Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1266–o1267. doi: 10.1107/S1600536811015637

7-(4-Chloro­benzyl­idene)-3-[(4-chloro­phen­oxy)meth­yl]-6-(4-nitro­thio­phen-2-yl)-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazine

Hoong-Kun Fun a,*,, Safra Izuani Jama Asik a, Ibrahim Abdul Razak a, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3089255  PMID: 21754553

Abstract

In the title compound, C22H13Cl2N5O3S2, the thia­diazine ring adopts a half-chair conformation. The benzene rings of the chloro­phen­oxy and chloro­benzyl groups and the thio­phene ring form dihedral angles of 35.6 (1), 80.7 (1) and 14.2 (1)°, respectively, with the triazole ring. In the crystal, mol­ecules are connected into sheets parallel to (Inline graphic11) by inter­molecular C—H⋯N and C—H⋯Cl hydrogen bonds. In addition, π–π stacking inter­actions are observed between thio­phene and triazole rings, and between inversion-related triazole rings [centroid–centroid distances = 3.5975 (11) and 3.4324 (11) Å].

Related literature

For general background to and applications of 1,2,4-triazole derivatives, see: Shujuan et al. (2004); Clemons et al. (2004); Johnston (2002); Wei et al. (2007). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987); Jin et al. (2004). For related structures, see: Goh et al. (2010a,b,c,d ).graphic file with name e-67-o1266-scheme1.jpg

Experimental

Crystal data

  • C22H13Cl2N5O3S2

  • M r = 530.39

  • Triclinic, Inline graphic

  • a = 8.5021 (2) Å

  • b = 10.0379 (2) Å

  • c = 14.3623 (3) Å

  • α = 94.434 (1)°

  • β = 97.981 (1)°

  • γ = 109.242 (1)°

  • V = 1136.07 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 296 K

  • 0.39 × 0.32 × 0.11 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.827, T max = 0.946

  • 19590 measured reflections

  • 6548 independent reflections

  • 5142 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.133

  • S = 1.04

  • 6548 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811015637/ci5185sup1.cif

e-67-o1266-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015637/ci5185Isup2.hkl

e-67-o1266-Isup2.hkl (320.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯N2i 0.93 2.60 3.495 (3) 162
C21—H21A⋯Cl1ii 0.93 2.81 3.691 (2) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

HKF, SIJA and IAR thank Universiti Sains Malaysia for the Research University Grants (Nos.1001/PFIZIK/811160 and 1001/PFIZIK/811151).

supplementary crystallographic information

Comment

The 1,2,4-triazole nucleus has been incorporated into a wide variety of therapeutically interesting compounds. Several compounds containing 1,2,4-triazole rings are well known as drugs. For example, fluconazole is used as an antimicrobial drug (Shujuan et al., 2004), while vorozole, letrozole and anastrozole are non-steroidal drugs used for the treatment of cancer (Clemons et al., 2004) and loreclezole is used as an anticonvulsant (Johnston et al., 2002). Similarly substituted derivatives of triazole possess comprehensive bioactivities such as antimicrobial, anti-inflammatory, analgesic, antihypertensive, anticonvulsant and antiviral activities (Wei et al., 2007). In continuation of our search on the synthesis of biologically active compounds, we synthesized triazolothiadiazine from triazole.

In the title compound, the 1,2,4-triazole (C8/N1–N3/C9) and thiophene (C12–C15/S2) rings are essentially planar, with maximum deviations of 0.006 (2) and 0.003 (2) Å for atom C9 and C14, respectively. The 1,3,4-thiadiazine (C9–C11/N3/N4/S1) ring is slightly distorted and may be regarded as having a half-chair conformation with puckering parameters, Q = 0.474 (2) Å, θ = 113.9 (2)°, φ = 149.1 (2)° (Cremer & Pople, 1975).

The two benzene rings (C1–C6 and C17–C22) and the thiophene (C12–C15/S2) ring form dihedral angles of 35.6 (1), 80.7 (1) and 14.2 (1)°, respectively, with the 1,2,4-triazole ring (C8/N1–N3/C9). The geometric parameters are consistent with those observed in closely related structures (Goh et al., 2010a,b,c,d). The bond lengths show normal values (Allen et al. 1987).

In the crystal packing (Fig. 2), the molecules are connected by intermolecular C15—H15A···N2 and C21—H21A···Cl1 interactions that link the molecules into two–dimensional arrays parallel to the (1 1 1). In addition, the molecular packing is also stabilized by π–π stacking interactions between thiophene (C12–C15/S2; centroid Cg1) and 1,2,4-triazole (C8/N1–N3/C9; centroid Cg2) rings, with a Cg1···Cg2# separation of 3.5975 (11) Å (symmetry code #: 1-x, 1-y, -z), and that between 1,2,4-triazole (C8/N1–N3/C9) rings at (x, y, z) and (-x, 1-y, -z), with their centroids separated by 3.4324 (11) Å.

Experimental

To a soultion of 4-Amino-5-[(p-chlorophenoxy)methyl]-4H-1,2,4-triazole-3-thiol (0.01 mol) and 2-bromo-3-(p-chlorophenyl)-1-(5-nitrothiophen-2-yl) prop-2-en-1-one (0.01 mol) in ethanol, a catalytic amount of anhydrous sodium acetate was added. The solution was refluxed on a water bath for 9 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Single crystals suitable for X-ray analysis were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement

H atoms were placed in calculated positions with C–H = 0.93–0.97 Å. The Uiso value of H atoms were constrained to be 1.2Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C22H13Cl2N5O3S2 Z = 2
Mr = 530.39 F(000) = 540
Triclinic, P1 Dx = 1.551 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.5021 (2) Å Cell parameters from 5767 reflections
b = 10.0379 (2) Å θ = 2.7–32.0°
c = 14.3623 (3) Å µ = 0.51 mm1
α = 94.434 (1)° T = 296 K
β = 97.981 (1)° Plate, yellow
γ = 109.242 (1)° 0.39 × 0.32 × 0.11 mm
V = 1136.07 (4) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6548 independent reflections
Radiation source: fine-focus sealed tube 5142 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −11→11
Tmin = 0.827, Tmax = 0.946 k = −14→14
19590 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.3979P] where P = (Fo2 + 2Fc2)/3
6548 reflections (Δ/σ)max = 0.001
307 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.31310 (6) 0.39243 (5) 0.13806 (3) 0.03764 (12)
S2 0.65367 (7) 0.90408 (5) 0.02701 (4) 0.04462 (14)
Cl1 0.32206 (12) 1.05741 (9) −0.46034 (7) 0.0906 (3)
Cl2 0.17004 (8) 0.36669 (8) 0.58962 (4) 0.06035 (17)
N1 0.0052 (2) 0.34827 (18) −0.09684 (11) 0.0418 (4)
N2 0.0543 (2) 0.29741 (17) −0.01333 (11) 0.0391 (3)
N3 0.23458 (18) 0.51207 (16) −0.01635 (10) 0.0316 (3)
N4 0.37735 (19) 0.63329 (16) 0.00403 (10) 0.0349 (3)
N5 1.0471 (2) 0.9832 (2) 0.22741 (17) 0.0602 (5)
O1 0.25195 (18) 0.62527 (17) −0.20276 (10) 0.0451 (3)
O2 1.1570 (3) 1.0856 (3) 0.2079 (2) 0.0994 (8)
O3 1.0661 (3) 0.9215 (3) 0.29489 (15) 0.0825 (6)
C1 0.1175 (3) 0.7481 (2) −0.31056 (13) 0.0416 (4)
H1A 0.0097 0.6926 −0.3027 0.050*
C2 0.1376 (3) 0.8504 (2) −0.37127 (14) 0.0455 (5)
H2A 0.0436 0.8644 −0.4045 0.055*
C3 0.2982 (3) 0.9316 (2) −0.38211 (16) 0.0486 (5)
C4 0.4404 (3) 0.9153 (3) −0.33232 (18) 0.0540 (5)
H4A 0.5479 0.9717 −0.3399 0.065*
C5 0.4199 (3) 0.8139 (2) −0.27120 (15) 0.0464 (5)
H5A 0.5145 0.8028 −0.2364 0.056*
C6 0.2593 (2) 0.7284 (2) −0.26134 (12) 0.0367 (4)
C7 0.0975 (3) 0.5693 (2) −0.16998 (14) 0.0433 (4)
H7A 0.0089 0.5158 −0.2227 0.052*
H7B 0.0664 0.6464 −0.1426 0.052*
C8 0.1140 (2) 0.4746 (2) −0.09737 (12) 0.0355 (4)
C9 0.1912 (2) 0.39706 (18) 0.03185 (12) 0.0321 (3)
C10 0.4010 (2) 0.57962 (18) 0.16945 (12) 0.0314 (3)
C11 0.4557 (2) 0.66196 (18) 0.09118 (12) 0.0317 (3)
C12 0.6138 (2) 0.78458 (19) 0.10904 (12) 0.0336 (3)
C13 0.7497 (2) 0.8140 (2) 0.17988 (13) 0.0379 (4)
H13A 0.7535 0.7623 0.2307 0.045*
C14 0.8840 (2) 0.9339 (2) 0.16526 (15) 0.0416 (4)
C15 0.8518 (3) 0.9942 (2) 0.08699 (16) 0.0456 (5)
H15A 0.9278 1.0739 0.0687 0.055*
C16 0.4132 (2) 0.64263 (19) 0.25710 (12) 0.0351 (4)
H16A 0.4627 0.7413 0.2673 0.042*
C17 0.3573 (2) 0.57331 (19) 0.33897 (12) 0.0336 (3)
C18 0.2834 (3) 0.6385 (2) 0.40089 (13) 0.0405 (4)
H18A 0.2732 0.7258 0.3906 0.049*
C19 0.2251 (3) 0.5746 (2) 0.47743 (13) 0.0435 (4)
H19A 0.1746 0.6180 0.5179 0.052*
C20 0.2426 (2) 0.4462 (2) 0.49313 (12) 0.0392 (4)
C21 0.3189 (3) 0.3808 (2) 0.43452 (13) 0.0411 (4)
H21A 0.3314 0.2947 0.4463 0.049*
C22 0.3765 (2) 0.4453 (2) 0.35809 (12) 0.0377 (4)
H22A 0.4290 0.4021 0.3188 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0452 (3) 0.0336 (2) 0.0311 (2) 0.01036 (19) 0.00304 (18) 0.00748 (16)
S2 0.0439 (3) 0.0399 (3) 0.0487 (3) 0.0095 (2) 0.0095 (2) 0.0183 (2)
Cl1 0.1026 (6) 0.0671 (4) 0.1053 (6) 0.0239 (4) 0.0179 (5) 0.0532 (4)
Cl2 0.0592 (4) 0.0895 (4) 0.0412 (3) 0.0276 (3) 0.0205 (2) 0.0311 (3)
N1 0.0374 (9) 0.0467 (9) 0.0348 (8) 0.0072 (7) 0.0040 (6) 0.0042 (7)
N2 0.0395 (9) 0.0373 (8) 0.0343 (8) 0.0054 (7) 0.0059 (6) 0.0041 (6)
N3 0.0280 (7) 0.0361 (7) 0.0276 (6) 0.0057 (6) 0.0063 (5) 0.0072 (5)
N4 0.0309 (7) 0.0381 (8) 0.0310 (7) 0.0043 (6) 0.0068 (6) 0.0083 (6)
N5 0.0348 (10) 0.0588 (12) 0.0699 (14) 0.0003 (9) 0.0002 (9) −0.0045 (10)
O1 0.0376 (7) 0.0657 (9) 0.0394 (7) 0.0221 (7) 0.0121 (6) 0.0219 (6)
O2 0.0397 (10) 0.0808 (15) 0.144 (2) −0.0193 (10) −0.0013 (12) 0.0271 (14)
O3 0.0505 (11) 0.1096 (17) 0.0642 (12) 0.0057 (11) −0.0134 (9) 0.0150 (11)
C1 0.0357 (10) 0.0531 (11) 0.0356 (9) 0.0142 (9) 0.0050 (7) 0.0100 (8)
C2 0.0512 (12) 0.0492 (11) 0.0379 (10) 0.0227 (10) 0.0005 (8) 0.0052 (8)
C3 0.0614 (14) 0.0369 (10) 0.0472 (11) 0.0146 (9) 0.0109 (10) 0.0109 (8)
C4 0.0462 (12) 0.0482 (12) 0.0640 (14) 0.0089 (10) 0.0117 (10) 0.0162 (10)
C5 0.0370 (10) 0.0531 (12) 0.0483 (11) 0.0151 (9) 0.0045 (8) 0.0099 (9)
C6 0.0361 (9) 0.0473 (10) 0.0274 (8) 0.0153 (8) 0.0051 (7) 0.0060 (7)
C7 0.0338 (10) 0.0613 (12) 0.0345 (9) 0.0139 (9) 0.0063 (7) 0.0156 (8)
C8 0.0308 (9) 0.0439 (10) 0.0287 (8) 0.0090 (7) 0.0048 (6) 0.0046 (7)
C9 0.0328 (8) 0.0338 (8) 0.0285 (7) 0.0086 (7) 0.0076 (6) 0.0050 (6)
C10 0.0283 (8) 0.0348 (8) 0.0291 (8) 0.0071 (7) 0.0062 (6) 0.0073 (6)
C11 0.0302 (8) 0.0349 (8) 0.0295 (8) 0.0083 (7) 0.0086 (6) 0.0075 (6)
C12 0.0316 (9) 0.0332 (8) 0.0328 (8) 0.0049 (7) 0.0087 (7) 0.0074 (6)
C13 0.0331 (9) 0.0427 (10) 0.0329 (8) 0.0063 (8) 0.0058 (7) 0.0053 (7)
C14 0.0309 (9) 0.0404 (10) 0.0457 (10) 0.0031 (8) 0.0069 (8) 0.0002 (8)
C15 0.0408 (11) 0.0304 (9) 0.0591 (12) 0.0004 (8) 0.0172 (9) 0.0059 (8)
C16 0.0346 (9) 0.0352 (9) 0.0315 (8) 0.0056 (7) 0.0082 (7) 0.0046 (7)
C17 0.0302 (8) 0.0395 (9) 0.0274 (8) 0.0073 (7) 0.0052 (6) 0.0037 (6)
C18 0.0448 (11) 0.0387 (9) 0.0372 (9) 0.0115 (8) 0.0118 (8) 0.0053 (7)
C19 0.0466 (11) 0.0532 (12) 0.0327 (9) 0.0178 (9) 0.0138 (8) 0.0031 (8)
C20 0.0331 (9) 0.0540 (11) 0.0263 (8) 0.0086 (8) 0.0047 (7) 0.0089 (7)
C21 0.0434 (11) 0.0495 (11) 0.0341 (9) 0.0201 (9) 0.0051 (8) 0.0118 (8)
C22 0.0389 (10) 0.0496 (10) 0.0278 (8) 0.0192 (8) 0.0060 (7) 0.0055 (7)

Geometric parameters (Å, °)

S1—C9 1.7342 (18) C5—C6 1.386 (3)
S1—C10 1.7727 (18) C5—H5A 0.93
S2—C15 1.694 (2) C7—C8 1.486 (3)
S2—C12 1.7330 (17) C7—H7A 0.97
Cl1—C3 1.736 (2) C7—H7B 0.97
Cl2—C20 1.7386 (18) C10—C16 1.339 (2)
N1—C8 1.302 (2) C10—C11 1.483 (2)
N1—N2 1.403 (2) C11—C12 1.467 (2)
N2—C9 1.303 (2) C12—C13 1.364 (3)
N3—C9 1.364 (2) C13—C14 1.413 (3)
N3—C8 1.376 (2) C13—H13A 0.93
N3—N4 1.383 (2) C14—C15 1.354 (3)
N4—C11 1.296 (2) C15—H15A 0.93
N5—O3 1.210 (3) C16—C17 1.468 (2)
N5—O2 1.221 (3) C16—H16A 0.93
N5—C14 1.449 (3) C17—C22 1.391 (3)
O1—C6 1.375 (2) C17—C18 1.397 (3)
O1—C7 1.410 (2) C18—C19 1.384 (3)
C1—C2 1.382 (3) C18—H18A 0.93
C1—C6 1.391 (3) C19—C20 1.377 (3)
C1—H1A 0.93 C19—H19A 0.93
C2—C3 1.378 (3) C20—C21 1.381 (3)
C2—H2A 0.93 C21—C22 1.383 (3)
C3—C4 1.381 (3) C21—H21A 0.93
C4—C5 1.378 (3) C22—H22A 0.93
C4—H4A 0.93
C9—S1—C10 95.62 (8) N3—C9—S1 121.40 (13)
C15—S2—C12 92.18 (10) C16—C10—C11 122.26 (16)
C8—N1—N2 107.87 (15) C16—C10—S1 122.39 (13)
C9—N2—N1 106.29 (15) C11—C10—S1 115.32 (12)
C9—N3—C8 104.63 (14) N4—C11—C12 114.57 (15)
C9—N3—N4 128.75 (14) N4—C11—C10 125.55 (16)
C8—N3—N4 126.23 (14) C12—C11—C10 119.85 (15)
C11—N4—N3 115.80 (14) C13—C12—C11 128.47 (16)
O3—N5—O2 124.2 (2) C13—C12—S2 111.57 (14)
O3—N5—C14 118.5 (2) C11—C12—S2 119.62 (13)
O2—N5—C14 117.2 (2) C12—C13—C14 110.48 (17)
C6—O1—C7 115.44 (15) C12—C13—H13A 124.8
C2—C1—C6 119.61 (19) C14—C13—H13A 124.8
C2—C1—H1A 120.2 C15—C14—C13 115.29 (18)
C6—C1—H1A 120.2 C15—C14—N5 122.83 (19)
C3—C2—C1 119.4 (2) C13—C14—N5 121.8 (2)
C3—C2—H2A 120.3 C14—C15—S2 110.47 (15)
C1—C2—H2A 120.3 C14—C15—H15A 124.8
C2—C3—C4 121.7 (2) S2—C15—H15A 124.8
C2—C3—Cl1 119.05 (18) C10—C16—C17 127.24 (17)
C4—C3—Cl1 119.29 (18) C10—C16—H16A 116.4
C5—C4—C3 118.8 (2) C17—C16—H16A 116.4
C5—C4—H4A 120.6 C22—C17—C18 118.34 (16)
C3—C4—H4A 120.6 C22—C17—C16 122.56 (16)
C4—C5—C6 120.4 (2) C18—C17—C16 119.10 (17)
C4—C5—H5A 119.8 C19—C18—C17 120.80 (18)
C6—C5—H5A 119.8 C19—C18—H18A 119.6
O1—C6—C5 116.08 (17) C17—C18—H18A 119.6
O1—C6—C1 123.84 (17) C20—C19—C18 119.36 (18)
C5—C6—C1 120.07 (18) C20—C19—H19A 120.3
O1—C7—C8 109.98 (16) C18—C19—H19A 120.3
O1—C7—H7A 109.7 C19—C20—C21 121.20 (17)
C8—C7—H7A 109.7 C19—C20—Cl2 119.24 (15)
O1—C7—H7B 109.7 C21—C20—Cl2 119.55 (16)
C8—C7—H7B 109.7 C20—C21—C22 119.05 (18)
H7A—C7—H7B 108.2 C20—C21—H21A 120.5
N1—C8—N3 109.93 (16) C22—C21—H21A 120.5
N1—C8—C7 124.21 (17) C21—C22—C17 121.21 (17)
N3—C8—C7 125.52 (17) C21—C22—H22A 119.4
N2—C9—N3 111.26 (15) C17—C22—H22A 119.4
N2—C9—S1 127.32 (14)
C8—N1—N2—C9 −0.1 (2) C16—C10—C11—N4 −140.1 (2)
C9—N3—N4—C11 −21.5 (3) S1—C10—C11—N4 38.2 (2)
C8—N3—N4—C11 166.81 (17) C16—C10—C11—C12 42.0 (3)
C6—C1—C2—C3 0.0 (3) S1—C10—C11—C12 −139.59 (14)
C1—C2—C3—C4 −1.3 (3) N4—C11—C12—C13 −156.04 (19)
C1—C2—C3—Cl1 178.71 (16) C10—C11—C12—C13 22.0 (3)
C2—C3—C4—C5 0.8 (4) N4—C11—C12—S2 16.7 (2)
Cl1—C3—C4—C5 −179.26 (18) C10—C11—C12—S2 −165.26 (13)
C3—C4—C5—C6 1.1 (4) C15—S2—C12—C13 −0.15 (16)
C7—O1—C6—C5 161.28 (18) C15—S2—C12—C11 −174.03 (15)
C7—O1—C6—C1 −19.9 (3) C11—C12—C13—C14 173.10 (18)
C4—C5—C6—O1 176.5 (2) S2—C12—C13—C14 −0.1 (2)
C4—C5—C6—C1 −2.4 (3) C12—C13—C14—C15 0.4 (3)
C2—C1—C6—O1 −176.98 (18) C12—C13—C14—N5 −176.46 (18)
C2—C1—C6—C5 1.8 (3) O3—N5—C14—C15 −178.6 (2)
C6—O1—C7—C8 −172.11 (16) O2—N5—C14—C15 1.6 (4)
N2—N1—C8—N3 −0.7 (2) O3—N5—C14—C13 −2.0 (3)
N2—N1—C8—C7 −174.39 (17) O2—N5—C14—C13 178.2 (2)
C9—N3—C8—N1 1.1 (2) C13—C14—C15—S2 −0.5 (2)
N4—N3—C8—N1 174.43 (16) N5—C14—C15—S2 176.31 (17)
C9—N3—C8—C7 174.73 (17) C12—S2—C15—C14 0.37 (16)
N4—N3—C8—C7 −12.0 (3) C11—C10—C16—C17 177.31 (17)
O1—C7—C8—N1 −132.7 (2) S1—C10—C16—C17 −0.9 (3)
O1—C7—C8—N3 54.6 (3) C10—C16—C17—C22 39.3 (3)
N1—N2—C9—N3 0.8 (2) C10—C16—C17—C18 −141.3 (2)
N1—N2—C9—S1 −177.89 (13) C22—C17—C18—C19 −2.3 (3)
C8—N3—C9—N2 −1.18 (19) C16—C17—C18—C19 178.31 (18)
N4—N3—C9—N2 −174.25 (16) C17—C18—C19—C20 0.9 (3)
C8—N3—C9—S1 177.59 (13) C18—C19—C20—C21 0.7 (3)
N4—N3—C9—S1 4.5 (2) C18—C19—C20—Cl2 179.75 (16)
C10—S1—C9—N2 −155.83 (17) C19—C20—C21—C22 −0.8 (3)
C10—S1—C9—N3 25.61 (15) Cl2—C20—C21—C22 −179.87 (15)
C9—S1—C10—C16 135.40 (16) C20—C21—C22—C17 −0.6 (3)
C9—S1—C10—C11 −42.97 (14) C18—C17—C22—C21 2.2 (3)
N3—N4—C11—C12 175.41 (15) C16—C17—C22—C21 −178.45 (18)
N3—N4—C11—C10 −2.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15A···N2i 0.93 2.60 3.495 (3) 162
C21—H21A···Cl1ii 0.93 2.81 3.691 (2) 159

Symmetry codes: (i) x+1, y+1, z; (ii) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5185).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Clemons, M., Coleman, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325–332. [DOI] [PubMed]
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1303. [DOI] [PMC free article] [PubMed]
  6. Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1394–o1395. [DOI] [PMC free article] [PubMed]
  7. Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010c). Acta Cryst. E66, o2162–o2163. [DOI] [PMC free article] [PubMed]
  8. Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010d). Acta Cryst. E66, o2178–o2179. [DOI] [PMC free article] [PubMed]
  9. Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643. [DOI] [PubMed]
  10. Johnston, G. A. R. (2002). Curr. Top. Med. Chem. 2, 903–913. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. (2004). J. Pharm. Biomed. Anal. 34, 1117–1124. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Wei, T.-B., Tang, J., Liu, H. & Zhang, Y.-M. (2007). Phosphorus Sulfur Silicon, 182, 1581–1587.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811015637/ci5185sup1.cif

e-67-o1266-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811015637/ci5185Isup2.hkl

e-67-o1266-Isup2.hkl (320.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES