Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):o1147. doi: 10.1107/S1600536811013572

(6RS,9SR)-6,7-Dibromo-1,2,3,4-tetra­hydro-1,4-methano­anthracene

Kew-Yu Chen a,*, Ming-Jen Chang a, Tzu-Chien Fang a
PMCID: PMC3089252  PMID: 21754455

Abstract

The title compound, C15H12Br2, comprises a norbornane unit having a dibromo­naphthalene ring fused on one side. Both Br atoms are twisted slightly out of the plane of the naphthalene ring system with a Br—C—C—Br torsion angle of 5.3 (5)°. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯Br hydrogen bonds, forming an infinite C(9) chain along [110].

Related literature

For the spectroscopy of the title compound and its preparation, see: Chen et al. (2006). For the spectroscopy and electronic device applications of rigid oligo-norbornyl compounds, see: Chen et al. (2002); Chow et al. (2005); Lewis et al. (1997); Roest et al. (1996). For related structures, see: Çelik et al. (2006); Chiou et al. (2001); Chow et al. (1999); Lough et al. (2006). For the C—H⋯Br hydrogen bond, see: Desiraju & Steiner (2001); Farrugia et al. (2007); Kuś & Jones (2003); Yang et al. (2007). For puckering parameters, see: Cremer & Pople (1975). For graph-set theory, see: Bernstein et al. (1995).graphic file with name e-67-o1147-scheme1.jpg

Experimental

Crystal data

  • C15H12Br2

  • M r = 352.07

  • Monoclinic, Inline graphic

  • a = 23.437 (3) Å

  • b = 6.3565 (8) Å

  • c = 18.416 (2) Å

  • β = 111.781 (2)°

  • V = 2547.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.34 mm−1

  • T = 297 K

  • 0.56 × 0.48 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.399, T max = 1.000

  • 6895 measured reflections

  • 2501 independent reflections

  • 1817 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.144

  • S = 0.96

  • 2501 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −1.09 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013572/nr2004sup1.cif

e-67-o1147-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013572/nr2004Isup2.hkl

e-67-o1147-Isup2.hkl (123KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯Br2i 0.97 3.00 (1) 3.843 (16) 146 (1)

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support from the National Science Council of the Republic of China is gratefully acknowledged.

supplementary crystallographic information

Comment

Electron donor (D)–acceptor (A) chromophores linked by rigid, covalent spacers (S), forming D–S–A dyads, have attracted considerable attention due to their potential applications in the design of molecular devices (Lewis et al., 1997; Roest et al., 1996). Numerous types of spacers have been reported (Chiou et al., 2001; Chow et al., 1999). However, rigid linear rod-shaped structures are not commonly seen. The highly symmetrical structures reduce the complexity due to the constraint of geometrical and conformational variations. The rates of photoinduced electron transfer reactions across linearly fused oligo-norbornyl spacer groups have been estimated (Chen et al., 2002; Chow et al., 2005). The ET rates were found to correlate well with both D–A distance and solvent polarities. Atoms C6 and C9 of the title compound are chiral centers, but their relative configurations are opposite (6R,9S or 6S,9R). The racemate was prepared as a model compound for investigations of the intramolecular electron transfer reactions (Chen et al., 2006).

The ORTEP diagram of the title compound is shown in Figure 1. The puckering parameters (Cremer & Pople, 1975) of the five-membered rings A (C5/C6/C15/C9/C10) and B (C6–C9/C15) are Q2 = 0.560 (6)Å and φ2 = 71.0 (5)°, and Q2 = 0.602 (6)Å and φ2 = 144.7 (6)°, respectively. These results are slightly different from those of previous studies on other norbornane derivatives (Çelik, et al., 2006; Lough, et al., 2006). In addition, the naphthalene ring is essentially planar with a maximum deviation of 0.052 (2)Å for atom C5. Whereas both bromine atoms are slightly twisted out of the plane of the naphthalene ring (5.3 (5)° of Br1—C1—C14—Br2, Table 1). In the crystal structure (Figure 2), the molecules are linked by weak intermolecular C—H···Br (2.998 (2)Å of C8—H8A···Br2 distance and 146 (1)° of C8—H8A—Br2, Table 2) hydrogen bonds (Desiraju et al., 2001; Farrugia et al., 2007; Kuś et al., 2003; Yang et al., 2007) to form an infinite two-dimensional chain, generating a C(9) motif (Bernstein et al., 1995).

Experimental

A mixture of α,α,α',α'-4,5- hexabromo-o-xylene (4.3 mmol), norbornene (4.3 mmol), sodium iodide (30 mmol), and dry DMF (50 ml) was stirred at 65 oC for 24 h. The reaction mixture was poured into cold water (350 ml) containing sodium bisfulfite (5.0 g). The yellow precipitate was purified by chromatography (silica gel column, hexane:ethyl acetate = 6:1) and finally by recrystallization. Colorless needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from a chloroform solution.

Refinement

The C bound H atoms positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A section of the crystal packing of the title compound, viewed along the b axis.

Crystal data

C15H12Br2 F(000) = 1376
Mr = 352.07 Dx = 1.836 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2464 reflections
a = 23.437 (3) Å θ = 3.3–25.5°
b = 6.3565 (8) Å µ = 6.34 mm1
c = 18.416 (2) Å T = 297 K
β = 111.781 (2)° Parallelepiped, colorless
V = 2547.6 (6) Å3 0.56 × 0.48 × 0.20 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 2501 independent reflections
Radiation source: fine-focus sealed tube 1817 reflections with I > 2σ(I)
graphite Rint = 0.058
φ and ω scans θmax = 26.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −19→28
Tmin = 0.399, Tmax = 1.000 k = −7→7
6895 measured reflections l = −22→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.095P)2] where P = (Fo2 + 2Fc2)/3
2501 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 1.12 e Å3
0 restraints Δρmin = −1.09 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.02569 (2) 0.67170 (9) 0.16329 (3) 0.0637 (2)
Br2 0.02816 (3) 0.21416 (10) 0.07270 (4) 0.0725 (3)
C1 0.0959 (2) 0.5881 (7) 0.1431 (2) 0.0420 (10)
C2 0.1462 (2) 0.7148 (7) 0.1649 (2) 0.0451 (10)
H2A 0.1447 0.8436 0.1881 0.054*
C3 0.2004 (2) 0.6583 (7) 0.1536 (2) 0.0406 (10)
C4 0.2517 (2) 0.7938 (7) 0.1720 (2) 0.0451 (11)
H4A 0.2510 0.9253 0.1938 0.054*
C5 0.3020 (2) 0.7309 (7) 0.1576 (2) 0.0439 (10)
C6 0.3608 (2) 0.8382 (8) 0.1631 (3) 0.0545 (13)
H6A 0.3726 0.9605 0.1979 0.065*
C7 0.3561 (2) 0.8766 (9) 0.0789 (3) 0.0583 (13)
H7A 0.3178 0.9466 0.0488 0.070*
H7B 0.3900 0.9621 0.0779 0.070*
C8 0.3584 (2) 0.6567 (8) 0.0465 (3) 0.0595 (14)
H8A 0.3932 0.6426 0.0302 0.071*
H8B 0.3209 0.6252 0.0025 0.071*
C9 0.3656 (2) 0.5124 (9) 0.1171 (3) 0.0612 (13)
H9A 0.3814 0.3705 0.1151 0.073*
C10 0.3047 (2) 0.5253 (7) 0.1275 (3) 0.0454 (10)
C11 0.2564 (2) 0.3915 (8) 0.1093 (3) 0.0513 (11)
H11A 0.2586 0.2587 0.0893 0.062*
C12 0.2025 (2) 0.4553 (6) 0.1210 (2) 0.0387 (9)
C13 0.1496 (2) 0.3277 (7) 0.0989 (3) 0.0479 (11)
H13A 0.1504 0.1961 0.0772 0.057*
C14 0.0971 (2) 0.3921 (7) 0.1085 (2) 0.0454 (10)
C15 0.4058 (2) 0.6541 (10) 0.1856 (3) 0.0692 (16)
H15A 0.4115 0.5958 0.2365 0.083*
H15B 0.4452 0.6885 0.1826 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0470 (3) 0.0745 (4) 0.0825 (4) −0.0007 (3) 0.0389 (3) 0.0001 (3)
Br2 0.0554 (4) 0.0786 (4) 0.0901 (5) −0.0332 (3) 0.0345 (3) −0.0187 (3)
C1 0.038 (2) 0.052 (3) 0.041 (2) −0.005 (2) 0.021 (2) 0.0023 (18)
C2 0.046 (3) 0.048 (3) 0.048 (3) −0.007 (2) 0.025 (2) −0.0068 (19)
C3 0.043 (2) 0.045 (2) 0.038 (2) −0.006 (2) 0.020 (2) −0.0012 (18)
C4 0.046 (3) 0.054 (3) 0.038 (2) −0.009 (2) 0.019 (2) −0.0092 (18)
C5 0.037 (2) 0.056 (3) 0.038 (2) −0.013 (2) 0.013 (2) −0.0047 (19)
C6 0.044 (3) 0.072 (3) 0.049 (3) −0.023 (2) 0.018 (2) −0.011 (2)
C7 0.049 (3) 0.072 (3) 0.058 (3) −0.009 (3) 0.024 (2) 0.008 (2)
C8 0.041 (3) 0.087 (4) 0.059 (3) −0.011 (3) 0.028 (2) −0.011 (3)
C9 0.041 (3) 0.065 (3) 0.084 (4) 0.004 (3) 0.031 (3) 0.007 (3)
C10 0.034 (2) 0.056 (3) 0.048 (2) −0.001 (2) 0.017 (2) 0.003 (2)
C11 0.050 (3) 0.042 (2) 0.068 (3) −0.001 (2) 0.030 (2) −0.003 (2)
C12 0.039 (2) 0.041 (2) 0.039 (2) −0.0049 (19) 0.0171 (19) −0.0002 (17)
C13 0.052 (3) 0.040 (2) 0.059 (3) −0.011 (2) 0.029 (2) −0.0076 (19)
C14 0.041 (2) 0.052 (3) 0.044 (2) −0.013 (2) 0.017 (2) 0.0022 (19)
C15 0.036 (3) 0.107 (5) 0.061 (3) −0.003 (3) 0.013 (2) 0.019 (3)

Geometric parameters (Å, °)

Br1—C1 1.892 (4) C7—H7A 0.9700
Br2—C14 1.881 (4) C7—H7B 0.9700
C1—C2 1.359 (6) C8—C9 1.548 (7)
C1—C14 1.405 (6) C8—H8A 0.9700
C2—C3 1.407 (6) C8—H8B 0.9700
C2—H2A 0.9300 C9—C10 1.512 (6)
C3—C12 1.432 (6) C9—C15 1.552 (8)
C3—C4 1.415 (6) C9—H9A 0.9800
C4—C5 1.363 (6) C10—C11 1.355 (7)
C4—H4A 0.9300 C11—C12 1.417 (6)
C5—C10 1.430 (7) C11—H11A 0.9300
C5—C6 1.506 (6) C12—C13 1.409 (6)
C6—C15 1.526 (8) C13—C14 1.368 (7)
C6—C7 1.533 (6) C13—H13A 0.9300
C6—H6A 0.9800 C15—H15A 0.9700
C7—C8 1.529 (7) C15—H15B 0.9700
C2—C1—C14 119.8 (4) C7—C8—H8B 111.2
C2—C1—Br1 119.8 (3) C9—C8—H8B 111.2
C14—C1—Br1 120.3 (3) H8A—C8—H8B 109.1
C1—C2—C3 122.4 (4) C10—C9—C8 105.1 (4)
C1—C2—H2A 118.8 C10—C9—C15 100.5 (4)
C3—C2—H2A 118.8 C8—C9—C15 100.6 (4)
C12—C3—C4 119.3 (4) C10—C9—H9A 116.1
C12—C3—C2 117.8 (4) C8—C9—H9A 116.1
C4—C3—C2 122.9 (4) C15—C9—H9A 116.1
C5—C4—C3 119.7 (4) C11—C10—C5 121.1 (4)
C5—C4—H4A 120.1 C11—C10—C9 132.6 (5)
C3—C4—H4A 120.1 C5—C10—C9 106.1 (4)
C4—C5—C10 120.6 (4) C10—C11—C12 119.5 (4)
C4—C5—C6 133.7 (4) C10—C11—H11A 120.2
C10—C5—C6 105.7 (4) C12—C11—H11A 120.2
C5—C6—C15 101.2 (4) C11—C12—C3 119.6 (4)
C5—C6—C7 106.4 (4) C11—C12—C13 122.0 (4)
C15—C6—C7 100.4 (4) C3—C12—C13 118.4 (4)
C5—C6—H6A 115.6 C14—C13—C12 121.8 (4)
C15—C6—H6A 115.6 C14—C13—H13A 119.1
C7—C6—H6A 115.6 C12—C13—H13A 119.1
C8—C7—C6 104.5 (4) C13—C14—C1 119.7 (4)
C8—C7—H7A 110.9 C13—C14—Br2 118.1 (3)
C6—C7—H7A 110.9 C1—C14—Br2 122.1 (4)
C8—C7—H7B 110.9 C6—C15—C9 94.3 (4)
C6—C7—H7B 110.9 C6—C15—H15A 112.9
H7A—C7—H7B 108.9 C9—C15—H15A 112.9
C7—C8—C9 102.8 (4) C6—C15—H15B 112.9
C7—C8—H8A 111.2 C9—C15—H15B 112.9
C9—C8—H8A 111.2 H15A—C15—H15B 110.3
C14—C1—C2—C3 0.5 (7) C8—C9—C10—C5 −71.4 (5)
Br1—C1—C2—C3 178.0 (3) C15—C9—C10—C5 32.6 (5)
C1—C2—C3—C12 −2.8 (6) C5—C10—C11—C12 −0.6 (7)
C1—C2—C3—C4 176.3 (4) C9—C10—C11—C12 −175.1 (5)
C12—C3—C4—C5 0.8 (6) C10—C11—C12—C3 −1.5 (6)
C2—C3—C4—C5 −178.2 (4) C10—C11—C12—C13 176.2 (4)
C3—C4—C5—C10 −2.9 (6) C4—C3—C12—C11 1.4 (6)
C3—C4—C5—C6 173.9 (4) C2—C3—C12—C11 −179.5 (4)
C4—C5—C6—C15 147.7 (5) C4—C3—C12—C13 −176.3 (4)
C10—C5—C6—C15 −35.1 (5) C2—C3—C12—C13 2.8 (6)
C4—C5—C6—C7 −107.8 (6) C11—C12—C13—C14 −178.3 (4)
C10—C5—C6—C7 69.4 (5) C3—C12—C13—C14 −0.6 (6)
C5—C6—C7—C8 −68.1 (5) C12—C13—C14—C1 −1.7 (7)
C15—C6—C7—C8 36.9 (5) C12—C13—C14—Br2 177.3 (3)
C6—C7—C8—C9 −1.0 (5) C2—C1—C14—C13 1.8 (6)
C7—C8—C9—C10 69.5 (5) Br1—C1—C14—C13 −175.7 (3)
C7—C8—C9—C15 −34.6 (5) C2—C1—C14—Br2 −177.1 (3)
C4—C5—C10—C11 2.9 (7) Br1—C1—C14—Br2 5.3 (5)
C6—C5—C10—C11 −174.7 (4) C5—C6—C15—C9 52.5 (4)
C4—C5—C10—C9 178.7 (4) C7—C6—C15—C9 −56.7 (4)
C6—C5—C10—C9 1.0 (5) C10—C9—C15—C6 −51.5 (4)
C8—C9—C10—C11 103.6 (6) C8—C9—C15—C6 56.3 (4)
C15—C9—C10—C11 −152.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8A···Br2i 0.97 3.00 (1) 3.843 (16) 146 (1)

Symmetry codes: (i) x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NR2004).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Çelik, Í., Ersanlı, C. C., Akkurt, M., Daştan, A. & García-Granda, S. (2006). Acta Cryst. E62, o3483–o3485.
  4. Chen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115–8119.
  5. Chen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136–12144. [DOI] [PubMed]
  6. Chiou, N. R., Chow, T. J., Chen, C. Y., Hsu, M. A. & Chen, H. C. (2001). Tetrahedron Lett. 42, 29–31.
  7. Chow, T. J., Hon, Y. S., Chen, C. Y. & Huang, M. S. (1999). Tetrahedron Lett. 40, 7799–7801.
  8. Chow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967–6975.
  9. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  10. Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
  11. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  12. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  13. Farrugia, L. J., Hartley, R. C., Main, C. A. & Rahman, S. S. (2007). Acta Cryst. E63, o2540–o2541.
  14. Kuś, P. & Jones, P. G. (2003). Acta Cryst. E59, o899–o900.
  15. Lewis, F. D., Wu, T., Zhang, Y., Letsinger, R. L., Greenfield, S. R. & Wasielewski, M. R. (1997). Science, 277, 673–676. [DOI] [PubMed]
  16. Lough, A. J., Villeneuve, K. & Tam, W. (2006). Acta Cryst. E62, o2846–o2847.
  17. Roest, M. R., Verhoeven, J. W., Schuddeboom, W., Warman, J. M., Lawson, J. M. & Paddon-Row, M. N. (1996). J. Am. Chem. Soc. 118, 1762–1768.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Yang, S.-P., Han, L.-J., Wang, D.-Q. & Xia, H.-T. (2007). Acta Cryst. E63, o4404.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013572/nr2004sup1.cif

e-67-o1147-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013572/nr2004Isup2.hkl

e-67-o1147-Isup2.hkl (123KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES