Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):o1145. doi: 10.1107/S1600536811013304

(1RS,2RS,3SR,5RS,7RS)-2,5-Dichloro-8-oxabicyclo­[5.1.0]octan-3-ol

Yasin Çetinkaya a, Abdullah Menzek a, Tuncer Hökelek b,*
PMCID: PMC3089258  PMID: 21754453

Abstract

In the title compound, C7H10Cl2O2, the seven-membered ring displays a chair conformation. In the crystal, the hy­droxy H atom is equally disordered over two orientations, and links with an adjacent mol­ecule via an O—H⋯O hydrogen bond in both cases. Weak inter­molecular C—H⋯O hydrogen bonding is also a feature of the crystal structure.

Related literature

For background to syn-bis-epoxides, see: Balcı (1981); Akbulut et al. (1987); Menzek & Balcı (1993); Saraçoğlu et al. (1999). For background to unsaturated bicyclic endopexide, see: Menzek et al. (2005). For background to epoxide and bis-epoxide, see: Şengül et al. (2008).graphic file with name e-67-o1145-scheme1.jpg

Experimental

Crystal data

  • C7H10Cl2O2

  • M r = 197.05

  • Orthorhombic, Inline graphic

  • a = 21.9202 (5) Å

  • b = 9.9343 (3) Å

  • c = 8.1005 (2) Å

  • V = 1763.98 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 294 K

  • 0.32 × 0.20 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.845, T max = 0.900

  • 32813 measured reflections

  • 1801 independent reflections

  • 1267 reflections with I > 2σ(I)

  • R int = 0.110

Refinement

  • R[F 2 > 2σ(F 2)] = 0.088

  • wR(F 2) = 0.190

  • S = 1.18

  • 1801 reflections

  • 115 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013304/xu5182sup1.cif

e-67-o1145-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013304/xu5182Isup2.hkl

e-67-o1145-Isup2.hkl (87KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O2i 0.83 (11) 1.96 (11) 2.746 (7) 159 (12)
O2—H2B⋯O2ii 0.85 1.84 2.692 (8) 174
C2—H21⋯O1iii 0.97 2.43 3.398 (7) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for the use of X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

supplementary crystallographic information

Comment

Unsaturated bicyclic endopexides are important compounds for versatile chemical transformations in organic chemistry. In these endoperoxides, diradicals formed by thermal cleavage of the weak O-O bonds react to give the syn-bis-epoxides (Balcı, 1981; Akbulut et al., 1987; Menzek & Balcı, 1993; Saraçoğlu et al., 1999).

Unsaturated bicyclic endopexide, (1), (Scheme 1) was synthesized by the literature method (Menzek et al., 2005). Reaction of endoperoxide, (1), by heating at 453 (5) K gave a mixture of products (Scheme 1). The title compound, (2), was isolated from these mixtures. The other products were not identified. According to the NMR data of dichloride, (2), it was not easy to establish the exact configuration of the molecule. Therefore, the exact structure of dichloride, (2), was determined by X-ray single crystal analysis.

To rationalize the formation of dichloride, (2), we propose the following reaction mechanism as favourable mechanism (Scheme 1). Bis-epoxide, (3), is produced via diradicals formed by thermal cleavage of the weak O-O bonds. HCl formed by elimination from reaction products such as (3) can attack bis-epoxide, (3), to give intermediate (4). Cl- can attack intermediate (4) to give dichloride, (2), as a nucleophile. An epoxide or bis-epoxide ring (Şengül et al., 2008) may be opened by as a nucleophile.

In the title compound, the seven-membered ring A (C1-C7) is, of course, not planar. The planar moieties B (O1/C1/C7), C (C3-C5), D (C2/C3/C5/C6) and E (C1/C2/C6/C7) are oriented at dihedral angles of B/C = 68.75 (46)°, B/D = 13.84 (28)°, B/E = 74.48 (32)°, C/D = 54.91 (42)°, C/E = 6.00 (42)° and D/E = 60.65 (30)°.

In the crystal, intermolecular O—H···O and C—H···O hydrogen bonds link the molecules into a three-dimensional network (Table 1 and Fig. 2).

Experimental

For the preparation of the title compound, a mixture of endoproxide (0.5 g, 2.6 mmol) and benzene (5 ml) was placed into a test tube, sealed under vacuum and heated at 453 (5) K for 3 d. After cooling to room temperature, the solvent was evaporated. The residue was submitted to column chromatography (silica gel, 90 g) with AcOEt/hexane (1:6) as eluant. Dichloride (yield: 0.056 g, 9%, m. p. 366-368 K) and a mixture of unidentified products were obtained. Dichloride was crystallized from ethyl acetate/hexane (1:1) as colorless block crystals.

Refinement

H1, H7, H21, H22 and H41, H42 atoms were positioned geometrically with C—H = 0.98 and 0.97 Å, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The remaining H-atoms were located in a difference Fourier map and refined isotropically. The H atom of the OH group was disordered over two orientations. During the refinement process, the disordered H2A and H2B atoms were refined with equal occupancies.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound. The O-H···O and C-H···O hydrogen bonds are shown as dashed lines.

Crystal data

C7H10Cl2O2 F(000) = 816
Mr = 197.05 Dx = 1.484 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 4978 reflections
a = 21.9202 (5) Å θ = 2.3–26.4°
b = 9.9343 (3) Å µ = 0.68 mm1
c = 8.1005 (2) Å T = 294 K
V = 1763.98 (8) Å3 Block, colorless
Z = 8 0.32 × 0.20 × 0.15 mm

Data collection

Rigaku R-AXIS RAPID-S diffractometer 1801 independent reflections
Radiation source: fine-focus sealed tube 1267 reflections with I > 2σ(I)
graphite Rint = 0.110
ω scans θmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan (Blessing, 1995) h = −27→27
Tmin = 0.845, Tmax = 0.900 k = −12→12
32813 measured reflections l = −9→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.088 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190 H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.020P)2 + 5.1831P] where P = (Fo2 + 2Fc2)/3
1801 reflections (Δ/σ)max < 0.001
115 parameters Δρmax = 0.28 e Å3
2 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.59049 (9) 0.41547 (16) 0.1157 (2) 0.0883 (6)
Cl2 0.62620 (9) 1.07361 (16) 0.1076 (2) 0.0841 (6)
O1 0.7389 (2) 0.8227 (5) 0.1601 (7) 0.1017 (17)
O2 0.5199 (2) 0.8930 (5) 0.0928 (7) 0.0941 (16)
H2A 0.511 (7) 0.945 (11) 0.017 (12) 0.090* 0.50
H2B 0.5050 0.8950 0.1900 0.090* 0.50
C1 0.7119 (3) 0.7145 (7) 0.0682 (10) 0.084 (2)
H1 0.7361 0.6806 −0.0247 0.101*
C2 0.6766 (2) 0.6091 (6) 0.1650 (9) 0.0732 (18)
H21 0.7003 0.5271 0.1751 0.088*
H22 0.6672 0.6421 0.2748 0.088*
C3 0.6182 (3) 0.5825 (6) 0.0692 (8) 0.0604 (15)
H3 0.628 (3) 0.578 (7) −0.042 (9) 0.10 (2)*
C4 0.5669 (2) 0.6810 (5) 0.1042 (8) 0.0610 (14)
H41 0.5303 0.6467 0.0516 0.073*
H42 0.5595 0.6806 0.2223 0.073*
C5 0.5748 (2) 0.8269 (6) 0.0507 (8) 0.0582 (14)
H5 0.580 (2) 0.832 (5) −0.066 (7) 0.057 (16)*
C6 0.6294 (3) 0.8926 (5) 0.1265 (7) 0.0558 (13)
H6 0.636 (2) 0.873 (5) 0.231 (7) 0.066 (18)*
C7 0.6885 (2) 0.8499 (6) 0.0502 (8) 0.0703 (17)
H7 0.6993 0.8954 −0.0531 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1032 (13) 0.0592 (9) 0.1024 (14) −0.0091 (8) −0.0189 (11) 0.0044 (9)
Cl2 0.1150 (14) 0.0573 (9) 0.0799 (11) −0.0025 (9) 0.0052 (10) −0.0046 (8)
O1 0.067 (3) 0.095 (4) 0.143 (5) −0.021 (3) −0.030 (3) 0.028 (3)
O2 0.067 (3) 0.084 (3) 0.132 (5) 0.024 (2) 0.023 (3) 0.012 (3)
C1 0.049 (3) 0.097 (5) 0.107 (6) 0.011 (3) 0.009 (4) 0.011 (5)
C2 0.055 (3) 0.069 (4) 0.096 (5) 0.014 (3) −0.016 (3) 0.010 (3)
C3 0.066 (4) 0.052 (3) 0.063 (4) 0.001 (3) 0.001 (3) −0.005 (3)
C4 0.049 (3) 0.058 (3) 0.075 (4) 0.001 (2) −0.009 (3) −0.004 (3)
C5 0.050 (3) 0.064 (3) 0.061 (4) 0.008 (3) −0.001 (3) 0.004 (3)
C6 0.066 (3) 0.049 (3) 0.052 (3) 0.001 (2) −0.009 (3) 0.000 (3)
C7 0.052 (3) 0.075 (4) 0.084 (4) −0.006 (3) 0.009 (3) 0.014 (3)

Geometric parameters (Å, °)

Cl1—C3 1.806 (6) C3—C2 1.520 (8)
Cl2—C6 1.806 (6) C3—C4 1.518 (7)
O1—C1 1.434 (8) C3—H3 0.93 (7)
O1—C7 1.443 (7) C4—C5 1.522 (8)
O2—C5 1.413 (7) C4—H41 0.9700
O2—H2B 0.853 (5) C4—H42 0.9700
O2—H2A 0.82 (2) C5—H5 0.95 (5)
C1—C7 1.447 (9) C6—C5 1.497 (8)
C1—H1 0.9800 C6—C7 1.497 (8)
C2—C1 1.521 (8) C6—H6 0.88 (6)
C2—H21 0.9700 C7—H7 0.9800
C2—H22 0.9700
C5—O2—H2B 124.0 (5) C3—C4—H41 107.7
C5—O2—H2A 109 (10) C3—C4—H42 107.7
H2B—O2—H2A 125 (10) C5—C4—H41 107.7
C1—O1—C7 60.4 (4) C5—C4—H42 107.7
O1—C1—C2 117.3 (6) H42—C4—H41 107.1
O1—C1—C7 60.1 (4) O2—C5—C4 106.1 (5)
O1—C1—H1 115.7 O2—C5—C6 112.3 (5)
C2—C1—H1 115.7 O2—C5—H5 109 (3)
C7—C1—C2 120.7 (5) C4—C5—H5 110 (3)
C7—C1—H1 115.7 C6—C5—C4 112.9 (5)
C1—C2—H21 110.4 C6—C5—H5 107 (3)
C1—C2—H22 110.4 Cl2—C6—H6 108 (4)
C3—C2—C1 106.6 (5) C5—C6—Cl2 111.6 (4)
C3—C2—H21 110.4 C5—C6—C7 113.6 (5)
C3—C2—H22 110.4 C5—C6—H6 116 (4)
H21—C2—H22 108.6 C7—C6—Cl2 106.3 (4)
Cl1—C3—H3 104 (4) C7—C6—H6 101 (4)
C2—C3—Cl1 109.6 (4) O1—C7—C1 59.5 (4)
C2—C3—H3 108 (4) O1—C7—C6 117.4 (6)
C4—C3—Cl1 107.7 (4) O1—C7—H7 115.4
C4—C3—C2 114.6 (5) C1—C7—C6 122.0 (5)
C4—C3—H3 113 (4) C1—C7—H7 115.4
C3—C4—C5 118.4 (5) C6—C7—H7 115.4
C7—O1—C1—C2 −111.5 (6) C3—C4—C5—O2 177.8 (5)
C1—O1—C7—C6 112.7 (6) C3—C4—C5—C6 −58.7 (7)
O1—C1—C7—C6 −105.2 (7) Cl2—C6—C5—O2 −44.3 (6)
C2—C1—C7—O1 105.9 (8) Cl2—C6—C5—C4 −164.2 (4)
C2—C1—C7—C6 0.7 (10) C7—C6—C5—O2 −164.5 (5)
C3—C2—C1—O1 135.8 (5) C7—C6—C5—C4 75.6 (7)
C3—C2—C1—C7 66.0 (8) Cl2—C6—C7—C1 168.9 (6)
Cl1—C3—C2—C1 154.6 (5) Cl2—C6—C7—O1 99.4 (5)
C4—C3—C2—C1 −84.1 (7) C5—C6—C7—O1 −137.5 (5)
Cl1—C3—C4—C5 −170.8 (4) C5—C6—C7—C1 −68.0 (8)
C2—C3—C4—C5 66.8 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O2i 0.83 (11) 1.96 (11) 2.746 (7) 159 (12)
O2—H2B···O2ii 0.85 1.84 2.692 (8) 174
C2—H21···O1iii 0.97 2.43 3.398 (7) 172

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+1, y, −z+1/2; (iii) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5182).

References

  1. Akbulut, N., Menzek, A. & Balcı, M. (1987). Tetrahedron Lett. 28, 1689–1692.
  2. Balcı, M. (1981). Chem. Rev. 81, 91–108.
  3. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Menzek, A. & Balcı, M. (1993). Aust. J. Chem. 46, 1613–1621.
  8. Menzek, A., Şengül, M. E., Çetinkaya, Y. & Ceylan, S. (2005). J. Chem. Res. pp. 209–214.
  9. Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  10. Saraçoğlu, N., Menzek, A., Sayan, Ş., Salzner, U. & Balcı, M. (1999). J. Org. Chem. 64, 6670–6676. [DOI] [PubMed]
  11. Şengül, M. E., Menzek, A., Şahin, E., Arık, M. & Saracoğlu, N. (2008). Tetrahedron, 64, 7289–7294.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811013304/xu5182sup1.cif

e-67-o1145-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013304/xu5182Isup2.hkl

e-67-o1145-Isup2.hkl (87KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES