Abstract
The cation of the title salt, C7H11N2 +·C12H13O2 −·H2O, is planar (r.m.s. deviation = 0.0184 Å). In the crystal, the cation, anion and water molecule are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming a chain running along the a axis.
Related literature
For the structure of 4-dimethylaminopyridine, see: Ohms & Guth (1984 ▶). For the structure of 1-phenylcyclopentane-1-carboxylic acid, see: Margulis (1975 ▶). For recent molecular co-crystals and salts of 4-dimethylaminopyridine, see: Dastidar et al. (1993 ▶). For recent molecular co-crystals of 1-phenylcyclopentane-1-carboxylic acid, see: He et al. (2010 ▶, 2011 ▶). For comparative bond dimensions in pyridinium carboxylates, see: Kumar et al. (2009 ▶).
Experimental
Crystal data
C7H11N2 +·C12H13O2 −·H2O
M r = 330.42
Monoclinic,
a = 6.1666 (12) Å
b = 18.206 (4) Å
c = 15.702 (3) Å
β = 97.33 (3)°
V = 1748.4 (6) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 110 K
0.44 × 0.33 × 0.22 mm
Data collection
Bruker APEXII diffractometer
Absorption correction: multi-scan (Blessing, 1995 ▶) T min = 0.964, T max = 0.982
12519 measured reflections
4233 independent reflections
3945 reflections with I > 2σ(I)
R int = 0.017
Refinement
R[F 2 > 2σ(F 2)] = 0.051
wR(F 2) = 0.139
S = 1.13
4233 reflections
231 parameters
3 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.23 e Å−3
Δρmin = −0.21 e Å−3
Data collection: APEX2 (Bruker, 2007 ▶); cell refinement: SAINT (Bruker, 2007 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: X-SEED (Barbour, 2001 ▶); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 ▶) and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015200/ng5153sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015200/ng5153Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811015200/ng5153Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H7⋯O2 | 0.94 (2) | 1.72 (2) | 2.6458 (15) | 168 (2) |
| O3—H3⋯O2 | 0.87 (2) | 1.93 (2) | 2.7935 (14) | 167 (2) |
| O3—H6⋯O1i | 0.87 (2) | 1.90 (2) | 2.7634 (15) | 169 (2) |
Symmetry code: (i)
.
Acknowledgments
This work was supported by the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.
supplementary crystallographic information
Comment
Substituted pyridines such as 4-dimethylaminopyridine was found to form binary salt hydrate with l-tartaric acid (Dastidar et al., 1993). The authors have shown that this molecular complex possesses high nonlinear optical (NLO) effects, viz. second harmonic generation (SHG) in the crystalline state. In our previous work, we have demonstrated the formation of a salt and a cocrystal of a substituted pyridine, 2-aminopyridine, with 1-phenylcyclopropane-1-carboxylic acid and 1-phenylcyclopentane-1-carboxylic acid, respectively (He et al., 2010; He et al., 2011). Here we have selected 4-dimethylaminopyridine and 1-phenylcyclopentane-1-carboxylic acid as a model molecular pair.
The crystal structure of the title salt hydrate contains each one molecule of 4-dimethylaminopyridinium ion, 1-phenylcyclopentane-1-carboxylate ion, and water (Fig. 1). The title molecular complex is a salt rather than a cocrystal is evident by the proton transfer from the carboxylic acid to the pyridine nitrogen of the 4-dimethylaminopyridine, which was located in the difference Fourier map during the refinement cycles. Furthermore, the C—O/C=O bond distances (1.2412 (16) Å and 1.2700 (16) Å) and C—N—C angle of pyridine group (119.93 (12)°) are in well agreement with the corresponding distances/angles that are generally observed for a carboxylic acid-pyridine salts (Kumar et al., 2009). In the crystal structure, the translation related 1-phenylcyclopentane-1-carboxylate ions are connected via water molecules involving O—H···O hydrogen bonds (Table 1) and generate infinite hydrogen bonded chains along the crystallographic a-axis (Fig. 2). The 4-dimethylaminopyridinium ion hydrogen bonded to one of the O atoms of the carboxylate ion via N—H···O hydrogen bond (Fig. 2). The hydrogen bonded chians close pack to build up the overall crystal structure (Fig. 3). A TGA experiment indicates an initial weight loss (ca 6%) upon heating (Fig. 4). This number matches with the water content in the title salt hydrate, implying that the resulting molecular complex is indeed a hydrate.
Experimental
0.1224 g (1 mmol) of 4-dimethylaminopyridine (Alfa Aesar, 99%) and 0.1902 g (1 mmol) of 1-phenylcyclopentane-1-carboxylic acid (Alfa Aesar, 98%) and were dissolved into 7 ml of acetonitrile/water (90/10 v/v%) (acetonitrile, Fisher Scientific, HPLC; deionized water). Solution was then filtered through a 0.22 µm PTFE filter. Filtered solution was finally sealed with Parafilm and small holes were made to allow solvent to slowly evaporate. The colorless block-shaped crystal (0.44 × 0.33 × 0.22 mm) suitable for single-crystal X-ray diffraction (Rigaku Saturn 70 CCD area detector with Mo Kα radiation = 0.71073 Å at 50 kV and 40 mA) was collected after three day. TGA-DSC experiment of the resulting crystals was run using a TA Instrument SDT-TGA (SDT2960) at a ramping rate of 10 °C/min to 1000 °C.
Refinement
A low-angle reflection, (011), whose intensity was strongly affected by the beam-stop, was omitted in the refinement cycles. H atoms bonded to N and O atoms were located in a difference map and allowed to ride on their parent atoms in the refinement cycles.The O—H bond distances and H—O—H angle of the water molecule were found to be deviating from the normal values. These were restrained using DFIX and DANG commands in the SHELX, and the deviations from the normal values are 0.04 (2), 0.02 (2) and 4 (2). The H atoms connected to C atoms were positioned geometrically and refined using a riding model.
Figures
Fig. 1.
The molecular structures of 4-dimethylaminopyridine, 1-phenylcyclopentane-1-carboxylic acid and water, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
A supramolecular unit in the crystal structure of the title salt hydrate, featuring the O—H···O interaction between the carboxylate ion and the water molecule and the N—H···O interaction between the carboxylate ion and the pyridinium ions.
Fig. 3.
Part of the crystal structure of the title salt hydrate, showing the close packing of hydrogen bonded chains.
Fig. 4.
Profiles of heat flow and weight loss of the title salt hydrate determined by DSC and TGA, respectively.
Crystal data
| C7H11N2+·C12H13O2−·H2O | F(000) = 712 |
| Mr = 330.42 | Dx = 1.255 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 5283 reflections |
| a = 6.1666 (12) Å | θ = 2.2–31.0° |
| b = 18.206 (4) Å | µ = 0.09 mm−1 |
| c = 15.702 (3) Å | T = 110 K |
| β = 97.33 (3)° | Block, colorless |
| V = 1748.4 (6) Å3 | 0.44 × 0.33 × 0.22 mm |
| Z = 4 |
Data collection
| Bruker APEXII diffractometer | 4233 independent reflections |
| Radiation source: fine-focus sealed tube | 3945 reflections with I > 2σ(I) |
| graphite | Rint = 0.017 |
| ω scans | θmax = 28.3°, θmin = 2.9° |
| Absorption correction: multi-scan (Blessing, 1995) | h = −8→8 |
| Tmin = 0.964, Tmax = 0.982 | k = −21→23 |
| 12519 measured reflections | l = −20→20 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.139 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.13 | w = 1/[σ2(Fo2) + (0.0729P)2 + 0.4696P] where P = (Fo2 + 2Fc2)/3 |
| 4233 reflections | (Δ/σ)max < 0.001 |
| 231 parameters | Δρmax = 0.23 e Å−3 |
| 3 restraints | Δρmin = −0.21 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O3 | 0.46197 (17) | 0.37281 (6) | 0.40367 (7) | 0.0322 (2) | |
| H3 | 0.337 (3) | 0.3496 (12) | 0.3979 (14) | 0.062 (6)* | |
| H6 | 0.561 (3) | 0.3390 (10) | 0.4004 (13) | 0.053 (6)* | |
| C1 | −0.0970 (2) | 0.21395 (7) | 0.17867 (8) | 0.0237 (3) | |
| H1 | −0.2349 | 0.1936 | 0.1864 | 0.028* | |
| C2 | 0.3042 (2) | 0.27379 (7) | 0.15451 (8) | 0.0270 (3) | |
| H2 | 0.4419 | 0.2941 | 0.1463 | 0.032* | |
| C3 | −0.06856 (19) | 0.25206 (7) | 0.38099 (7) | 0.0206 (2) | |
| C4 | −0.0648 (2) | 0.24247 (7) | 0.09887 (8) | 0.0261 (3) | |
| H4 | −0.1802 | 0.2410 | 0.0526 | 0.031* | |
| C5 | 0.2731 (2) | 0.24498 (7) | 0.23453 (8) | 0.0232 (3) | |
| H5 | 0.3897 | 0.2458 | 0.2803 | 0.028* | |
| C6 | 0.03032 (19) | 0.18630 (7) | 0.33520 (7) | 0.0206 (2) | |
| C7 | 0.07135 (19) | 0.21492 (7) | 0.24761 (7) | 0.0203 (2) | |
| C8 | 0.2357 (2) | 0.15696 (7) | 0.39066 (8) | 0.0256 (3) | |
| H8A | 0.3231 | 0.1256 | 0.3564 | 0.031* | |
| H8B | 0.3283 | 0.1978 | 0.4160 | 0.031* | |
| C9 | 0.1353 (2) | 0.27300 (7) | 0.08674 (8) | 0.0277 (3) | |
| H9 | 0.1567 | 0.2932 | 0.0326 | 0.033* | |
| C10 | −0.1238 (2) | 0.11900 (7) | 0.33039 (8) | 0.0269 (3) | |
| H10A | −0.2786 | 0.1346 | 0.3193 | 0.032* | |
| H10B | −0.0928 | 0.0852 | 0.2841 | 0.032* | |
| C11 | −0.0764 (3) | 0.08142 (8) | 0.41878 (9) | 0.0361 (3) | |
| H11A | −0.1933 | 0.0928 | 0.4545 | 0.043* | |
| H11B | −0.0680 | 0.0275 | 0.4120 | 0.043* | |
| C12 | 0.1442 (3) | 0.11201 (9) | 0.46066 (9) | 0.0367 (3) | |
| H12A | 0.1235 | 0.1436 | 0.5104 | 0.044* | |
| H12B | 0.2450 | 0.0715 | 0.4807 | 0.044* | |
| O1 | −0.26922 (15) | 0.25454 (6) | 0.38244 (6) | 0.0300 (2) | |
| O2 | 0.06558 (15) | 0.30076 (5) | 0.41263 (6) | 0.0302 (2) | |
| C13 | 0.1993 (2) | 0.49016 (7) | 0.62159 (8) | 0.0232 (3) | |
| H13 | 0.3239 | 0.5208 | 0.6343 | 0.028* | |
| C14 | 0.0210 (2) | 0.49587 (7) | 0.67079 (8) | 0.0227 (3) | |
| C15 | −0.1584 (2) | 0.40174 (7) | 0.57900 (9) | 0.0275 (3) | |
| H15 | −0.2822 | 0.3714 | 0.5629 | 0.033* | |
| C16 | −0.1610 (2) | 0.44957 (7) | 0.64561 (9) | 0.0270 (3) | |
| H16 | −0.2856 | 0.4519 | 0.6754 | 0.032* | |
| C17 | 0.1905 (2) | 0.44045 (7) | 0.55616 (8) | 0.0247 (3) | |
| H17 | 0.3111 | 0.4367 | 0.5243 | 0.030* | |
| C18 | 0.2073 (2) | 0.59162 (8) | 0.76179 (9) | 0.0325 (3) | |
| H18A | 0.2461 | 0.6166 | 0.7105 | 0.049* | |
| H18B | 0.3331 | 0.5634 | 0.7886 | 0.049* | |
| H18C | 0.1658 | 0.6282 | 0.8026 | 0.049* | |
| C19 | −0.1612 (3) | 0.54665 (9) | 0.78639 (10) | 0.0383 (3) | |
| H19A | −0.1988 | 0.4973 | 0.8047 | 0.057* | |
| H19B | −0.2870 | 0.5680 | 0.7503 | 0.057* | |
| H19C | −0.1224 | 0.5777 | 0.8370 | 0.057* | |
| N1 | 0.01572 (18) | 0.39651 (6) | 0.53538 (7) | 0.0254 (2) | |
| N2 | 0.02411 (19) | 0.54214 (6) | 0.73743 (7) | 0.0274 (2) | |
| H7 | 0.012 (4) | 0.3632 (12) | 0.4892 (15) | 0.056 (6)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O3 | 0.0281 (5) | 0.0291 (5) | 0.0406 (6) | −0.0046 (4) | 0.0092 (4) | −0.0074 (4) |
| C1 | 0.0227 (5) | 0.0241 (6) | 0.0235 (6) | 0.0010 (4) | 0.0000 (4) | −0.0030 (5) |
| C2 | 0.0290 (6) | 0.0267 (6) | 0.0260 (6) | −0.0025 (5) | 0.0063 (5) | −0.0011 (5) |
| C3 | 0.0219 (5) | 0.0241 (6) | 0.0159 (5) | −0.0011 (4) | 0.0024 (4) | −0.0003 (4) |
| C4 | 0.0306 (6) | 0.0261 (6) | 0.0201 (6) | 0.0041 (5) | −0.0024 (5) | −0.0032 (5) |
| C5 | 0.0229 (6) | 0.0243 (6) | 0.0217 (6) | −0.0005 (4) | 0.0005 (4) | −0.0030 (4) |
| C6 | 0.0204 (5) | 0.0221 (6) | 0.0190 (5) | −0.0020 (4) | 0.0017 (4) | −0.0025 (4) |
| C7 | 0.0219 (5) | 0.0204 (6) | 0.0183 (5) | 0.0020 (4) | 0.0016 (4) | −0.0030 (4) |
| C8 | 0.0268 (6) | 0.0257 (6) | 0.0235 (6) | 0.0022 (5) | 0.0003 (5) | 0.0010 (5) |
| C9 | 0.0371 (7) | 0.0256 (6) | 0.0206 (6) | 0.0020 (5) | 0.0048 (5) | 0.0000 (5) |
| C10 | 0.0309 (6) | 0.0238 (6) | 0.0260 (6) | −0.0077 (5) | 0.0036 (5) | −0.0043 (5) |
| C11 | 0.0483 (8) | 0.0301 (7) | 0.0302 (7) | −0.0111 (6) | 0.0066 (6) | 0.0017 (6) |
| C12 | 0.0434 (8) | 0.0365 (8) | 0.0287 (7) | −0.0050 (6) | −0.0014 (6) | 0.0089 (6) |
| O1 | 0.0213 (4) | 0.0349 (5) | 0.0343 (5) | −0.0002 (4) | 0.0053 (4) | −0.0061 (4) |
| O2 | 0.0251 (5) | 0.0301 (5) | 0.0357 (5) | −0.0041 (4) | 0.0049 (4) | −0.0140 (4) |
| C13 | 0.0235 (6) | 0.0208 (6) | 0.0249 (6) | −0.0005 (4) | 0.0013 (4) | 0.0003 (4) |
| C14 | 0.0267 (6) | 0.0184 (6) | 0.0226 (6) | 0.0023 (4) | 0.0014 (4) | 0.0014 (4) |
| C15 | 0.0284 (6) | 0.0225 (6) | 0.0305 (6) | −0.0025 (5) | 0.0000 (5) | 0.0005 (5) |
| C16 | 0.0266 (6) | 0.0251 (6) | 0.0298 (6) | −0.0017 (5) | 0.0052 (5) | 0.0000 (5) |
| C17 | 0.0259 (6) | 0.0241 (6) | 0.0239 (6) | 0.0043 (5) | 0.0029 (4) | 0.0015 (5) |
| C18 | 0.0406 (8) | 0.0270 (7) | 0.0299 (7) | −0.0053 (6) | 0.0042 (5) | −0.0072 (5) |
| C19 | 0.0465 (9) | 0.0346 (8) | 0.0371 (8) | 0.0005 (6) | 0.0184 (6) | −0.0083 (6) |
| N1 | 0.0298 (5) | 0.0209 (5) | 0.0243 (5) | 0.0017 (4) | −0.0005 (4) | −0.0022 (4) |
| N2 | 0.0318 (6) | 0.0246 (6) | 0.0266 (5) | 0.0000 (4) | 0.0061 (4) | −0.0044 (4) |
Geometric parameters (Å, °)
| O3—H3 | 0.874 (15) | C11—C12 | 1.538 (2) |
| O3—H6 | 0.872 (15) | C11—H11A | 0.9900 |
| C1—C4 | 1.3937 (18) | C11—H11B | 0.9900 |
| C1—C7 | 1.4010 (16) | C12—H12A | 0.9900 |
| C1—H1 | 0.9500 | C12—H12B | 0.9900 |
| C2—C9 | 1.3908 (19) | C13—C17 | 1.3649 (18) |
| C2—C5 | 1.3970 (18) | C13—C14 | 1.4262 (17) |
| C2—H2 | 0.9500 | C13—H13 | 0.9500 |
| C3—O1 | 1.2414 (15) | C14—N2 | 1.3416 (16) |
| C3—O2 | 1.2696 (15) | C14—C16 | 1.4189 (17) |
| C3—C6 | 1.5603 (16) | C15—N1 | 1.3488 (18) |
| C4—C9 | 1.3885 (19) | C15—C16 | 1.3625 (19) |
| C4—H4 | 0.9500 | C15—H15 | 0.9500 |
| C5—C7 | 1.3981 (17) | C16—H16 | 0.9500 |
| C5—H5 | 0.9500 | C17—N1 | 1.3485 (17) |
| C6—C7 | 1.5218 (16) | C17—H17 | 0.9500 |
| C6—C8 | 1.5382 (17) | C18—N2 | 1.4571 (18) |
| C6—C10 | 1.5465 (16) | C18—H18A | 0.9800 |
| C8—C12 | 1.5345 (19) | C18—H18B | 0.9800 |
| C8—H8A | 0.9900 | C18—H18C | 0.9800 |
| C8—H8B | 0.9900 | C19—N2 | 1.4587 (18) |
| C9—H9 | 0.9500 | C19—H19A | 0.9800 |
| C10—C11 | 1.5414 (19) | C19—H19B | 0.9800 |
| C10—H10A | 0.9900 | C19—H19C | 0.9800 |
| C10—H10B | 0.9900 | N1—H7 | 0.94 (2) |
| H3—O3—H6 | 105.5 (18) | C12—C11—H11B | 110.5 |
| C4—C1—C7 | 120.90 (12) | C10—C11—H11B | 110.5 |
| C4—C1—H1 | 119.5 | H11A—C11—H11B | 108.7 |
| C7—C1—H1 | 119.5 | C8—C12—C11 | 105.83 (11) |
| C9—C2—C5 | 120.61 (12) | C8—C12—H12A | 110.6 |
| C9—C2—H2 | 119.7 | C11—C12—H12A | 110.6 |
| C5—C2—H2 | 119.7 | C8—C12—H12B | 110.6 |
| O1—C3—O2 | 124.66 (11) | C11—C12—H12B | 110.6 |
| O1—C3—C6 | 119.03 (10) | H12A—C12—H12B | 108.7 |
| O2—C3—C6 | 116.28 (10) | C17—C13—C14 | 119.77 (12) |
| C9—C4—C1 | 120.23 (12) | C17—C13—H13 | 120.1 |
| C9—C4—H4 | 119.9 | C14—C13—H13 | 120.1 |
| C1—C4—H4 | 119.9 | N2—C14—C16 | 121.50 (12) |
| C2—C5—C7 | 120.38 (12) | N2—C14—C13 | 122.20 (12) |
| C2—C5—H5 | 119.8 | C16—C14—C13 | 116.30 (11) |
| C7—C5—H5 | 119.8 | N1—C15—C16 | 121.53 (12) |
| C7—C6—C8 | 114.25 (10) | N1—C15—H15 | 119.2 |
| C7—C6—C10 | 113.53 (10) | C16—C15—H15 | 119.2 |
| C8—C6—C10 | 102.06 (10) | C15—C16—C14 | 120.47 (12) |
| C7—C6—C3 | 105.88 (9) | C15—C16—H16 | 119.8 |
| C8—C6—C3 | 110.33 (10) | C14—C16—H16 | 119.8 |
| C10—C6—C3 | 110.89 (10) | N1—C17—C13 | 121.96 (12) |
| C5—C7—C1 | 118.48 (11) | N1—C17—H17 | 119.0 |
| C5—C7—C6 | 121.36 (10) | C13—C17—H17 | 119.0 |
| C1—C7—C6 | 120.11 (10) | N2—C18—H18A | 109.5 |
| C12—C8—C6 | 103.84 (10) | N2—C18—H18B | 109.5 |
| C12—C8—H8A | 111.0 | H18A—C18—H18B | 109.5 |
| C6—C8—H8A | 111.0 | N2—C18—H18C | 109.5 |
| C12—C8—H8B | 111.0 | H18A—C18—H18C | 109.5 |
| C6—C8—H8B | 111.0 | H18B—C18—H18C | 109.5 |
| H8A—C8—H8B | 109.0 | N2—C19—H19A | 109.5 |
| C4—C9—C2 | 119.40 (12) | N2—C19—H19B | 109.5 |
| C4—C9—H9 | 120.3 | H19A—C19—H19B | 109.5 |
| C2—C9—H9 | 120.3 | N2—C19—H19C | 109.5 |
| C11—C10—C6 | 105.25 (10) | H19A—C19—H19C | 109.5 |
| C11—C10—H10A | 110.7 | H19B—C19—H19C | 109.5 |
| C6—C10—H10A | 110.7 | C17—N1—C15 | 119.93 (11) |
| C11—C10—H10B | 110.7 | C17—N1—H7 | 120.4 (13) |
| C6—C10—H10B | 110.7 | C15—N1—H7 | 119.7 (13) |
| H10A—C10—H10B | 108.8 | C14—N2—C18 | 121.77 (11) |
| C12—C11—C10 | 106.26 (11) | C14—N2—C19 | 120.81 (12) |
| C12—C11—H11A | 110.5 | C18—N2—C19 | 117.38 (11) |
| C10—C11—H11A | 110.5 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H7···O2 | 0.94 (2) | 1.72 (2) | 2.6458 (15) | 168 (2) |
| O3—H3···O2 | 0.87 (2) | 1.93 (2) | 2.7935 (14) | 167 (2) |
| O3—H6···O1i | 0.87 (2) | 1.90 (2) | 2.7634 (15) | 169 (2) |
Symmetry codes: (i) x+1, y, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5153).
References
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
- Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dastidar, P., Row, T. N. G., Prasad, B. R., Subramanian, C. K. & Bhattacharya, S. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2419–2422.
- He, G., Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2010). Acta Cryst. E66, o3339–o3340. [DOI] [PMC free article] [PubMed]
- He, G., Aitipamula, S., Chow, P. S. & Tan, R. B. H. (2011). Acta Cryst. E67, o552–o553. [DOI] [PMC free article] [PubMed]
- Kumar, T. L., Vishweshwar, P., Babu, J. M. & Vyas, K. (2009). Cryst. Growth Des. 9, 4822–4829.
- Margulis, T. N. (1975). Acta Cryst. B31, 1049–1052.
- Ohms, U. & Guth, H. (1984). Z. Kristallogr. 166, 213–217.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811015200/ng5153sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015200/ng5153Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811015200/ng5153Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report




