Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 22;67(Pt 5):o1196. doi: 10.1107/S1600536811014504

4-(2-{[4-Amino-6-(4-nitro­benz­yl)-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl]sulfan­yl}acet­yl)-3-phenyl­sydnone

Hoong-Kun Fun a,*,, Mohd Mustaqim Rosli a, Nithinchandra b, Balakrishna Kalluraya b
PMCID: PMC3089265  PMID: 21754498

Abstract

In the crystal, C20H15N7O6S, the dihedral angle between the oxadiazole and triazine rings is 86.94 (7)°. The oxadiazole ring makes a dihedral angle of 52.96 (8)° with the phenyl ring, while the triazine ring makes a dihedral angle of 82.08 (7)° with the benzene ring. In the structure, mol­ecules are linked by a pair of N—H⋯O hydrogen bonds, forming an inversion dimer. The dimers are further stacked along the a axis via N—H⋯N hydrogen bonds. Weak inter­molecular C—H⋯O inter­actions are also observed.

Related literature

For the biological activity of sydnone derivatives, see: Rai et al. (2008); Jyothi et al. (2008); Kalluraya et al. (2008a ,b ). For a related structure, see: Fun et al. (2011).graphic file with name e-67-o1196-scheme1.jpg

Experimental

Crystal data

  • C20H15N7O6S

  • M r = 481.45

  • Triclinic, Inline graphic

  • a = 6.4071 (1) Å

  • b = 10.1629 (2) Å

  • c = 17.1521 (3) Å

  • α = 106.372 (1)°

  • β = 92.400 (1)°

  • γ = 97.551 (1)°

  • V = 1058.61 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 297 K

  • 0.51 × 0.34 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.900, T max = 0.965

  • 21821 measured reflections

  • 7793 independent reflections

  • 5330 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.131

  • S = 1.04

  • 7793 reflections

  • 315 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014504/is2702sup1.cif

e-67-o1196-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014504/is2702Isup2.hkl

e-67-o1196-Isup2.hkl (381.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H2N7⋯O4i 0.89 (2) 2.15 (2) 3.0152 (19) 163.5 (18)
N7—H1N7⋯N4ii 0.89 (2) 2.43 (2) 3.1019 (17) 133.1 (17)
N7—H1N7⋯N5ii 0.89 (2) 2.45 (2) 3.0166 (16) 122.5 (16)
C3—H3A⋯O5iii 0.93 2.57 3.345 (3) 141
C14—H14A⋯O3iv 0.97 2.53 3.4443 (18) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HKF and MMR thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

supplementary crystallographic information

Comment

Sydnones are mesoionic heterocyclic aromatic compounds. The study of sydnones still remains a field of interest because of their electronic structures and also because of the varied types of biological activities displayed by some of them (Rai et al., 2008). Recently sydnone derivatives were found to exhibit promising antimicrobial properties (Kalluraya et al., 2008). Since their discovery, sydnones have shown diverse biological activities and it is thought that the meso-ionic nature of the sydnone ring promotes significant interactions with biological systems. Because of wide variety of properties displayed by sydnones ,we were prompted to synthesize a new S-substituted triazinones containing a sydnone ring.

Photochemical bromination of 3-aryl-4-acetylsydnone afforded 3-aryl-4 bromoacetylsydnones. Condensation of 4-amino-6-(p-nitrobenzyl)-3-sulfanyl-1,2,4-triazin-5(4H)-one with 3-phenyl-4-bromoacetylsydnones yielded S-substituted triazinone derivatives (Jyothi et al., 2008).

All parameters in (I), Fig. 1, are within normal ranges and comparable with the related structure (Fun et al., 2011). The dihedral angle between oxadiazole (C7/C8/N1/N2/O1) and triazine (C11/N3/C12/C13/N4/N5) groups is 86.94 (7)°. The oxadiazole and triazine groups make dihedral angles of 52.96 (8) and 83.08 (7)° with the C1–C6 phneyl ring and 9.51 (8) and 82.08 (7)° with the C15–C20 benzene ring, respectively.

In the crystal structure, the N7—H2N7···O4i, N7—H1N7···N4ii, N7—H1N7···N5ii, C3—H3A···O5iii and C14—H14A···O3iv intermolecular interactions (Table 1) link the molecules into two-dimensional sheets parallel to the ac-plane (Fig. 2).

Experimental

To a solution of 4-bromoacetyl-3-phenylsydnone (0.01mol) and 4-amino-6-(p-nitrobenzyl)-3-sulfanyl-1,2,4-triazin-5(4H)-one (0.01mol) in ethanol, a catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2-3 hours. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

N-bound H atoms were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing of (I) viewed along the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

Crystal data

C20H15N7O6S Z = 2
Mr = 481.45 F(000) = 496
Triclinic, P1 Dx = 1.510 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.4071 (1) Å Cell parameters from 5430 reflections
b = 10.1629 (2) Å θ = 3.7–30.1°
c = 17.1521 (3) Å µ = 0.21 mm1
α = 106.372 (1)° T = 297 K
β = 92.400 (1)° Block, yellow
γ = 97.551 (1)° 0.51 × 0.34 × 0.17 mm
V = 1058.61 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 7793 independent reflections
Radiation source: fine-focus sealed tube 5330 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 32.8°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→9
Tmin = 0.900, Tmax = 0.965 k = −15→15
21821 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0615P)2 + 0.084P] where P = (Fo2 + 2Fc2)/3
7793 reflections (Δ/σ)max < 0.001
315 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.76158 (5) 0.56912 (4) 0.39458 (2) 0.04815 (10)
N1 1.40303 (17) 0.45428 (11) 0.21692 (6) 0.0388 (2)
N2 1.5454 (2) 0.37194 (13) 0.20533 (8) 0.0525 (3)
N3 0.73930 (15) 0.81262 (11) 0.49757 (6) 0.0362 (2)
N4 1.14452 (17) 0.85392 (13) 0.56156 (7) 0.0460 (3)
N5 1.06998 (16) 0.73678 (12) 0.49822 (7) 0.0430 (2)
N6 0.8522 (4) 0.87248 (18) 0.93514 (10) 0.0851 (6)
N7 0.52842 (19) 0.77429 (15) 0.46377 (9) 0.0531 (3)
O1 1.51411 (17) 0.29797 (10) 0.26042 (7) 0.0531 (3)
O2 1.29331 (18) 0.28459 (11) 0.35900 (7) 0.0565 (3)
O3 1.07909 (19) 0.62369 (11) 0.28170 (7) 0.0604 (3)
O4 0.68160 (17) 1.01247 (11) 0.58890 (6) 0.0536 (3)
O5 0.6980 (4) 0.9118 (2) 0.96790 (12) 0.1335 (8)
O6 0.9522 (4) 0.7945 (2) 0.95653 (11) 0.1279 (8)
C1 1.2266 (3) 0.54038 (16) 0.11647 (9) 0.0520 (3)
H1A 1.1003 0.4875 0.1210 0.062*
C2 1.2384 (3) 0.61847 (18) 0.06204 (10) 0.0643 (4)
H2A 1.1181 0.6198 0.0302 0.077*
C3 1.4275 (3) 0.69420 (17) 0.05489 (10) 0.0653 (5)
H3A 1.4347 0.7444 0.0171 0.078*
C4 1.6052 (3) 0.69646 (18) 0.10286 (11) 0.0660 (4)
H4A 1.7315 0.7491 0.0980 0.079*
C5 1.5974 (3) 0.62030 (16) 0.15882 (10) 0.0541 (3)
H5A 1.7166 0.6213 0.1919 0.065*
C6 1.4068 (2) 0.54316 (13) 0.16354 (7) 0.0412 (3)
C7 1.3425 (2) 0.33732 (13) 0.30715 (8) 0.0411 (3)
C8 1.27298 (19) 0.44150 (12) 0.27599 (7) 0.0352 (2)
C9 1.1124 (2) 0.52770 (12) 0.30653 (7) 0.0382 (2)
C10 0.9904 (2) 0.48508 (14) 0.37157 (8) 0.0438 (3)
H10A 1.0834 0.5066 0.4210 0.053*
H10B 0.9464 0.3855 0.3535 0.053*
C11 0.87411 (17) 0.71923 (13) 0.47012 (7) 0.0347 (2)
C12 0.8018 (2) 0.93081 (13) 0.56189 (7) 0.0380 (2)
C13 1.0230 (2) 0.94417 (13) 0.59158 (7) 0.0392 (3)
C14 1.1084 (2) 1.06316 (14) 0.66524 (8) 0.0484 (3)
H14A 1.0497 1.1456 0.6635 0.058*
H14B 1.2609 1.0831 0.6662 0.058*
C15 1.0474 (2) 1.02257 (13) 0.74039 (8) 0.0418 (3)
C16 0.8680 (3) 1.05963 (15) 0.77747 (9) 0.0516 (3)
H16A 0.7898 1.1176 0.7592 0.062*
C17 0.8036 (3) 1.01111 (17) 0.84163 (10) 0.0592 (4)
H17A 0.6821 1.0350 0.8663 0.071*
C18 0.9234 (3) 0.92666 (15) 0.86812 (9) 0.0575 (4)
C19 1.1038 (3) 0.89030 (17) 0.83385 (10) 0.0652 (5)
H19A 1.1834 0.8342 0.8533 0.078*
C20 1.1651 (3) 0.93889 (16) 0.76961 (9) 0.0559 (4)
H20A 1.2875 0.9151 0.7455 0.067*
H2N7 0.492 (3) 0.848 (2) 0.4511 (12) 0.084 (6)*
H1N7 0.456 (3) 0.764 (2) 0.5051 (13) 0.077 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.03577 (16) 0.0519 (2) 0.0551 (2) 0.01356 (13) 0.00911 (13) 0.00898 (15)
N1 0.0436 (5) 0.0376 (5) 0.0387 (5) 0.0140 (4) 0.0093 (4) 0.0123 (4)
N2 0.0569 (7) 0.0522 (7) 0.0586 (7) 0.0271 (5) 0.0224 (6) 0.0211 (6)
N3 0.0302 (4) 0.0467 (5) 0.0407 (5) 0.0173 (4) 0.0105 (4) 0.0210 (4)
N4 0.0339 (5) 0.0572 (7) 0.0483 (6) 0.0106 (5) 0.0098 (4) 0.0150 (5)
N5 0.0310 (5) 0.0536 (6) 0.0477 (6) 0.0155 (4) 0.0102 (4) 0.0147 (5)
N6 0.1383 (18) 0.0596 (9) 0.0504 (8) −0.0176 (10) 0.0025 (10) 0.0201 (7)
N7 0.0326 (5) 0.0653 (8) 0.0628 (8) 0.0238 (5) 0.0036 (5) 0.0135 (6)
O1 0.0586 (6) 0.0485 (5) 0.0657 (6) 0.0301 (5) 0.0198 (5) 0.0259 (5)
O2 0.0658 (7) 0.0529 (6) 0.0680 (6) 0.0225 (5) 0.0167 (5) 0.0374 (5)
O3 0.0766 (7) 0.0571 (6) 0.0694 (7) 0.0392 (6) 0.0293 (6) 0.0371 (5)
O4 0.0598 (6) 0.0541 (6) 0.0554 (6) 0.0336 (5) 0.0097 (5) 0.0177 (5)
O5 0.181 (2) 0.1328 (17) 0.1005 (13) 0.0027 (15) 0.0624 (14) 0.0588 (12)
O6 0.212 (2) 0.1014 (12) 0.0919 (11) 0.0126 (13) 0.0041 (13) 0.0687 (11)
C1 0.0579 (8) 0.0514 (8) 0.0478 (7) 0.0030 (6) −0.0001 (6) 0.0193 (6)
C2 0.0845 (12) 0.0638 (10) 0.0494 (8) 0.0089 (9) −0.0052 (8) 0.0264 (7)
C3 0.0971 (14) 0.0556 (9) 0.0515 (8) 0.0105 (9) 0.0159 (9) 0.0280 (7)
C4 0.0753 (11) 0.0606 (10) 0.0676 (10) 0.0017 (8) 0.0239 (9) 0.0287 (8)
C5 0.0531 (8) 0.0571 (8) 0.0553 (8) 0.0070 (7) 0.0109 (6) 0.0209 (7)
C6 0.0510 (7) 0.0393 (6) 0.0364 (6) 0.0113 (5) 0.0102 (5) 0.0131 (5)
C7 0.0440 (6) 0.0350 (6) 0.0491 (7) 0.0139 (5) 0.0080 (5) 0.0157 (5)
C8 0.0373 (6) 0.0334 (5) 0.0390 (6) 0.0113 (4) 0.0073 (4) 0.0139 (4)
C9 0.0417 (6) 0.0365 (6) 0.0401 (6) 0.0141 (5) 0.0074 (5) 0.0126 (5)
C10 0.0462 (7) 0.0436 (7) 0.0486 (7) 0.0187 (5) 0.0152 (5) 0.0178 (5)
C11 0.0305 (5) 0.0442 (6) 0.0386 (5) 0.0149 (4) 0.0137 (4) 0.0211 (5)
C12 0.0436 (6) 0.0423 (6) 0.0388 (6) 0.0177 (5) 0.0119 (5) 0.0230 (5)
C13 0.0400 (6) 0.0438 (6) 0.0413 (6) 0.0083 (5) 0.0116 (5) 0.0221 (5)
C14 0.0534 (8) 0.0445 (7) 0.0499 (7) 0.0040 (6) 0.0077 (6) 0.0190 (6)
C15 0.0499 (7) 0.0350 (6) 0.0403 (6) 0.0085 (5) 0.0014 (5) 0.0102 (5)
C16 0.0597 (9) 0.0499 (8) 0.0527 (8) 0.0211 (6) 0.0097 (6) 0.0205 (6)
C17 0.0697 (10) 0.0567 (9) 0.0513 (8) 0.0109 (7) 0.0181 (7) 0.0132 (7)
C18 0.0912 (12) 0.0417 (7) 0.0373 (6) −0.0004 (7) 0.0020 (7) 0.0130 (5)
C19 0.0953 (13) 0.0524 (8) 0.0544 (9) 0.0241 (9) −0.0070 (9) 0.0219 (7)
C20 0.0632 (9) 0.0554 (8) 0.0547 (8) 0.0252 (7) 0.0043 (7) 0.0177 (7)

Geometric parameters (Å, °)

S1—C11 1.7448 (13) C3—C4 1.370 (3)
S1—C10 1.7951 (13) C3—H3A 0.9300
N1—N2 1.3013 (15) C4—C5 1.391 (2)
N1—C8 1.3616 (15) C4—H4A 0.9300
N1—C6 1.4550 (16) C5—C6 1.380 (2)
N2—O1 1.3693 (15) C5—H5A 0.9300
N3—C11 1.3660 (14) C7—C8 1.4242 (16)
N3—C12 1.3820 (17) C8—C9 1.4572 (16)
N3—N7 1.4079 (15) C9—C10 1.5165 (17)
N4—C13 1.2914 (17) C10—H10A 0.9700
N4—N5 1.3797 (16) C10—H10B 0.9700
N5—C11 1.2966 (15) C12—C13 1.4615 (18)
N6—O6 1.205 (3) C13—C14 1.5049 (19)
N6—O5 1.214 (3) C14—C15 1.5112 (18)
N6—C18 1.472 (2) C14—H14A 0.9700
N7—H2N7 0.90 (2) C14—H14B 0.9700
N7—H1N7 0.89 (2) C15—C16 1.381 (2)
O1—C7 1.4212 (16) C15—C20 1.3856 (19)
O2—C7 1.1937 (16) C16—C17 1.384 (2)
O3—C9 1.2083 (15) C16—H16A 0.9300
O4—C12 1.2156 (15) C17—C18 1.377 (2)
C1—C6 1.373 (2) C17—H17A 0.9300
C1—C2 1.384 (2) C18—C19 1.366 (3)
C1—H1A 0.9300 C19—C20 1.380 (2)
C2—C3 1.377 (3) C19—H19A 0.9300
C2—H2A 0.9300 C20—H20A 0.9300
C11—S1—C10 100.23 (6) O3—C9—C10 123.28 (11)
N2—N1—C8 114.78 (10) C8—C9—C10 113.88 (10)
N2—N1—C6 114.59 (10) C9—C10—S1 113.41 (9)
C8—N1—C6 130.62 (10) C9—C10—H10A 108.9
N1—N2—O1 105.29 (10) S1—C10—H10A 108.9
C11—N3—C12 121.18 (10) C9—C10—H10B 108.9
C11—N3—N7 116.60 (11) S1—C10—H10B 108.9
C12—N3—N7 121.80 (10) H10A—C10—H10B 107.7
C13—N4—N5 120.91 (11) N5—C11—N3 123.75 (12)
C11—N5—N4 118.18 (11) N5—C11—S1 121.37 (9)
O6—N6—O5 122.9 (2) N3—C11—S1 114.86 (9)
O6—N6—C18 118.8 (2) O4—C12—N3 122.00 (12)
O5—N6—C18 118.2 (2) O4—C12—C13 125.50 (12)
N3—N7—H2N7 106.2 (14) N3—C12—C13 112.50 (10)
N3—N7—H1N7 104.2 (14) N4—C13—C12 123.40 (12)
H2N7—N7—H1N7 107.5 (19) N4—C13—C14 118.21 (12)
N2—O1—C7 110.84 (9) C12—C13—C14 118.20 (11)
C6—C1—C2 118.12 (15) C13—C14—C15 108.09 (10)
C6—C1—H1A 120.9 C13—C14—H14A 110.1
C2—C1—H1A 120.9 C15—C14—H14A 110.1
C3—C2—C1 120.27 (16) C13—C14—H14B 110.1
C3—C2—H2A 119.9 C15—C14—H14B 110.1
C1—C2—H2A 119.9 H14A—C14—H14B 108.4
C4—C3—C2 120.72 (14) C16—C15—C20 119.09 (13)
C4—C3—H3A 119.6 C16—C15—C14 121.16 (12)
C2—C3—H3A 119.6 C20—C15—C14 119.60 (13)
C3—C4—C5 120.24 (16) C15—C16—C17 120.48 (14)
C3—C4—H4A 119.9 C15—C16—H16A 119.8
C5—C4—H4A 119.9 C17—C16—H16A 119.8
C6—C5—C4 117.79 (16) C18—C17—C16 118.61 (16)
C6—C5—H5A 121.1 C18—C17—H17A 120.7
C4—C5—H5A 121.1 C16—C17—H17A 120.7
C1—C6—C5 122.84 (13) C19—C18—C17 122.36 (14)
C1—C6—N1 119.32 (12) C19—C18—N6 119.06 (17)
C5—C6—N1 117.71 (13) C17—C18—N6 118.58 (19)
O2—C7—O1 120.32 (11) C18—C19—C20 118.29 (15)
O2—C7—C8 136.17 (13) C18—C19—H19A 120.9
O1—C7—C8 103.50 (10) C20—C19—H19A 120.9
N1—C8—C7 105.59 (10) C19—C20—C15 121.14 (16)
N1—C8—C9 126.62 (10) C19—C20—H20A 119.4
C7—C8—C9 127.47 (11) C15—C20—H20A 119.4
O3—C9—C8 122.84 (12)
C8—N1—N2—O1 −0.65 (15) C12—N3—C11—N5 −3.89 (17)
C6—N1—N2—O1 −179.61 (10) N7—N3—C11—N5 −176.56 (12)
C13—N4—N5—C11 −0.56 (18) C12—N3—C11—S1 174.64 (8)
N1—N2—O1—C7 0.50 (15) N7—N3—C11—S1 1.97 (14)
C6—C1—C2—C3 1.2 (3) C10—S1—C11—N5 −5.61 (11)
C1—C2—C3—C4 −1.7 (3) C10—S1—C11—N3 175.82 (8)
C2—C3—C4—C5 0.9 (3) C11—N3—C12—O4 −177.39 (11)
C3—C4—C5—C6 0.4 (3) N7—N3—C12—O4 −5.09 (18)
C2—C1—C6—C5 0.1 (2) C11—N3—C12—C13 2.88 (15)
C2—C1—C6—N1 −175.51 (14) N7—N3—C12—C13 175.17 (11)
C4—C5—C6—C1 −0.9 (2) N5—N4—C13—C12 −0.10 (18)
C4—C5—C6—N1 174.80 (13) N5—N4—C13—C14 174.79 (11)
N2—N1—C6—C1 124.32 (14) O4—C12—C13—N4 179.22 (12)
C8—N1—C6—C1 −54.43 (19) N3—C12—C13—N4 −1.05 (16)
N2—N1—C6—C5 −51.51 (17) O4—C12—C13—C14 4.33 (18)
C8—N1—C6—C5 129.74 (15) N3—C12—C13—C14 −175.94 (10)
N2—O1—C7—O2 −179.23 (13) N4—C13—C14—C15 −92.98 (14)
N2—O1—C7—C8 −0.19 (14) C12—C13—C14—C15 82.18 (14)
N2—N1—C8—C7 0.54 (15) C13—C14—C15—C16 −94.98 (15)
C6—N1—C8—C7 179.29 (12) C13—C14—C15—C20 80.63 (16)
N2—N1—C8—C9 174.43 (12) C20—C15—C16—C17 −1.6 (2)
C6—N1—C8—C9 −6.8 (2) C14—C15—C16—C17 174.06 (13)
O2—C7—C8—N1 178.62 (16) C15—C16—C17—C18 0.7 (2)
O1—C7—C8—N1 −0.19 (13) C16—C17—C18—C19 0.6 (2)
O2—C7—C8—C9 4.8 (3) C16—C17—C18—N6 −178.61 (14)
O1—C7—C8—C9 −174.00 (12) O6—N6—C18—C19 −1.9 (3)
N1—C8—C9—O3 −0.7 (2) O5—N6—C18—C19 176.04 (19)
C7—C8—C9—O3 171.92 (13) O6—N6—C18—C17 177.31 (17)
N1—C8—C9—C10 178.87 (12) O5—N6—C18—C17 −4.7 (3)
C7—C8—C9—C10 −8.56 (19) C17—C18—C19—C20 −1.0 (3)
O3—C9—C10—S1 10.82 (18) N6—C18—C19—C20 178.23 (14)
C8—C9—C10—S1 −168.69 (9) C18—C19—C20—C15 0.1 (2)
C11—S1—C10—C9 −88.06 (10) C16—C15—C20—C19 1.2 (2)
N4—N5—C11—N3 2.54 (18) C14—C15—C20—C19 −174.51 (14)
N4—N5—C11—S1 −175.89 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N7—H2N7···O4i 0.89 (2) 2.15 (2) 3.0152 (19) 163.5 (18)
N7—H1N7···N4ii 0.89 (2) 2.43 (2) 3.1019 (17) 133.1 (17)
N7—H1N7···N5ii 0.89 (2) 2.45 (2) 3.0166 (16) 122.5 (16)
C3—H3A···O5iii 0.93 2.57 3.345 (3) 141.
C14—H14A···O3iv 0.97 2.53 3.4443 (18) 157.

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y, z; (iii) x+1, y, z−1; (iv) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2702).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Fun, H.-K., Quah, C. K., Nithinchandra, & Kalluraya, B. (2011). Acta Cryst. E67, o1004. [DOI] [PMC free article] [PubMed]
  3. Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834. [DOI] [PubMed]
  4. Kalluraya, B., Nayak, J., Adhikari, A., Sujith, K. V., Shetty, N. S. & Winter, M. (2008a). Phosphorus Sulfur Silicon Relat. Elem. 183, 1870–1883.
  5. Kalluraya, B., Rao, J. N. & Sujith, K. V. (2008b). Indian J. Heterocycl. Chem. 17, 359–362.
  6. Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014504/is2702sup1.cif

e-67-o1196-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014504/is2702Isup2.hkl

e-67-o1196-Isup2.hkl (381.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES