 0.29795 (18) 0.0282 (7)
C60 0.42869 (18) 0.1052 (3) 0.2299 (2) 0.0363 (8)
H60A 0.4396 0.0398 0.2174 0.054*
H60B 0.4699 0.1501 0.2399 0.054*
H60C 0.3825 0.1303 0.1875 0.054*
C57 0.42829 (17) 0.0856 (2) 0.43665 (19) 0.0304 (7)
H57 0.4327 0.0833 0.4854 0.036*
C58 0.48828 (18) 0.1051 (3) 0.42923 (19) 0.0348 (7)
H58 0.5347 0.1156 0.4736 0.042*
C56 0.35775 (16) 0.0683 (2) 0.37156 (17) 0.0236 (6)
O3 0.48634 (12) 0.11061 (17) 0.36300 (13) 0.0350 (5)
O4 0.24131 (15) 0.1036 (2) 0.09364 (14) 0.0463 (6)
H4A 0.2582 0.0956 0.1402 0.069*
C61 0.2624 (3) 0.0252 (4) 0.0650 (3) 0.0755 (16)
H61A 0.3164 0.0274 0.0843 0.113*
H61B 0.2365 0.0293 0.0098 0.113*
H61C 0.2491 −0.0367 0.0804 0.113*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01644 (17) 0.01898 (17) 0.02494 (18) 0.00279 (13) 0.01253 (14) 0.00323 (14)
P1 0.0157 (3) 0.0140 (3) 0.0198 (3) 0.0010 (2) 0.0112 (3) 0.0015 (3)
P2 0.0167 (3) 0.0182 (3) 0.0201 (3) 0.0038 (3) 0.0112 (3) 0.0026 (3)
P3 0.0204 (4) 0.0275 (4) 0.0260 (4) 0.0003 (3) 0.0105 (3) 0.0044 (3)
O1 0.0213 (10) 0.0334 (12) 0.0270 (11) −0.0004 (9) 0.0134 (9) 0.0037 (9)
O2 0.0221 (10) 0.0272 (11) 0.0258 (11) −0.0037 (8) 0.0129 (9) −0.0025 (9)
C1 0.0201 (13) 0.0111 (12) 0.0216 (13) 0.0005 (10) 0.0131 (11) 0.0012 (10)
C2 0.0180 (13) 0.0181 (13) 0.0265 (15) 0.0014 (10) 0.0131 (12) 0.0004 (11)
C6 0.0196 (13) 0.0133 (12) 0.0194 (13) 0.0004 (10) 0.0105 (11) 0.0008 (10)
C5 0.0191 (13) 0.0151 (12) 0.0276 (15) 0.0004 (10) 0.0161 (12) 0.0009 (11)
C3 0.0229 (14) 0.0207 (14) 0.0206 (14) 0.0004 (11) 0.0097 (12) −0.0002 (11)
C4 0.0278 (15) 0.0182 (13) 0.0218 (14) −0.0001 (11) 0.0156 (12) 0.0000 (11)
C7 0.0176 (13) 0.0250 (14) 0.0218 (14) 0.0058 (11) 0.0127 (12) 0.0042 (11)
C8 0.0233 (15) 0.0327 (16) 0.0210 (14) −0.0047 (12) 0.0097 (12) 0.0004 (12)
C10 0.0239 (15) 0.0439 (19) 0.0311 (16) 0.0084 (13) 0.0209 (14) 0.0124 (14)
C9 0.0211 (15) 0.0374 (17) 0.0240 (15) −0.0066 (13) 0.0073 (13) 0.0074 (13)
C12 0.046 (2) 0.0251 (16) 0.0373 (18) 0.0088 (14) 0.0313 (16) 0.0043 (13)
C11 0.053 (2) 0.0339 (18) 0.0385 (19) 0.0141 (16) 0.0352 (18) 0.0070 (15)
C14 0.0190 (13) 0.0220 (14) 0.0227 (14) 0.0033 (11) 0.0117 (12) 0.0042 (11)
C13 0.0207 (13) 0.0191 (13) 0.0219 (14) 0.0013 (11) 0.0152 (12) 0.0027 (11)
C18 0.0209 (14) 0.0193 (13) 0.0239 (14) 0.0045 (11) 0.0156 (12) 0.0040 (11)
C17 0.0194 (14) 0.0277 (15) 0.0202 (14) 0.0020 (11) 0.0118 (12) 0.0076 (12)
C15 0.0239 (14) 0.0205 (14) 0.0273 (15) 0.0035 (11) 0.0176 (13) 0.0024 (11)
C16 0.0247 (14) 0.0251 (14) 0.0215 (14) −0.0044 (11) 0.0164 (12) −0.0002 (11)
C23 0.0267 (15) 0.0149 (13) 0.0330 (16) 0.0005 (11) 0.0206 (13) −0.0002 (11)
C19 0.0163 (12) 0.0144 (12) 0.0211 (13) 0.0026 (10) 0.0122 (11) 0.0004 (10)
C24 0.0189 (13) 0.0165 (13) 0.0262 (15) 0.0038 (10) 0.0133 (12) 0.0036 (11)
C20 0.0268 (15) 0.0184 (14) 0.0265 (15) −0.0004 (11) 0.0177 (13) 0.0006 (11)
C22 0.0266 (15) 0.0243 (15) 0.0323 (16) −0.0077 (12) 0.0172 (14) −0.0091 (13)
C21 0.0278 (16) 0.0285 (15) 0.0227 (15) −0.0039 (12) 0.0125 (13) −0.0027 (12)
C27 0.0226 (15) 0.0313 (16) 0.0244 (15) 0.0017 (12) 0.0108 (13) 0.0001 (12)
C25 0.0151 (13) 0.0179 (13) 0.0214 (14) 0.0022 (10) 0.0084 (11) −0.0032 (11)
C26 0.0248 (16) 0.0393 (18) 0.0341 (17) 0.0093 (13) 0.0188 (14) 0.0096 (14)
C28 0.0227 (16) 0.0403 (19) 0.0270 (17) 0.0069 (13) 0.0045 (13) 0.0024 (14)
C29 0.0170 (14) 0.0339 (17) 0.047 (2) −0.0009 (13) 0.0140 (15) −0.0096 (15)
C30 0.0271 (17) 0.0401 (19) 0.052 (2) 0.0040 (14) 0.0270 (17) 0.0041 (16)
C31 0.0200 (13) 0.0132 (12) 0.0176 (13) −0.0001 (10) 0.0102 (11) −0.0004 (10)
C34 0.0287 (15) 0.0138 (13) 0.0209 (14) −0.0004 (11) 0.0129 (12) 0.0026 (11)
C35 0.0228 (14) 0.0158 (13) 0.0195 (13) 0.0020 (10) 0.0119 (12) −0.0012 (10)
C36 0.0171 (13) 0.0188 (13) 0.0200 (13) −0.0031 (10) 0.0104 (11) −0.0008 (10)
C32 0.0213 (14) 0.0207 (14) 0.0258 (15) 0.0030 (11) 0.0149 (12) 0.0023 (11)
C33 0.0256 (15) 0.0234 (14) 0.0279 (15) 0.0000 (11) 0.0187 (13) 0.0041 (12)
C42 0.0208 (14) 0.0193 (13) 0.0249 (15) 0.0013 (11) 0.0118 (12) −0.0015 (11)
C41 0.0269 (16) 0.0296 (16) 0.0320 (17) 0.0054 (12) 0.0168 (14) 0.0059 (13)
C40 0.0204 (15) 0.0381 (18) 0.0352 (18) 0.0008 (13) 0.0132 (14) 0.0007 (14)
C39 0.0324 (17) 0.0281 (16) 0.047 (2) −0.0045 (13) 0.0262 (16) 0.0013 (14)
C38 0.039 (2) 0.041 (2) 0.052 (2) 0.0076 (16) 0.0277 (18) 0.0205 (17)
C37 0.0256 (17) 0.0418 (19) 0.046 (2) 0.0063 (14) 0.0171 (16) 0.0167 (16)
C44 0.0226 (15) 0.0343 (17) 0.0345 (18) −0.0013 (13) 0.0087 (14) 0.0051 (14)
C43 0.0192 (14) 0.0346 (17) 0.0265 (15) −0.0016 (12) 0.0123 (13) 0.0073 (13)
C45 0.0253 (17) 0.0384 (19) 0.048 (2) 0.0052 (14) 0.0170 (16) 0.0120 (16)
C46 0.0211 (16) 0.063 (2) 0.0319 (18) 0.0039 (15) 0.0125 (14) 0.0146 (17)
C47 0.0267 (18) 0.077 (3) 0.0277 (18) −0.0047 (18) 0.0105 (15) −0.0073 (18)
C48 0.0290 (17) 0.055 (2) 0.0305 (17) −0.0007 (15) 0.0173 (15) −0.0044 (16)
C49 0.0170 (14) 0.0427 (18) 0.0238 (15) 0.0050 (13) 0.0089 (12) 0.0031 (13)
C54 0.0213 (15) 0.0408 (19) 0.0314 (17) 0.0077 (13) 0.0112 (14) 0.0040 (14)
C51 0.0275 (17) 0.059 (2) 0.0343 (18) 0.0030 (16) 0.0166 (15) 0.0109 (17)
C50 0.0218 (15) 0.045 (2) 0.0343 (18) 0.0018 (14) 0.0134 (14) 0.0056 (15)
C52 0.0234 (16) 0.059 (2) 0.0291 (17) 0.0069 (15) 0.0150 (14) −0.0015 (16)
C53 0.0230 (16) 0.043 (2) 0.0386 (19) 0.0034 (14) 0.0091 (15) −0.0041 (16)
C55 0.0186 (14) 0.0236 (14) 0.0289 (16) 0.0030 (11) 0.0119 (13) 0.0042 (12)
C59 0.0202 (15) 0.0299 (16) 0.0331 (17) 0.0007 (12) 0.0118 (13) 0.0032 (13)
C60 0.0259 (16) 0.045 (2) 0.046 (2) 0.0012 (14) 0.0237 (16) 0.0066 (16)
C57 0.0250 (16) 0.0336 (17) 0.0290 (17) 0.0007 (13) 0.0103 (14) −0.0004 (13)
C58 0.0262 (16) 0.0382 (18) 0.0331 (18) −0.0009 (14) 0.0090 (14) −0.0012 (15)
C56 0.0227 (15) 0.0191 (14) 0.0294 (16) 0.0008 (11) 0.0130 (13) 0.0001 (12)
O3 0.0185 (11) 0.0428 (13) 0.0398 (13) −0.0019 (9) 0.0111 (10) 0.0018 (11)
O4 0.0463 (16) 0.0579 (17) 0.0320 (13) 0.0056 (13) 0.0170 (13) −0.0006 (12)
C61 0.064 (3) 0.093 (4) 0.052 (3) 0.024 (3) 0.015 (2) −0.028 (3)

Geometric parameters (Å, °)

Cu1—O1 2.046 (2) C28—H28 0.95
Cu1—O2 2.175 (2) C29—C30 1.370 (5)
Cu1—P1 2.2014 (7) C29—H29 0.95
Cu1—P2 2.2692 (8) C30—H30 0.95
P1—C19 1.820 (3) C31—C32 1.387 (4)
P1—C1 1.823 (3) C31—C36 1.396 (4)
P1—C31 1.827 (3) C34—C33 1.384 (4)
P2—C13 1.817 (3) C34—C35 1.387 (4)
P2—C7 1.827 (3) C34—H34 0.95
P2—C25 1.828 (3) C35—C36 1.383 (4)
P3—C49 1.825 (3) C35—H35 0.95
P3—C42 1.833 (3) C36—H36 0.95
P3—C43 1.834 (3) C32—C33 1.391 (4)
O1—C55 1.308 (4) C32—H32 0.95
O2—C56 1.264 (3) C33—H33 0.95
C1—C2 1.393 (4) C42—C37 1.383 (4)
C1—C6 1.404 (4) C42—C41 1.384 (4)
C2—C3 1.389 (4) C41—C40 1.384 (4)
C2—H2 0.95 C41—H41 0.95
C6—C5 1.384 (4) C40—C39 1.370 (5)
C6—H6 0.95 C40—H40 0.95
C5—C4 1.382 (4) C39—C38 1.382 (5)
C5—H5 0.95 C39—H39 0.95
C3—C4 1.383 (4) C38—C37 1.384 (5)
C3—H3 0.95 C38—H38 0.95
C4—H4 0.95 C37—H37 0.95
C7—C8 1.386 (4) C44—C43 1.377 (5)
C7—C12 1.393 (4) C44—C45 1.388 (4)
C8—C9 1.393 (4) C44—H44 0.95
C8—H8 0.95 C43—C48 1.393 (5)
C10—C9 1.373 (5) C45—C46 1.372 (5)
C10—C11 1.379 (5) C45—H45 0.95
C10—H10 0.95 C46—C47 1.378 (5)
C9—H9 0.95 C46—H46 0.95
C12—C11 1.387 (4) C47—C48 1.379 (5)
C12—H12 0.95 C47—H47 0.95
C11—H11 0.95 C48—H48 0.95
C14—C15 1.382 (4) C49—C54 1.370 (5)
C14—C13 1.402 (4) C49—C50 1.410 (5)
C14—H14 0.95 C54—C53 1.407 (5)
C13—C18 1.400 (4) C54—H54 0.95
C18—C17 1.385 (4) C51—C52 1.371 (5)
C18—H18 0.95 C51—C50 1.379 (5)
C17—C16 1.392 (4) C51—H51 0.95
C17—H17 0.95 C50—H50 0.95
C15—C16 1.386 (4) C52—C53 1.372 (5)
C15—H15 0.95 C52—H52 0.95
C16—H16 0.95 C53—H53 0.95
C23—C24 1.378 (4) C55—C59 1.369 (4)
C23—C22 1.384 (4) C55—C56 1.455 (4)
C23—H23 0.95 C59—O3 1.371 (4)
C19—C20 1.384 (4) C59—C60 1.483 (5)
C19—C24 1.405 (4) C60—H60A 0.98
C24—H24 0.95 C60—H60B 0.98
C20—C21 1.384 (4) C60—H60C 0.98
C20—H20 0.95 C57—C58 1.338 (5)
C22—C21 1.383 (4) C57—C56 1.425 (4)
C22—H22 0.95 C57—H57 0.95
C21—H21 0.95 C58—O3 1.328 (4)
C27—C25 1.376 (4) C58—H58 0.95
C27—C28 1.391 (4) O4—C61 1.379 (5)
C27—H27 0.95 O4—H4A 0.84
C25—C26 1.390 (4) C61—H61A 0.98
C26—C30 1.386 (4) C61—H61B 0.98
C26—H26 0.95 C61—H61C 0.98
C28—C29 1.374 (5)
O1—Cu1—O2 80.07 (8) C30—C29—C28 119.3 (3)
O1—Cu1—P1 123.30 (6) C30—C29—H29 120.4
O2—Cu1—P1 113.74 (6) C28—C29—H29 120.4
O1—Cu1—P2 106.44 (6) C29—C30—C26 120.7 (3)
O2—Cu1—P2 98.61 (6) C29—C30—H30 119.6
P1—Cu1—P2 123.49 (3) C26—C30—H30 119.6
C19—P1—C1 101.57 (12) C32—C31—C36 119.1 (2)
C19—P1—C31 103.56 (12) C32—C31—P1 117.4 (2)
C1—P1—C31 104.23 (12) C36—C31—P1 123.5 (2)
C19—P1—Cu1 114.75 (8) C33—C34—C35 120.1 (2)
C1—P1—Cu1 114.93 (9) C33—C34—H34 120
C31—P1—Cu1 116.03 (9) C35—C34—H34 120
C13—P2—C7 104.53 (13) C36—C35—C34 119.9 (3)
C13—P2—C25 103.13 (12) C36—C35—H35 120
C7—P2—C25 102.67 (12) C34—C35—H35 120
C13—P2—Cu1 121.19 (9) C35—C36—C31 120.5 (2)
C7—P2—Cu1 111.53 (9) C35—C36—H36 119.7
C25—P2—Cu1 111.90 (9) C31—C36—H36 119.7
C49—P3—C42 103.15 (14) C31—C32—C33 120.4 (3)
C49—P3—C43 102.45 (14) C31—C32—H32 119.8
C42—P3—C43 102.04 (13) C33—C32—H32 119.8
C55—O1—Cu1 111.17 (18) C34—C33—C32 120.0 (3)
C56—O2—Cu1 107.97 (18) C34—C33—H33 120
C2—C1—C6 118.6 (2) C32—C33—H33 120
C2—C1—P1 119.0 (2) C37—C42—C41 117.9 (3)
C6—C1—P1 122.4 (2) C37—C42—P3 123.9 (2)
C3—C2—C1 120.4 (3) C41—C42—P3 117.8 (2)
C3—C2—H2 119.8 C42—C41—C40 121.3 (3)
C1—C2—H2 119.8 C42—C41—H41 119.4
C5—C6—C1 120.6 (3) C40—C41—H41 119.4
C5—C6—H6 119.7 C39—C40—C41 120.2 (3)
C1—C6—H6 119.7 C39—C40—H40 119.9
C4—C5—C6 120.1 (3) C41—C40—H40 119.9
C4—C5—H5 120 C40—C39—C38 119.3 (3)
C6—C5—H5 120 C40—C39—H39 120.3
C4—C3—C2 120.2 (3) C38—C39—H39 120.3
C4—C3—H3 119.9 C39—C38—C37 120.3 (3)
C2—C3—H3 119.9 C39—C38—H38 119.9
C5—C4—C3 120.1 (3) C37—C38—H38 119.9
C5—C4—H4 120 C42—C37—C38 121.0 (3)
C3—C4—H4 120 C42—C37—H37 119.5
C8—C7—C12 118.6 (3) C38—C37—H37 119.5
C8—C7—P2 125.1 (2) C43—C44—C45 121.1 (3)
C12—C7—P2 116.3 (2) C43—C44—H44 119.4
C7—C8—C9 120.7 (3) C45—C44—H44 119.4
C7—C8—H8 119.6 C44—C43—C48 118.1 (3)
C9—C8—H8 119.6 C44—C43—P3 124.9 (2)
C9—C10—C11 119.7 (3) C48—C43—P3 117.1 (2)
C9—C10—H10 120.1 C46—C45—C44 120.0 (3)
C11—C10—H10 120.1 C46—C45—H45 120
C10—C9—C8 120.1 (3) C44—C45—H45 120
C10—C9—H9 119.9 C45—C46—C47 119.8 (3)
C8—C9—H9 119.9 C45—C46—H46 120.1
C11—C12—C7 120.3 (3) C47—C46—H46 120.1
C11—C12—H12 119.9 C46—C47—C48 120.0 (3)
C7—C12—H12 119.9 C46—C47—H47 120
C10—C11—C12 120.6 (3) C48—C47—H47 120
C10—C11—H11 119.7 C47—C48—C43 120.9 (3)
C12—C11—H11 119.7 C47—C48—H48 119.5
C15—C14—C13 120.5 (3) C43—C48—H48 119.5
C15—C14—H14 119.7 C54—C49—C50 119.0 (3)
C13—C14—H14 119.7 C54—C49—P3 125.6 (3)
C18—C13—C14 118.5 (3) C50—C49—P3 115.4 (3)
C18—C13—P2 118.7 (2) C49—C54—C53 120.4 (3)
C14—C13—P2 122.7 (2) C49—C54—H54 119.8
C17—C18—C13 120.7 (3) C53—C54—H54 119.8
C17—C18—H18 119.6 C52—C51—C50 119.5 (3)
C13—C18—H18 119.6 C52—C51—H51 120.2
C18—C17—C16 119.9 (3) C50—C51—H51 120.2
C18—C17—H17 120.1 C51—C50—C49 120.4 (3)
C16—C17—H17 120.1 C51—C50—H50 119.8
C14—C15—C16 120.3 (3) C49—C50—H50 119.8
C14—C15—H15 119.8 C51—C52—C53 121.4 (3)
C16—C15—H15 119.8 C51—C52—H52 119.3
C15—C16—C17 119.9 (3) C53—C52—H52 119.3
C15—C16—H16 120 C52—C53—C54 119.1 (3)
C17—C16—H16 120 C52—C53—H53 120.4
C24—C23—C22 120.3 (3) C54—C53—H53 120.4
C24—C23—H23 119.8 O1—C55—C59 123.1 (3)
C22—C23—H23 119.8 O1—C55—C56 118.6 (2)
C20—C19—C24 118.6 (3) C59—C55—C56 118.2 (3)
C20—C19—P1 122.8 (2) C55—C59—O3 122.1 (3)
C24—C19—P1 118.4 (2) C55—C59—C60 126.1 (3)
C23—C24—C19 120.5 (3) O3—C59—C60 111.8 (3)
C23—C24—H24 119.8 C59—C60—H60A 109.5
C19—C24—H24 119.8 C59—C60—H60B 109.5
C19—C20—C21 120.5 (3) H60A—C60—H60B 109.5
C19—C20—H20 119.7 C59—C60—H60C 109.5
C21—C20—H20 119.7 H60A—C60—H60C 109.5
C21—C22—C23 119.5 (3) H60B—C60—H60C 109.5
C21—C22—H22 120.2 C58—C57—C56 120.2 (3)
C23—C22—H22 120.2 C58—C57—H57 119.9
C22—C21—C20 120.5 (3) C56—C57—H57 119.9
C22—C21—H21 119.7 O3—C58—C57 123.4 (3)
C20—C21—H21 119.7 O3—C58—H58 118.3
C25—C27—C28 120.5 (3) C57—C58—H58 118.3
C25—C27—H27 119.8 O2—C56—C57 123.3 (3)
C28—C27—H27 119.8 O2—C56—C55 120.2 (3)
C27—C25—C26 118.7 (3) C57—C56—C55 116.5 (3)
C27—C25—P2 123.0 (2) C58—O3—C59 119.5 (3)
C26—C25—P2 118.2 (2) C61—O4—H4A 109.5
C30—C26—C25 120.3 (3) O4—C61—H61A 109.5
C30—C26—H26 119.9 O4—C61—H61B 109.5
C25—C26—H26 119.9 H61A—C61—H61B 109.5
C29—C28—C27 120.5 (3) O4—C61—H61C 109.5
C29—C28—H28 119.7 H61A—C61—H61C 109.5
C27—C28—H28 119.7 H61B—C61—H61C 109.5
O1—Cu1—P1—C19 114.17 (12) C28—C27—C25—P2 −175.9 (2)
O2—Cu1—P1—C19 −152.19 (11) C13—P2—C25—C27 −112.7 (3)
P2—Cu1—P1—C19 −33.04 (10) C7—P2—C25—C27 −4.2 (3)
O1—Cu1—P1—C1 −128.58 (12) Cu1—P2—C25—C27 115.5 (2)
O2—Cu1—P1—C1 −34.94 (11) C13—P2—C25—C26 72.0 (3)
P2—Cu1—P1—C1 84.21 (10) C7—P2—C25—C26 −179.5 (2)
O1—Cu1—P1—C31 −6.66 (13) Cu1—P2—C25—C26 −59.8 (2)
O2—Cu1—P1—C31 86.98 (11) C27—C25—C26—C30 1.0 (5)
P2—Cu1—P1—C31 −153.88 (10) P2—C25—C26—C30 176.5 (3)
O1—Cu1—P2—C13 −85.70 (12) C25—C27—C28—C29 0.2 (5)
O2—Cu1—P2—C13 −167.81 (11) C27—C28—C29—C30 −0.2 (5)
P1—Cu1—P2—C13 66.15 (11) C28—C29—C30—C26 0.6 (5)
O1—Cu1—P2—C7 150.65 (11) C25—C26—C30—C29 −1.0 (5)
O2—Cu1—P2—C7 68.54 (11) C19—P1—C31—C32 −112.3 (2)
P1—Cu1—P2—C7 −57.51 (10) C1—P1—C31—C32 141.8 (2)
O1—Cu1—P2—C25 36.28 (12) Cu1—P1—C31—C32 14.4 (2)
O2—Cu1—P2—C25 −45.84 (11) C19—P1—C31—C36 67.2 (2)
P1—Cu1—P2—C25 −171.88 (10) C1—P1—C31—C36 −38.7 (3)
O2—Cu1—O1—C55 12.32 (19) Cu1—P1—C31—C36 −166.1 (2)
P1—Cu1—O1—C55 124.29 (17) C33—C34—C35—C36 0.3 (4)
P2—Cu1—O1—C55 −83.80 (19) C34—C35—C36—C31 0.6 (4)
O1—Cu1—O2—C56 −11.20 (18) C32—C31—C36—C35 −0.7 (4)
P1—Cu1—O2—C56 −133.33 (17) P1—C31—C36—C35 179.8 (2)
P2—Cu1—O2—C56 94.12 (18) C36—C31—C32—C33 −0.3 (4)
C19—P1—C1—C2 147.6 (2) P1—C31—C32—C33 179.2 (2)
C31—P1—C1—C2 −105.0 (2) C35—C34—C33—C32 −1.3 (4)
Cu1—P1—C1—C2 23.1 (2) C31—C32—C33—C34 1.3 (4)
C19—P1—C1—C6 −32.4 (2) C49—P3—C42—C37 114.1 (3)
C31—P1—C1—C6 75.0 (2) C43—P3—C42—C37 8.1 (3)
Cu1—P1—C1—C6 −156.94 (18) C49—P3—C42—C41 −73.1 (3)
C6—C1—C2—C3 −0.4 (4) C43—P3—C42—C41 −179.1 (2)
P1—C1—C2—C3 179.6 (2) C37—C42—C41—C40 0.0 (5)
C2—C1—C6—C5 1.4 (4) P3—C42—C41—C40 −173.2 (3)
P1—C1—C6—C5 −178.6 (2) C42—C41—C40—C39 1.1 (5)
C1—C6—C5—C4 −1.8 (4) C41—C40—C39—C38 −0.6 (5)
C1—C2—C3—C4 −0.3 (4) C40—C39—C38—C37 −0.9 (6)
C6—C5—C4—C3 1.1 (4) C41—C42—C37—C38 −1.5 (5)
C2—C3—C4—C5 −0.1 (4) P3—C42—C37—C38 171.3 (3)
C13—P2—C7—C8 20.2 (3) C39—C38—C37—C42 2.0 (6)
C25—P2—C7—C8 −87.2 (3) C45—C44—C43—C48 −0.8 (5)
Cu1—P2—C7—C8 152.8 (2) C45—C44—C43—P3 −179.9 (2)
C13—P2—C7—C12 −161.6 (2) C49—P3—C43—C44 −27.5 (3)
C25—P2—C7—C12 91.0 (2) C42—P3—C43—C44 79.1 (3)
Cu1—P2—C7—C12 −29.0 (2) C49—P3—C43—C48 153.4 (3)
C12—C7—C8—C9 0.6 (4) C42—P3—C43—C48 −100.1 (3)
P2—C7—C8—C9 178.8 (2) C43—C44—C45—C46 2.0 (5)
C11—C10—C9—C8 −1.0 (5) C44—C45—C46—C47 −1.3 (5)
C7—C8—C9—C10 −0.1 (4) C45—C46—C47—C48 −0.5 (5)
C8—C7—C12—C11 −0.2 (5) C46—C47—C48—C43 1.8 (6)
P2—C7—C12—C11 −178.5 (3) C44—C43—C48—C47 −1.1 (5)
C9—C10—C11—C12 1.5 (5) P3—C43—C48—C47 178.1 (3)
C7—C12—C11—C10 −0.9 (5) C42—P3—C49—C54 −23.6 (3)
C15—C14—C13—C18 −1.3 (4) C43—P3—C49—C54 82.1 (3)
C15—C14—C13—P2 176.2 (2) C42—P3—C49—C50 155.1 (2)
C7—P2—C13—C18 100.7 (2) C43—P3—C49—C50 −99.2 (2)
C25—P2—C13—C18 −152.3 (2) C50—C49—C54—C53 0.8 (4)
Cu1—P2—C13—C18 −26.2 (2) P3—C49—C54—C53 179.4 (2)
C7—P2—C13—C14 −76.8 (2) C52—C51—C50—C49 0.3 (5)
C25—P2—C13—C14 30.2 (3) C54—C49—C50—C51 −1.2 (5)
Cu1—P2—C13—C14 156.28 (19) P3—C49—C50—C51 −179.9 (2)
C14—C13—C18—C17 1.0 (4) C50—C51—C52—C53 1.0 (5)
P2—C13—C18—C17 −176.6 (2) C51—C52—C53—C54 −1.4 (5)
C13—C18—C17—C16 0.3 (4) C49—C54—C53—C52 0.5 (5)
C13—C14—C15—C16 0.2 (4) Cu1—O1—C55—C59 165.3 (2)
C14—C15—C16—C17 1.2 (4) Cu1—O1—C55—C56 −12.1 (3)
C18—C17—C16—C15 −1.4 (4) O1—C55—C59—O3 −178.9 (3)
C1—P1—C19—C20 132.2 (2) C56—C55—C59—O3 −1.4 (4)
C31—P1—C19—C20 24.3 (3) O1—C55—C59—C60 −1.5 (5)
Cu1—P1—C19—C20 −103.2 (2) C56—C55—C59—C60 175.9 (3)
C1—P1—C19—C24 −52.8 (2) C56—C57—C58—O3 0.7 (5)
C31—P1—C19—C24 −160.7 (2) Cu1—O2—C56—C57 −170.7 (2)
Cu1—P1—C19—C24 71.9 (2) Cu1—O2—C56—C55 8.5 (3)
C22—C23—C24—C19 1.0 (4) C58—C57—C56—O2 175.8 (3)
C20—C19—C24—C23 −1.0 (4) C58—C57—C56—C55 −3.4 (4)
P1—C19—C24—C23 −176.3 (2) O1—C55—C56—O2 2.0 (4)
C24—C19—C20—C21 0.5 (4) C59—C55—C56—O2 −175.6 (3)
P1—C19—C20—C21 175.5 (2) O1—C55—C56—C57 −178.8 (3)
C24—C23—C22—C21 −0.4 (4) C59—C55—C56—C57 3.7 (4)
C23—C22—C21—C20 −0.2 (4) C57—C58—O3—C59 1.8 (5)
C19—C20—C21—C22 0.1 (4) C55—C59—O3—C58 −1.3 (4)
C28—C27—C25—C26 −0.6 (4) C60—C59—O3—C58 −179.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4A···O1 0.84 1.8 2.637 (3) 174
C2—H2···O2 0.95 2.46 3.370 (3) 162
C12—H12···O2 0.95 2.54 3.412 (4) 153
C22—H22···O4i 0.95 2.51 3.144 (4) 125
C32—H32···O1 0.95 2.6 3.495 (3) 158
C53—H53···O4 0.95 2.52 3.398 (5) 154

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2105).

References

  1. Brandenburg, K. & Putz, H. (2007). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Charalambous, J., Haines, L. I. B., Harris, N. J., Henrick, K. & Taylor, F. B. (1984). J. Chem. Res. 220, 2101–2109.
  5. Creeth, J., Molloy, K. C. & Wright, P. (2000). Oral Cove Compositions International Patent WO 00/16736.
  6. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  7. Hedlund, T. & Öhman, L.-O. (1988). Acta Chem. Scand. Ser. A, 42, 702–709.
  8. Hider, R. C., Kontoghiorghes, G., Silver, J. & Stockman, M. A. (1984a). UK Patent Appl. GB 2 136 806A.
  9. Hider, R. C., Kontoghiorghes, G., Silver, J. & Stockman, M. A. (1984b). Eur. Patent Appl. 0 107 458.
  10. Kontoghiorghes, G. J. (1995). Analyst, 120, 845–851. [DOI] [PubMed]
  11. Kontoghiorghes, G. J., Bartlett, A. N., Hoffbrand, A. V., Goddard, J. G., Sheppard, L., Barr, J. & Nortey, P. (1990). Br. J. Haematol. 76, 295–300. [DOI] [PubMed]
  12. Odoko, M., Yamamoto, K., Hosen, M. & Okabe, N. (2003). Acta Cryst. C59, m121–m123. [DOI] [PubMed]
  13. Odoko, M., Yamamoto, K. & Okabe, N. (2002). Acta Cryst. C58, m506–m508. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spier, G., Fulop, V. & Parkanyi, L. (1990). J. Chem. Soc. Chem. Commun. pp. 512–513.
  16. Steyl, G. (2009). Acta Cryst. E65, m448. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011470/fi2105sup1.cif

e-67-0m581-sup1.cif (38KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011470/fi2105Isup2.hkl

e-67-0m581-Isup2.hkl (516.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES