Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1227. doi: 10.1107/S1600536811015200

N,N-Dimethylpyridin-4-aminium 1-phenyl­cyclo­pentane-1-carboxyl­ate monohydrate

Guangwen He a,*, Srinivasulu Aitipamula a, Pui Shan Chow a, Reginald B H Tan a,b,*
PMCID: PMC3089254  PMID: 21754525

Abstract

The cation of the title salt, C7H11N2 +·C12H13O2 ·H2O, is planar (r.m.s. deviation = 0.0184 Å). In the crystal, the cation, anion and water mol­ecule are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming a chain running along the a axis.

Related literature

For the structure of 4-dimethyl­amino­pyridine, see: Ohms & Guth (1984). For the structure of 1-phenyl­cyclo­pentane-1-carb­oxy­lic acid, see: Margulis (1975). For recent mol­ecular co-crystals and salts of 4-dimethyl­amino­pyridine, see: Dastidar et al. (1993). For recent mol­ecular co-crystals of 1-phenyl­cyclo­pentane-1-carb­oxy­lic acid, see: He et al. (2010, 2011). For comparative bond dimensions in pyridinium carboxyl­ates, see: Kumar et al. (2009).graphic file with name e-67-o1227-scheme1.jpg

Experimental

Crystal data

  • C7H11N2 +·C12H13O2 ·H2O

  • M r = 330.42

  • Monoclinic, Inline graphic

  • a = 6.1666 (12) Å

  • b = 18.206 (4) Å

  • c = 15.702 (3) Å

  • β = 97.33 (3)°

  • V = 1748.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 110 K

  • 0.44 × 0.33 × 0.22 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.964, T max = 0.982

  • 12519 measured reflections

  • 4233 independent reflections

  • 3945 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.139

  • S = 1.13

  • 4233 reflections

  • 231 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015200/ng5153sup1.cif

e-67-o1227-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015200/ng5153Isup2.hkl

e-67-o1227-Isup2.hkl (207.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015200/ng5153Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H7⋯O2 0.94 (2) 1.72 (2) 2.6458 (15) 168 (2)
O3—H3⋯O2 0.87 (2) 1.93 (2) 2.7935 (14) 167 (2)
O3—H6⋯O1i 0.87 (2) 1.90 (2) 2.7634 (15) 169 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.

supplementary crystallographic information

Comment

Substituted pyridines such as 4-dimethylaminopyridine was found to form binary salt hydrate with l-tartaric acid (Dastidar et al., 1993). The authors have shown that this molecular complex possesses high nonlinear optical (NLO) effects, viz. second harmonic generation (SHG) in the crystalline state. In our previous work, we have demonstrated the formation of a salt and a cocrystal of a substituted pyridine, 2-aminopyridine, with 1-phenylcyclopropane-1-carboxylic acid and 1-phenylcyclopentane-1-carboxylic acid, respectively (He et al., 2010; He et al., 2011). Here we have selected 4-dimethylaminopyridine and 1-phenylcyclopentane-1-carboxylic acid as a model molecular pair.

The crystal structure of the title salt hydrate contains each one molecule of 4-dimethylaminopyridinium ion, 1-phenylcyclopentane-1-carboxylate ion, and water (Fig. 1). The title molecular complex is a salt rather than a cocrystal is evident by the proton transfer from the carboxylic acid to the pyridine nitrogen of the 4-dimethylaminopyridine, which was located in the difference Fourier map during the refinement cycles. Furthermore, the C—O/C=O bond distances (1.2412 (16) Å and 1.2700 (16) Å) and C—N—C angle of pyridine group (119.93 (12)°) are in well agreement with the corresponding distances/angles that are generally observed for a carboxylic acid-pyridine salts (Kumar et al., 2009). In the crystal structure, the translation related 1-phenylcyclopentane-1-carboxylate ions are connected via water molecules involving O—H···O hydrogen bonds (Table 1) and generate infinite hydrogen bonded chains along the crystallographic a-axis (Fig. 2). The 4-dimethylaminopyridinium ion hydrogen bonded to one of the O atoms of the carboxylate ion via N—H···O hydrogen bond (Fig. 2). The hydrogen bonded chians close pack to build up the overall crystal structure (Fig. 3). A TGA experiment indicates an initial weight loss (ca 6%) upon heating (Fig. 4). This number matches with the water content in the title salt hydrate, implying that the resulting molecular complex is indeed a hydrate.

Experimental

0.1224 g (1 mmol) of 4-dimethylaminopyridine (Alfa Aesar, 99%) and 0.1902 g (1 mmol) of 1-phenylcyclopentane-1-carboxylic acid (Alfa Aesar, 98%) and were dissolved into 7 ml of acetonitrile/water (90/10 v/v%) (acetonitrile, Fisher Scientific, HPLC; deionized water). Solution was then filtered through a 0.22 µm PTFE filter. Filtered solution was finally sealed with Parafilm and small holes were made to allow solvent to slowly evaporate. The colorless block-shaped crystal (0.44 × 0.33 × 0.22 mm) suitable for single-crystal X-ray diffraction (Rigaku Saturn 70 CCD area detector with Mo Kα radiation = 0.71073 Å at 50 kV and 40 mA) was collected after three day. TGA-DSC experiment of the resulting crystals was run using a TA Instrument SDT-TGA (SDT2960) at a ramping rate of 10 °C/min to 1000 °C.

Refinement

A low-angle reflection, (011), whose intensity was strongly affected by the beam-stop, was omitted in the refinement cycles. H atoms bonded to N and O atoms were located in a difference map and allowed to ride on their parent atoms in the refinement cycles.The O—H bond distances and H—O—H angle of the water molecule were found to be deviating from the normal values. These were restrained using DFIX and DANG commands in the SHELX, and the deviations from the normal values are 0.04 (2), 0.02 (2) and 4 (2). The H atoms connected to C atoms were positioned geometrically and refined using a riding model.

Figures

Fig. 1.

Fig. 1.

The molecular structures of 4-dimethylaminopyridine, 1-phenylcyclopentane-1-carboxylic acid and water, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

A supramolecular unit in the crystal structure of the title salt hydrate, featuring the O—H···O interaction between the carboxylate ion and the water molecule and the N—H···O interaction between the carboxylate ion and the pyridinium ions.

Fig. 3.

Fig. 3.

Part of the crystal structure of the title salt hydrate, showing the close packing of hydrogen bonded chains.

Fig. 4.

Fig. 4.

Profiles of heat flow and weight loss of the title salt hydrate determined by DSC and TGA, respectively.

Crystal data

C7H11N2+·C12H13O2·H2O F(000) = 712
Mr = 330.42 Dx = 1.255 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5283 reflections
a = 6.1666 (12) Å θ = 2.2–31.0°
b = 18.206 (4) Å µ = 0.09 mm1
c = 15.702 (3) Å T = 110 K
β = 97.33 (3)° Block, colorless
V = 1748.4 (6) Å3 0.44 × 0.33 × 0.22 mm
Z = 4

Data collection

Bruker APEXII diffractometer 4233 independent reflections
Radiation source: fine-focus sealed tube 3945 reflections with I > 2σ(I)
graphite Rint = 0.017
ω scans θmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan (Blessing, 1995) h = −8→8
Tmin = 0.964, Tmax = 0.982 k = −21→23
12519 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.4696P] where P = (Fo2 + 2Fc2)/3
4233 reflections (Δ/σ)max < 0.001
231 parameters Δρmax = 0.23 e Å3
3 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.46197 (17) 0.37281 (6) 0.40367 (7) 0.0322 (2)
H3 0.337 (3) 0.3496 (12) 0.3979 (14) 0.062 (6)*
H6 0.561 (3) 0.3390 (10) 0.4004 (13) 0.053 (6)*
C1 −0.0970 (2) 0.21395 (7) 0.17867 (8) 0.0237 (3)
H1 −0.2349 0.1936 0.1864 0.028*
C2 0.3042 (2) 0.27379 (7) 0.15451 (8) 0.0270 (3)
H2 0.4419 0.2941 0.1463 0.032*
C3 −0.06856 (19) 0.25206 (7) 0.38099 (7) 0.0206 (2)
C4 −0.0648 (2) 0.24247 (7) 0.09887 (8) 0.0261 (3)
H4 −0.1802 0.2410 0.0526 0.031*
C5 0.2731 (2) 0.24498 (7) 0.23453 (8) 0.0232 (3)
H5 0.3897 0.2458 0.2803 0.028*
C6 0.03032 (19) 0.18630 (7) 0.33520 (7) 0.0206 (2)
C7 0.07135 (19) 0.21492 (7) 0.24761 (7) 0.0203 (2)
C8 0.2357 (2) 0.15696 (7) 0.39066 (8) 0.0256 (3)
H8A 0.3231 0.1256 0.3564 0.031*
H8B 0.3283 0.1978 0.4160 0.031*
C9 0.1353 (2) 0.27300 (7) 0.08674 (8) 0.0277 (3)
H9 0.1567 0.2932 0.0326 0.033*
C10 −0.1238 (2) 0.11900 (7) 0.33039 (8) 0.0269 (3)
H10A −0.2786 0.1346 0.3193 0.032*
H10B −0.0928 0.0852 0.2841 0.032*
C11 −0.0764 (3) 0.08142 (8) 0.41878 (9) 0.0361 (3)
H11A −0.1933 0.0928 0.4545 0.043*
H11B −0.0680 0.0275 0.4120 0.043*
C12 0.1442 (3) 0.11201 (9) 0.46066 (9) 0.0367 (3)
H12A 0.1235 0.1436 0.5104 0.044*
H12B 0.2450 0.0715 0.4807 0.044*
O1 −0.26922 (15) 0.25454 (6) 0.38244 (6) 0.0300 (2)
O2 0.06558 (15) 0.30076 (5) 0.41263 (6) 0.0302 (2)
C13 0.1993 (2) 0.49016 (7) 0.62159 (8) 0.0232 (3)
H13 0.3239 0.5208 0.6343 0.028*
C14 0.0210 (2) 0.49587 (7) 0.67079 (8) 0.0227 (3)
C15 −0.1584 (2) 0.40174 (7) 0.57900 (9) 0.0275 (3)
H15 −0.2822 0.3714 0.5629 0.033*
C16 −0.1610 (2) 0.44957 (7) 0.64561 (9) 0.0270 (3)
H16 −0.2856 0.4519 0.6754 0.032*
C17 0.1905 (2) 0.44045 (7) 0.55616 (8) 0.0247 (3)
H17 0.3111 0.4367 0.5243 0.030*
C18 0.2073 (2) 0.59162 (8) 0.76179 (9) 0.0325 (3)
H18A 0.2461 0.6166 0.7105 0.049*
H18B 0.3331 0.5634 0.7886 0.049*
H18C 0.1658 0.6282 0.8026 0.049*
C19 −0.1612 (3) 0.54665 (9) 0.78639 (10) 0.0383 (3)
H19A −0.1988 0.4973 0.8047 0.057*
H19B −0.2870 0.5680 0.7503 0.057*
H19C −0.1224 0.5777 0.8370 0.057*
N1 0.01572 (18) 0.39651 (6) 0.53538 (7) 0.0254 (2)
N2 0.02411 (19) 0.54214 (6) 0.73743 (7) 0.0274 (2)
H7 0.012 (4) 0.3632 (12) 0.4892 (15) 0.056 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0281 (5) 0.0291 (5) 0.0406 (6) −0.0046 (4) 0.0092 (4) −0.0074 (4)
C1 0.0227 (5) 0.0241 (6) 0.0235 (6) 0.0010 (4) 0.0000 (4) −0.0030 (5)
C2 0.0290 (6) 0.0267 (6) 0.0260 (6) −0.0025 (5) 0.0063 (5) −0.0011 (5)
C3 0.0219 (5) 0.0241 (6) 0.0159 (5) −0.0011 (4) 0.0024 (4) −0.0003 (4)
C4 0.0306 (6) 0.0261 (6) 0.0201 (6) 0.0041 (5) −0.0024 (5) −0.0032 (5)
C5 0.0229 (6) 0.0243 (6) 0.0217 (6) −0.0005 (4) 0.0005 (4) −0.0030 (4)
C6 0.0204 (5) 0.0221 (6) 0.0190 (5) −0.0020 (4) 0.0017 (4) −0.0025 (4)
C7 0.0219 (5) 0.0204 (6) 0.0183 (5) 0.0020 (4) 0.0016 (4) −0.0030 (4)
C8 0.0268 (6) 0.0257 (6) 0.0235 (6) 0.0022 (5) 0.0003 (5) 0.0010 (5)
C9 0.0371 (7) 0.0256 (6) 0.0206 (6) 0.0020 (5) 0.0048 (5) 0.0000 (5)
C10 0.0309 (6) 0.0238 (6) 0.0260 (6) −0.0077 (5) 0.0036 (5) −0.0043 (5)
C11 0.0483 (8) 0.0301 (7) 0.0302 (7) −0.0111 (6) 0.0066 (6) 0.0017 (6)
C12 0.0434 (8) 0.0365 (8) 0.0287 (7) −0.0050 (6) −0.0014 (6) 0.0089 (6)
O1 0.0213 (4) 0.0349 (5) 0.0343 (5) −0.0002 (4) 0.0053 (4) −0.0061 (4)
O2 0.0251 (5) 0.0301 (5) 0.0357 (5) −0.0041 (4) 0.0049 (4) −0.0140 (4)
C13 0.0235 (6) 0.0208 (6) 0.0249 (6) −0.0005 (4) 0.0013 (4) 0.0003 (4)
C14 0.0267 (6) 0.0184 (6) 0.0226 (6) 0.0023 (4) 0.0014 (4) 0.0014 (4)
C15 0.0284 (6) 0.0225 (6) 0.0305 (6) −0.0025 (5) 0.0000 (5) 0.0005 (5)
C16 0.0266 (6) 0.0251 (6) 0.0298 (6) −0.0017 (5) 0.0052 (5) 0.0000 (5)
C17 0.0259 (6) 0.0241 (6) 0.0239 (6) 0.0043 (5) 0.0029 (4) 0.0015 (5)
C18 0.0406 (8) 0.0270 (7) 0.0299 (7) −0.0053 (6) 0.0042 (5) −0.0072 (5)
C19 0.0465 (9) 0.0346 (8) 0.0371 (8) 0.0005 (6) 0.0184 (6) −0.0083 (6)
N1 0.0298 (5) 0.0209 (5) 0.0243 (5) 0.0017 (4) −0.0005 (4) −0.0022 (4)
N2 0.0318 (6) 0.0246 (6) 0.0266 (5) 0.0000 (4) 0.0061 (4) −0.0044 (4)

Geometric parameters (Å, °)

O3—H3 0.874 (15) C11—C12 1.538 (2)
O3—H6 0.872 (15) C11—H11A 0.9900
C1—C4 1.3937 (18) C11—H11B 0.9900
C1—C7 1.4010 (16) C12—H12A 0.9900
C1—H1 0.9500 C12—H12B 0.9900
C2—C9 1.3908 (19) C13—C17 1.3649 (18)
C2—C5 1.3970 (18) C13—C14 1.4262 (17)
C2—H2 0.9500 C13—H13 0.9500
C3—O1 1.2414 (15) C14—N2 1.3416 (16)
C3—O2 1.2696 (15) C14—C16 1.4189 (17)
C3—C6 1.5603 (16) C15—N1 1.3488 (18)
C4—C9 1.3885 (19) C15—C16 1.3625 (19)
C4—H4 0.9500 C15—H15 0.9500
C5—C7 1.3981 (17) C16—H16 0.9500
C5—H5 0.9500 C17—N1 1.3485 (17)
C6—C7 1.5218 (16) C17—H17 0.9500
C6—C8 1.5382 (17) C18—N2 1.4571 (18)
C6—C10 1.5465 (16) C18—H18A 0.9800
C8—C12 1.5345 (19) C18—H18B 0.9800
C8—H8A 0.9900 C18—H18C 0.9800
C8—H8B 0.9900 C19—N2 1.4587 (18)
C9—H9 0.9500 C19—H19A 0.9800
C10—C11 1.5414 (19) C19—H19B 0.9800
C10—H10A 0.9900 C19—H19C 0.9800
C10—H10B 0.9900 N1—H7 0.94 (2)
H3—O3—H6 105.5 (18) C12—C11—H11B 110.5
C4—C1—C7 120.90 (12) C10—C11—H11B 110.5
C4—C1—H1 119.5 H11A—C11—H11B 108.7
C7—C1—H1 119.5 C8—C12—C11 105.83 (11)
C9—C2—C5 120.61 (12) C8—C12—H12A 110.6
C9—C2—H2 119.7 C11—C12—H12A 110.6
C5—C2—H2 119.7 C8—C12—H12B 110.6
O1—C3—O2 124.66 (11) C11—C12—H12B 110.6
O1—C3—C6 119.03 (10) H12A—C12—H12B 108.7
O2—C3—C6 116.28 (10) C17—C13—C14 119.77 (12)
C9—C4—C1 120.23 (12) C17—C13—H13 120.1
C9—C4—H4 119.9 C14—C13—H13 120.1
C1—C4—H4 119.9 N2—C14—C16 121.50 (12)
C2—C5—C7 120.38 (12) N2—C14—C13 122.20 (12)
C2—C5—H5 119.8 C16—C14—C13 116.30 (11)
C7—C5—H5 119.8 N1—C15—C16 121.53 (12)
C7—C6—C8 114.25 (10) N1—C15—H15 119.2
C7—C6—C10 113.53 (10) C16—C15—H15 119.2
C8—C6—C10 102.06 (10) C15—C16—C14 120.47 (12)
C7—C6—C3 105.88 (9) C15—C16—H16 119.8
C8—C6—C3 110.33 (10) C14—C16—H16 119.8
C10—C6—C3 110.89 (10) N1—C17—C13 121.96 (12)
C5—C7—C1 118.48 (11) N1—C17—H17 119.0
C5—C7—C6 121.36 (10) C13—C17—H17 119.0
C1—C7—C6 120.11 (10) N2—C18—H18A 109.5
C12—C8—C6 103.84 (10) N2—C18—H18B 109.5
C12—C8—H8A 111.0 H18A—C18—H18B 109.5
C6—C8—H8A 111.0 N2—C18—H18C 109.5
C12—C8—H8B 111.0 H18A—C18—H18C 109.5
C6—C8—H8B 111.0 H18B—C18—H18C 109.5
H8A—C8—H8B 109.0 N2—C19—H19A 109.5
C4—C9—C2 119.40 (12) N2—C19—H19B 109.5
C4—C9—H9 120.3 H19A—C19—H19B 109.5
C2—C9—H9 120.3 N2—C19—H19C 109.5
C11—C10—C6 105.25 (10) H19A—C19—H19C 109.5
C11—C10—H10A 110.7 H19B—C19—H19C 109.5
C6—C10—H10A 110.7 C17—N1—C15 119.93 (11)
C11—C10—H10B 110.7 C17—N1—H7 120.4 (13)
C6—C10—H10B 110.7 C15—N1—H7 119.7 (13)
H10A—C10—H10B 108.8 C14—N2—C18 121.77 (11)
C12—C11—C10 106.26 (11) C14—N2—C19 120.81 (12)
C12—C11—H11A 110.5 C18—N2—C19 117.38 (11)
C10—C11—H11A 110.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H7···O2 0.94 (2) 1.72 (2) 2.6458 (15) 168 (2)
O3—H3···O2 0.87 (2) 1.93 (2) 2.7935 (14) 167 (2)
O3—H6···O1i 0.87 (2) 1.90 (2) 2.7634 (15) 169 (2)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5153).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dastidar, P., Row, T. N. G., Prasad, B. R., Subramanian, C. K. & Bhattacharya, S. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2419–2422.
  5. He, G., Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2010). Acta Cryst. E66, o3339–o3340. [DOI] [PMC free article] [PubMed]
  6. He, G., Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2011). Acta Cryst. E67, o552–o553. [DOI] [PMC free article] [PubMed]
  7. Kumar, T. L., Vishweshwar, P., Babu, J. M. & Vyas, K. (2009). Cryst. Growth Des. 9, 4822–4829.
  8. Margulis, T. N. (1975). Acta Cryst. B31, 1049–1052.
  9. Ohms, U. & Guth, H. (1984). Z. Kristallogr. 166, 213–217.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015200/ng5153sup1.cif

e-67-o1227-sup1.cif (19.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015200/ng5153Isup2.hkl

e-67-o1227-Isup2.hkl (207.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811015200/ng5153Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES