Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1211. doi: 10.1107/S1600536811014115

Ethyl 5,5-dichloro-3-(4-chloro­phen­yl)-3a-methyl-4a-phenyl-3a,4,4a,5-tetra­hydro-3H-aziridino[2,1-d][1,2,4]triazolo[4,3-a][1,5]benzodiazepine-1-carboxyl­ate

Aicha Boudina a, Abdesselam Baouid a, Mohamed Driss b, El Hassane Soumhi c,*
PMCID: PMC3089256  PMID: 21754510

Abstract

In the title compound, C27H23Cl3N4O2, the seven-membered diazepine ring adopts a boat conformation. The triazole ring makes dihedral angles of 17.24 (8) and 82.86 (8)°, respectively, with the chloro­benzene ring and the benzene ring of the benzodiazepine unit.

Related literature

For background to benzodiazepine derivatives, see: Barltrop et al. (1959); El Hazazi et al. (2003); Sharp & Hamilton (1946). For related structures, see: Chiaroni et al. (1995); El Hazazi et al. (2000).graphic file with name e-67-o1211-scheme1.jpg

Experimental

Crystal data

  • C27H23Cl3N4O2

  • M r = 541.84

  • Triclinic, Inline graphic

  • a = 9.679 (3) Å

  • b = 11.256 (3) Å

  • c = 12.661 (2) Å

  • α = 79.09 (2)°

  • β = 76.46 (2)°

  • γ = 73.04 (2)°

  • V = 1271.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 300 K

  • 0.3 × 0.15 × 0.1 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • 6860 measured reflections

  • 5536 independent reflections

  • 4616 reflections with I > 2σ(I)

  • R int = 0.010

  • 2 standard reflections every 60 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.101

  • S = 1.05

  • 5536 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014115/is2697sup1.cif

e-67-o1211-sup1.cif (25.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014115/is2697Isup2.hkl

e-67-o1211-Isup2.hkl (265.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In order to develop work carried out before in our laboratory we were interested in the synthesis of new derivatives benzodiazepinic (El Hazazi et al., 2003). These reactions are either of the reactions of cycloadditions [2 + 1] realising generated carbenes in situ or reactions of transfer of methelyne.

In the present work, we report the synthesis of new benzodiazepine derivatives via addition of dichlorocarbene to [1,2,4]triazolo[4,3-a][1,5]benzodiazepine obtained stereospecifically by the addition of nitrilimines (Sharp et al., 1946) on 1,5-benzodiazepine (Barltrop et al., 1959).

Dichloroazacyclopropanation of [1,2,4]triazolo[4,3-a][1,5]benzodiazepine occurs readily under phase transfer catalysis conditions (liquid-liquid) with chloroform, aqueous sodium hydroxide and benzyltriethylammonium chloride (TBA-Cl) to give the corresponding bichloroadduct 2 (Fig. 1). Thus, the reaction of [1,2,4]triazolo[4,3-a][1,5]benzodiazepine 1 with dichlorocarbene in these conditions produce gem-dichloroaziridino[2,1-d][1,2,4] triazolo[4,3-a][1,5]benzodiazepine 2 in good yield.

The crystallographic study made it possible to determine the stereochemistry of the product 2. The crystalline structure confirms that the condensation of dichlorocarbene is carried out on double bond C=N substituted by the phenyl and shows that the product 2α obtained is of trans relative stereochemistry (Fig. 2). The main geometric features of this group are in good agreement it those observed in similar compound (Chiaroni et al., 1995; El Hazazi et al., 2000).

Experimental

[1,2,4]Triazolo[4,3-a][1,5]benzodiazepine 1 (0.65 mm l) in 2 ml of chloroform were stirred with 2 ml of aqueous 50% NaOH solution and a catalytic amount of triethylbenzylammonium chloride (TBA-Cl). After 4 h the mixture was poured into 5 ml of water and extracted with ether. The organic phase was then dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The crude product was chromatographied on a silica gel column (eluent: hexane/ethyl acetate 95/5) and recrystallized from ethanol/chloroform to give a compound 2α

The observation to be noted is that the condensation of dichlorocarbene to [1,2,4]triazolo[4,3-a][1,5]benzodiazepine is streospecific. The structure elucidation of the compound 2 was determinate on spectral data (1H NMR, 13C NMR and mass spectroscopy). The compound revealed in their spectra of mass the molecular peak located at m/z = 541 compatible with their empirical formula. The NMR spectrum of this product shows that the decalage of the chemical shifts of different grouping from monoadduct. In the 13C NMR spectrum of compound, we remarked the absence of the signals attributed to the double bond C5=N6 of cycle diazepinic. The 13C NMR spectrum of product was consistent with the presence of only one diasterioisomer. These spectral analyses do not enable us to determine relative stereochemistry of the aziridino[2,1-d][1,2,4]]triazolo[4,3-a][1,5]benzodiazepine (trans 2α or cis 2β).

Refinement

All H atoms were located in a difference map and then refined using a riding model, with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C) for CH3, C—H = 0.97 Å and Uiso(H) =1.2Ueq(C) for CH2, and C—H = 0.93 Å and Uiso(H) =1.2Ueq(C) for CH.

Figures

Fig. 1.

Fig. 1.

The reaction scheme of the title compound

Fig. 2.

Fig. 2.

The molecular structure of the title compound, with 50% probability ellipsoids.

Crystal data

C27H23Cl3N4O2 Z = 2
Mr = 541.84 F(000) = 560
Triclinic, P1 Dx = 1.415 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.679 (3) Å Cell parameters from 25 reflections
b = 11.256 (3) Å θ = 10–15°
c = 12.661 (2) Å µ = 0.39 mm1
α = 79.09 (2)° T = 300 K
β = 76.46 (2)° Prism, yellow
γ = 73.04 (2)° 0.3 × 0.15 × 0.1 mm
V = 1271.8 (6) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.010
Radiation source: fine-focus sealed tube θmax = 27.0°, θmin = 2.2°
graphite h = −12→2
ω/2θ scans k = −14→14
6860 measured reflections l = −16→16
5536 independent reflections 2 standard reflections every 60 min
4616 reflections with I > 2σ(I) intensity decay: 1.0%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: difference Fourier map
wR(F2) = 0.101 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.3226P] where P = (Fo2 + 2Fc2)/3
5536 reflections (Δ/σ)max = 0.001
327 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.31467 (5) −0.06197 (4) 0.57617 (5) 0.06714 (16)
Cl2 0.74695 (5) 0.33836 (4) 0.03031 (4) 0.05465 (13)
Cl3 0.50575 (5) 0.37629 (5) 0.21522 (4) 0.05877 (14)
O1 1.09072 (14) 0.71899 (13) 0.20132 (12) 0.0619 (3)
O2 0.85011 (15) 0.79523 (12) 0.19906 (12) 0.0638 (4)
N1 0.94972 (12) 0.42660 (12) 0.40621 (10) 0.0369 (3)
N2 1.02302 (13) 0.51079 (12) 0.34036 (10) 0.0366 (3)
N3 0.78121 (13) 0.58997 (11) 0.34267 (10) 0.0354 (3)
N4 0.72403 (13) 0.50553 (11) 0.16401 (10) 0.0361 (3)
C1 1.20506 (17) 0.07966 (15) 0.52295 (14) 0.0444 (3)
C2 1.26875 (17) 0.15749 (15) 0.44036 (15) 0.0459 (4)
H2 1.3689 0.1335 0.4116 0.055*
C3 1.18305 (16) 0.27115 (15) 0.40070 (13) 0.0413 (3)
H3 1.2258 0.3230 0.3444 0.050*
C4 1.03279 (15) 0.30883 (13) 0.44432 (11) 0.0346 (3)
C5 0.97014 (17) 0.22829 (16) 0.52598 (14) 0.0470 (4)
H5 0.8699 0.2514 0.5548 0.056*
C6 1.05614 (19) 0.11349 (16) 0.56493 (15) 0.0507 (4)
H6 1.0135 0.0596 0.6191 0.061*
C7 0.92343 (15) 0.60263 (13) 0.30379 (11) 0.0345 (3)
C8 0.78887 (14) 0.46551 (13) 0.40868 (11) 0.0322 (3)
C9 0.69700 (16) 0.47994 (15) 0.52411 (12) 0.0405 (3)
H9A 0.7524 0.5014 0.5681 0.049*
H9B 0.6731 0.4025 0.5568 0.049*
H9C 0.6079 0.5450 0.5197 0.049*
C10 0.65238 (15) 0.65391 (13) 0.29762 (12) 0.0355 (3)
C11 0.55573 (18) 0.75943 (15) 0.34035 (15) 0.0464 (4)
H11 0.5753 0.7887 0.3978 0.056*
C12 0.43014 (19) 0.82118 (16) 0.29742 (17) 0.0555 (4)
H12 0.3658 0.8918 0.3259 0.067*
C13 0.40124 (19) 0.77727 (16) 0.21230 (17) 0.0567 (5)
H13 0.3171 0.8187 0.1837 0.068*
C14 0.49615 (18) 0.67216 (16) 0.16904 (15) 0.0492 (4)
H14 0.4760 0.6436 0.1115 0.059*
C15 0.62242 (15) 0.60913 (13) 0.21222 (12) 0.0366 (3)
C16 0.68332 (17) 0.39468 (14) 0.15834 (13) 0.0403 (3)
C17 0.78959 (15) 0.38713 (12) 0.23111 (11) 0.0333 (3)
C18 0.73573 (15) 0.37907 (13) 0.35398 (11) 0.0336 (3)
H18A 0.7696 0.2931 0.3866 0.040*
H18B 0.6290 0.4013 0.3692 0.040*
C19 0.94952 (15) 0.32550 (13) 0.19097 (11) 0.0351 (3)
C20 0.99906 (19) 0.19656 (15) 0.21963 (14) 0.0483 (4)
H20 0.9342 0.1518 0.2625 0.058*
C21 1.1452 (2) 0.13472 (18) 0.18427 (17) 0.0628 (5)
H21 1.1776 0.0486 0.2031 0.075*
C22 1.2422 (2) 0.2009 (2) 0.12121 (17) 0.0644 (5)
H22 1.3402 0.1597 0.0985 0.077*
C23 1.19335 (19) 0.3282 (2) 0.09202 (15) 0.0570 (4)
H23 1.2588 0.3726 0.0494 0.068*
C24 1.04672 (17) 0.39071 (15) 0.12584 (12) 0.0427 (3)
H24 1.0141 0.4763 0.1046 0.051*
C25 0.96658 (18) 0.71092 (15) 0.22958 (13) 0.0422 (3)
C26 0.8773 (3) 0.9023 (2) 0.1207 (2) 0.0818 (7)
H26A 0.9327 0.8752 0.0512 0.098*
H26B 0.9332 0.9448 0.1478 0.098*
C27 0.7316 (4) 0.9875 (2) 0.1068 (3) 0.0985 (9)
H27A 0.6806 1.0179 0.1751 0.118*
H27B 0.6750 0.9428 0.0844 0.118*
H27C 0.7451 1.0570 0.0520 0.118*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0493 (3) 0.0441 (2) 0.0967 (4) 0.00124 (19) −0.0208 (2) 0.0058 (2)
Cl2 0.0623 (3) 0.0590 (3) 0.0487 (2) −0.0108 (2) −0.01682 (19) −0.02154 (19)
Cl3 0.0403 (2) 0.0739 (3) 0.0728 (3) −0.0232 (2) −0.0127 (2) −0.0197 (2)
O1 0.0495 (7) 0.0679 (8) 0.0696 (8) −0.0300 (6) −0.0053 (6) 0.0043 (7)
O2 0.0588 (8) 0.0488 (7) 0.0836 (9) −0.0227 (6) −0.0257 (7) 0.0213 (6)
N1 0.0249 (5) 0.0414 (6) 0.0421 (6) −0.0082 (5) −0.0074 (5) 0.0008 (5)
N2 0.0305 (6) 0.0423 (6) 0.0388 (6) −0.0127 (5) −0.0072 (5) −0.0041 (5)
N3 0.0284 (6) 0.0341 (6) 0.0449 (7) −0.0084 (5) −0.0116 (5) −0.0022 (5)
N4 0.0338 (6) 0.0364 (6) 0.0382 (6) −0.0048 (5) −0.0115 (5) −0.0060 (5)
C1 0.0385 (8) 0.0380 (8) 0.0562 (9) −0.0028 (6) −0.0162 (7) −0.0068 (7)
C2 0.0280 (7) 0.0452 (8) 0.0620 (10) −0.0033 (6) −0.0075 (7) −0.0117 (7)
C3 0.0298 (7) 0.0439 (8) 0.0488 (8) −0.0096 (6) −0.0050 (6) −0.0060 (6)
C4 0.0282 (6) 0.0395 (7) 0.0364 (7) −0.0055 (5) −0.0094 (5) −0.0066 (6)
C5 0.0310 (7) 0.0518 (9) 0.0487 (9) −0.0049 (7) −0.0032 (6) 0.0020 (7)
C6 0.0421 (9) 0.0482 (9) 0.0530 (9) −0.0075 (7) −0.0071 (7) 0.0056 (7)
C7 0.0316 (7) 0.0377 (7) 0.0377 (7) −0.0113 (6) −0.0083 (6) −0.0078 (6)
C8 0.0250 (6) 0.0347 (7) 0.0359 (7) −0.0057 (5) −0.0073 (5) −0.0038 (5)
C9 0.0301 (7) 0.0508 (9) 0.0400 (8) −0.0079 (6) −0.0041 (6) −0.0116 (6)
C10 0.0286 (6) 0.0324 (7) 0.0460 (8) −0.0061 (5) −0.0114 (6) −0.0038 (6)
C11 0.0435 (8) 0.0382 (8) 0.0587 (10) −0.0036 (6) −0.0152 (7) −0.0137 (7)
C12 0.0436 (9) 0.0403 (8) 0.0784 (12) 0.0061 (7) −0.0183 (8) −0.0160 (8)
C13 0.0401 (9) 0.0470 (9) 0.0814 (13) 0.0042 (7) −0.0291 (9) −0.0072 (9)
C14 0.0435 (9) 0.0478 (9) 0.0594 (10) −0.0026 (7) −0.0256 (8) −0.0093 (7)
C15 0.0307 (7) 0.0343 (7) 0.0444 (8) −0.0049 (5) −0.0102 (6) −0.0056 (6)
C16 0.0369 (7) 0.0444 (8) 0.0428 (8) −0.0098 (6) −0.0095 (6) −0.0123 (6)
C17 0.0313 (7) 0.0313 (7) 0.0374 (7) −0.0071 (5) −0.0073 (5) −0.0053 (5)
C18 0.0293 (6) 0.0347 (7) 0.0371 (7) −0.0098 (5) −0.0047 (5) −0.0046 (5)
C19 0.0335 (7) 0.0362 (7) 0.0340 (7) −0.0049 (6) −0.0063 (5) −0.0077 (5)
C20 0.0481 (9) 0.0363 (8) 0.0540 (9) −0.0037 (7) −0.0067 (7) −0.0052 (7)
C21 0.0583 (11) 0.0456 (9) 0.0701 (12) 0.0122 (8) −0.0128 (9) −0.0124 (9)
C22 0.0386 (9) 0.0769 (13) 0.0635 (12) 0.0086 (9) −0.0027 (8) −0.0211 (10)
C23 0.0388 (9) 0.0767 (13) 0.0500 (10) −0.0136 (8) 0.0024 (7) −0.0103 (9)
C24 0.0395 (8) 0.0464 (8) 0.0393 (8) −0.0090 (7) −0.0050 (6) −0.0052 (6)
C25 0.0466 (9) 0.0430 (8) 0.0424 (8) −0.0187 (7) −0.0096 (7) −0.0062 (6)
C26 0.0976 (18) 0.0566 (12) 0.0926 (17) −0.0362 (12) −0.0307 (14) 0.0282 (11)
C27 0.129 (2) 0.0516 (12) 0.104 (2) −0.0106 (14) −0.0397 (18) 0.0166 (13)

Geometric parameters (Å, °)

Cl1—C1 1.7500 (17) C10—C11 1.392 (2)
Cl2—C16 1.7614 (16) C10—C15 1.395 (2)
Cl3—C16 1.7570 (17) C11—C12 1.389 (2)
O1—C25 1.196 (2) C11—H11 0.9300
O2—C25 1.327 (2) C12—C13 1.381 (3)
O2—C26 1.455 (2) C12—H12 0.9300
N1—N2 1.3830 (17) C13—C14 1.385 (2)
N1—C4 1.3979 (18) C13—H13 0.9300
N1—C8 1.4837 (17) C14—C15 1.399 (2)
N2—C7 1.2878 (19) C14—H14 0.9300
N3—C7 1.3886 (18) C16—C17 1.509 (2)
N3—C10 1.4326 (18) C17—C19 1.5081 (19)
N3—C8 1.4804 (18) C17—C18 1.5148 (19)
N4—C15 1.4209 (19) C18—H18A 0.9700
N4—C16 1.4322 (19) C18—H18B 0.9700
N4—C17 1.4936 (18) C19—C24 1.384 (2)
C1—C6 1.379 (2) C19—C20 1.394 (2)
C1—C2 1.381 (2) C20—C21 1.390 (3)
C2—C3 1.382 (2) C20—H20 0.9300
C2—H2 0.9300 C21—C22 1.380 (3)
C3—C4 1.397 (2) C21—H21 0.9300
C3—H3 0.9300 C22—C23 1.378 (3)
C4—C5 1.390 (2) C22—H22 0.9300
C5—C6 1.389 (2) C23—C24 1.393 (2)
C5—H5 0.9300 C23—H23 0.9300
C6—H6 0.9300 C24—H24 0.9300
C7—C25 1.491 (2) C26—C27 1.484 (4)
C8—C9 1.533 (2) C26—H26A 0.9700
C8—C18 1.5506 (19) C26—H26B 0.9700
C9—H9A 0.9600 C27—H27A 0.9600
C9—H9B 0.9600 C27—H27B 0.9600
C9—H9C 0.9600 C27—H27C 0.9600
C25—O2—C26 117.07 (16) C13—C14—H14 120.1
N2—N1—C4 118.46 (11) C15—C14—H14 120.1
N2—N1—C8 113.24 (11) C10—C15—C14 119.52 (14)
C4—N1—C8 127.07 (12) C10—C15—N4 120.50 (12)
C7—N2—N1 106.12 (12) C14—C15—N4 119.84 (14)
C7—N3—C10 127.78 (12) N4—C16—C17 60.97 (9)
C7—N3—C8 108.57 (11) N4—C16—Cl3 121.86 (11)
C10—N3—C8 119.40 (11) C17—C16—Cl3 120.64 (11)
C15—N4—C16 122.29 (12) N4—C16—Cl2 114.44 (11)
C15—N4—C17 122.26 (12) C17—C16—Cl2 120.61 (11)
C16—N4—C17 62.05 (9) Cl3—C16—Cl2 110.44 (8)
C6—C1—C2 120.55 (15) N4—C17—C19 116.19 (12)
C6—C1—Cl1 119.73 (14) N4—C17—C16 56.97 (9)
C2—C1—Cl1 119.71 (12) C19—C17—C16 117.06 (12)
C1—C2—C3 119.74 (14) N4—C17—C18 116.74 (11)
C1—C2—H2 120.1 C19—C17—C18 117.07 (12)
C3—C2—H2 120.1 C16—C17—C18 119.10 (12)
C2—C3—C4 120.61 (15) C17—C18—C8 113.50 (11)
C2—C3—H3 119.7 C17—C18—H18A 108.9
C4—C3—H3 119.7 C8—C18—H18A 108.9
C5—C4—C3 118.81 (14) C17—C18—H18B 108.9
C5—C4—N1 121.63 (13) C8—C18—H18B 108.9
C3—C4—N1 119.55 (13) H18A—C18—H18B 107.7
C6—C5—C4 120.48 (14) C24—C19—C20 119.32 (14)
C6—C5—H5 119.8 C24—C19—C17 122.92 (13)
C4—C5—H5 119.8 C20—C19—C17 117.74 (14)
C1—C6—C5 119.76 (16) C21—C20—C19 120.20 (17)
C1—C6—H6 120.1 C21—C20—H20 119.9
C5—C6—H6 120.1 C19—C20—H20 119.9
N2—C7—N3 113.87 (13) C22—C21—C20 120.11 (17)
N2—C7—C25 119.72 (13) C22—C21—H21 119.9
N3—C7—C25 126.39 (13) C20—C21—H21 119.9
N3—C8—N1 97.86 (10) C23—C22—C21 119.85 (17)
N3—C8—C9 110.22 (12) C23—C22—H22 120.1
N1—C8—C9 113.22 (11) C21—C22—H22 120.1
N3—C8—C18 111.80 (11) C22—C23—C24 120.47 (18)
N1—C8—C18 113.43 (11) C22—C23—H23 119.8
C9—C8—C18 109.85 (11) C24—C23—H23 119.8
C8—C9—H9A 109.5 C19—C24—C23 120.03 (16)
C8—C9—H9B 109.5 C19—C24—H24 120.0
H9A—C9—H9B 109.5 C23—C24—H24 120.0
C8—C9—H9C 109.5 O1—C25—O2 125.08 (15)
H9A—C9—H9C 109.5 O1—C25—C7 123.70 (16)
H9B—C9—H9C 109.5 O2—C25—C7 111.22 (13)
C11—C10—C15 119.98 (13) O2—C26—C27 107.1 (2)
C11—C10—N3 119.99 (14) O2—C26—H26A 110.3
C15—C10—N3 120.01 (13) C27—C26—H26A 110.3
C12—C11—C10 120.18 (16) O2—C26—H26B 110.3
C12—C11—H11 119.9 C27—C26—H26B 110.3
C10—C11—H11 119.9 H26A—C26—H26B 108.6
C13—C12—C11 119.76 (16) C26—C27—H27A 109.5
C13—C12—H12 120.1 C26—C27—H27B 109.5
C11—C12—H12 120.1 H27A—C27—H27B 109.5
C12—C13—C14 120.77 (15) C26—C27—H27C 109.5
C12—C13—H13 119.6 H27A—C27—H27C 109.5
C14—C13—H13 119.6 H27B—C27—H27C 109.5
C13—C14—C15 119.79 (16)
C4—N1—N2—C7 170.77 (12) C16—N4—C15—C10 123.80 (15)
C8—N1—N2—C7 2.53 (16) C17—N4—C15—C10 48.67 (19)
C6—C1—C2—C3 1.1 (3) C16—N4—C15—C14 −60.6 (2)
Cl1—C1—C2—C3 −177.96 (13) C17—N4—C15—C14 −135.70 (15)
C1—C2—C3—C4 0.8 (2) C15—N4—C16—C17 −112.30 (14)
C2—C3—C4—C5 −2.0 (2) C15—N4—C16—Cl3 −2.34 (19)
C2—C3—C4—N1 177.17 (14) C17—N4—C16—Cl3 109.96 (14)
N2—N1—C4—C5 168.12 (14) C15—N4—C16—Cl2 134.90 (12)
C8—N1—C4—C5 −25.5 (2) C17—N4—C16—Cl2 −112.80 (12)
N2—N1—C4—C3 −11.0 (2) C15—N4—C17—C19 −141.09 (13)
C8—N1—C4—C3 155.43 (14) C16—N4—C17—C19 106.56 (14)
C3—C4—C5—C6 1.3 (2) C15—N4—C17—C16 112.35 (15)
N1—C4—C5—C6 −177.85 (15) C15—N4—C17—C18 3.56 (18)
C2—C1—C6—C5 −1.8 (3) C16—N4—C17—C18 −108.79 (14)
Cl1—C1—C6—C5 177.27 (14) Cl3—C16—C17—N4 −111.90 (13)
C4—C5—C6—C1 0.6 (3) Cl2—C16—C17—N4 102.80 (13)
N1—N2—C7—N3 1.62 (16) N4—C16—C17—C19 −105.01 (14)
N1—N2—C7—C25 179.78 (12) Cl3—C16—C17—C19 143.09 (12)
C10—N3—C7—N2 −161.35 (14) Cl2—C16—C17—C19 −2.21 (18)
C8—N3—C7—N2 −5.08 (17) N4—C16—C17—C18 104.62 (14)
C10—N3—C7—C25 20.6 (2) Cl3—C16—C17—C18 −7.28 (18)
C8—N3—C7—C25 176.90 (13) Cl2—C16—C17—C18 −152.58 (11)
C7—N3—C8—N1 5.69 (13) N4—C17—C18—C8 −70.59 (15)
C10—N3—C8—N1 164.27 (12) C19—C17—C18—C8 73.75 (15)
C7—N3—C8—C9 124.04 (12) C16—C17—C18—C8 −135.88 (13)
C10—N3—C8—C9 −77.37 (15) N3—C8—C18—C17 41.51 (15)
C7—N3—C8—C18 −113.48 (12) N1—C8—C18—C17 −67.98 (15)
C10—N3—C8—C18 45.10 (16) C9—C8—C18—C17 164.20 (12)
N2—N1—C8—N3 −5.08 (14) N4—C17—C19—C24 24.5 (2)
C4—N1—C8—N3 −172.10 (13) C16—C17—C19—C24 88.97 (18)
N2—N1—C8—C9 −121.11 (13) C18—C17—C19—C24 −120.05 (15)
C4—N1—C8—C9 71.87 (18) N4—C17—C19—C20 −154.13 (13)
N2—N1—C8—C18 112.84 (13) C16—C17—C19—C20 −89.64 (17)
C4—N1—C8—C18 −54.18 (18) C18—C17—C19—C20 61.34 (18)
C7—N3—C10—C11 −97.33 (19) C24—C19—C20—C21 0.9 (3)
C8—N3—C10—C11 108.64 (16) C17—C19—C20—C21 179.56 (16)
C7—N3—C10—C15 83.81 (19) C19—C20—C21—C22 0.5 (3)
C8—N3—C10—C15 −70.22 (18) C20—C21—C22—C23 −1.0 (3)
C15—C10—C11—C12 −0.7 (3) C21—C22—C23—C24 0.1 (3)
N3—C10—C11—C12 −179.54 (15) C20—C19—C24—C23 −1.7 (2)
C10—C11—C12—C13 0.2 (3) C17—C19—C24—C23 179.67 (15)
C11—C12—C13—C14 0.0 (3) C22—C23—C24—C19 1.2 (3)
C12—C13—C14—C15 0.3 (3) C26—O2—C25—O1 3.4 (3)
C11—C10—C15—C14 1.0 (2) C26—O2—C25—C7 −176.14 (17)
N3—C10—C15—C14 179.86 (14) N2—C7—C25—O1 −0.4 (2)
C11—C10—C15—N4 176.65 (14) N3—C7—C25—O1 177.46 (15)
N3—C10—C15—N4 −4.5 (2) N2—C7—C25—O2 179.06 (14)
C13—C14—C15—C10 −0.8 (3) N3—C7—C25—O2 −3.0 (2)
C13—C14—C15—N4 −176.51 (16) C25—O2—C26—C27 −175.3 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2697).

References

  1. Barltrop, J. A., Richards, C. G., Russel, D. M. & Ryback, G. J. (1959). J. Chem. Soc. pp. 1132–1142.
  2. Chiaroni, A., Riche, C., Baouid, A., Hasnaoui, A., Benharref, A. & Lavergne, J.-P. (1995). Acta Cryst. C51, 1352–1355.
  3. El Hazazi, S., Baouid, A., Hasnaoui, A. & Pierrot, M. (2000). Acta Cryst. C56, e457–e458. [DOI] [PubMed]
  4. El Hazazi, S., Baouid, A., Hasnaoui, A. & Compain, P. (2003). Synth. Commun. 33, 19–27.
  5. Enraf–Nonius (1989). CAD-4 EXPRESS Enraf–Nonius, Deft, The Netherlands.
  6. Fair, C. K. (1990). MolEN Enraf–Nonius, Delft, The Netherlands.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Sharp, B. & Hamilton, C. S. (1946). J. Am. Chem. Soc. 68, 588–591. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811014115/is2697sup1.cif

e-67-o1211-sup1.cif (25.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014115/is2697Isup2.hkl

e-67-o1211-Isup2.hkl (265.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES