Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):o1055. doi: 10.1107/S1600536811011901

2,6-Dichloro-1-[(1E)-2-(phenyl­sulfon­yl)ethen­yl]benzene

Michael S South a, Adirika J Obiako a, Richard E Sykora a, David C Forbes a,*
PMCID: PMC3089273  PMID: 21754382

Abstract

In the title compound, C14H10Cl2O2S, the product of a base-catalyzed condensation followed by deca­rboxylation of the carboxyl­ate group of the sulfonyl derivative, the configuration of the alkene unit is E. The torsion angle between the alkene unit and the 2,6-dichloro­phenyl ring system is −40.8 (3)°. The dihedral angle between the rings is 80.39 (7)°.

Related literature

For a review on the use of vinyl sulfones in organic chemistry, see: Simpkins (1990). For the use of phenyl­sulfonyl­acetic acid in the formation of vinyl sulfones, see: Baliah & Seshapathirao (1959). For a general review on the condensation of activated methyl­enes onto aryl aldehydes, see: Jones (1967). For the structure of the related phenyl vinyl sulfone, see: Briggs et al. (1998).graphic file with name e-67-o1055-scheme1.jpg

Experimental

Crystal data

  • C14H10Cl2O2S

  • M r = 313.18

  • Triclinic, Inline graphic

  • a = 7.5924 (6) Å

  • b = 8.3060 (4) Å

  • c = 11.3360 (9) Å

  • α = 78.639 (5)°

  • β = 84.976 (7)°

  • γ = 77.497 (6)°

  • V = 683.49 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 290 K

  • 0.52 × 0.34 × 0.06 mm

Data collection

  • Oxford Xcalibur E diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.810, T max = 0.961

  • 4291 measured reflections

  • 2491 independent reflections

  • 1741 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.078

  • S = 0.95

  • 2491 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS96 (Sheldrick, 2008); program(s) used to refine structure: SHELXL96 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011901/ng5134sup1.cif

e-67-o1055-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011901/ng5134Isup2.hkl

e-67-o1055-Isup2.hkl (122.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the National Science Foundation (NSF-CAREER grant to RES, CHE-0846680; NSF-RUI grant to DCF, CHE-0957482). DCF also gratefully acknowledges the NIGMS (NIH NIGMS 1R15GM085936) and the Camille and Henry Dreyfus Foundation (TH-06–008) for partial support of this work.

supplementary crystallographic information

Comment

We recently explored the use of commercially available phenylsulfonylacetic acid under base catalysis with the anticipation of observing the same mode of transfer using sulfonium salts; methylene transfer onto carbonyl derivatives. The use of not sulfonium but sulfonyl functionality does allow for one to explore catalysis, which is a realm of S-ylide chemistry yet to be fully explored. For this study, observed was not only methylene transfer but formation of the condensation adduct vinyl sulfone (an α,β-unsaturated sulfone). Under not base but acid catalysis, this type of condensation is common as previously reported by Baliah & Seshapathirao (1959) and Jones (1967). The title compound, C14H10Cl2O2S, was isolated as the major product in moderate yield and offered definitive evidence of the condensation of the 2,6-dichlorobenzaldehyde with phenylsulfonylacetic acid.

The C1–C2 bond distance of 1.320 (3) Å confirms the alkene moiety, the configuration of which is E. This distance is slightly elongated as compared with the comparable distance of 1.313 (3) Å in phenyl vinyl sulfone (PVS) reported by Briggs et al. (1998). Other geometric parameters in the title compound are similar but also subtly affected relative to PVS. For example, the average S=O bond lengths are 1.436 (2) Å in the title compound but 1.443 (1) Å in PVS. Also shortened are the S–C bonds in the title compound (1.7683 (19) and 1.748 (2) Å) relative to PVS (1.770 (2) and 1.755 (2) Å), the longer bond in both cases being to the phenyl moiety. The C–S–C bond is noticably more acute in the title compound (102.84 (9)°) relative to PVS (104.64 (8)°), while the O=S=O angle in PVS (118.79 (8)°) is slightly more acute than the comparable angle in the title compound (119.35 (10)°). The torsion angle between the alkene moiety and the 2,6-dichlorophenyl ring in the title compound is 40.8 (3)°.

Experimental

To a 0.125M THF solution of phenylsulfonylacetic acid (1 g, 4.99 mmol, 2.0 equiv) was added 439 mg of 2,6-dichlorobenzaldehyde (2.51 mmol, 1.0 equiv). A 40 wt% solution of benzyltrimethylammonium hydroxide in methanol was next added by syringe (2.1 ml, 4.99 mmol, 2.0 equiv). The 50 ml one-neck round bottomed flask equipped with a magnetic stir bar was fitted with a condenser and allowed to warm to reflux. After a period of 18 h, the solution was cooled to 60 °C and 15 ml of deionized water was added and allowed to stir at this temperature for a period of 1 h. The resulting mixture was allowed to cool to room temperature at which time the mixture was washed with approximately 20 ml of ethyl acetate. After partitioning the organic from the aqueous phase, the organic fraction was washed with brine, dried over anhydrous magnesium sulfate, and concentrated in vacuo. Purification by column chromatography over silica gel (eluting with 9:1 hexanes/ethyl acetate) afforded the title compound (355 mg, 45% yield). White crystalline solid, mp: 78–82 °C. IR (KBr): 1628, 1446, 1307, 1147 cm-1. 1H NMR (300 MHz; CDCl3) δ 7.19 (2H, m), 7.35 (2H, s), 7.64 (2H, m), 7.84 (1H, d, J = 15.9 Hz), 7.98 (1H, brs); 13C NMR (300 MHz; CDCl3) δ 128.4, 129.5, 129.9, 131.3, 133.9, 135.3, 135.9, 136.3, 140.1; EI—MS (m/z) 313 (M+); HRMS calcd for C14H10Cl2O2S (M+H) 312.9857, found 312.9858.

Refinement

Hydrogen atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å.

Figures

Fig. 1.

Fig. 1.

A thermal ellipsoid plot (50%) of the title compound showing the labeling scheme.

Crystal data

C14H10Cl2O2S Z = 2
Mr = 313.18 F(000) = 320
Triclinic, P1 Dx = 1.522 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5924 (6) Å Cell parameters from 2060 reflections
b = 8.3060 (4) Å θ = 3.2–25.3°
c = 11.3360 (9) Å µ = 0.62 mm1
α = 78.639 (5)° T = 290 K
β = 84.976 (7)° Plate, colorless
γ = 77.497 (6)° 0.52 × 0.34 × 0.06 mm
V = 683.49 (8) Å3

Data collection

Oxford Xcalibur E diffractometer 2491 independent reflections
Radiation source: fine-focus sealed tube 1741 reflections with I > 2σ(I)
graphite Rint = 0.017
Detector resolution: 16.0514 pixels mm-1 θmax = 25.4°, θmin = 3.2°
ω scans h = −9→9
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010) k = −6→10
Tmin = 0.810, Tmax = 0.961 l = −13→13
4291 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0394P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95 (Δ/σ)max < 0.001
2491 reflections Δρmax = 0.20 e Å3
173 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.025 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.09983 (8) 0.38328 (6) 0.16893 (5) 0.04924 (19)
Cl1 0.28536 (9) 0.37676 (7) 0.55021 (6) 0.0761 (2)
Cl2 0.22076 (8) −0.20158 (6) 0.41978 (5) 0.0586 (2)
O1 0.2065 (2) 0.25879 (17) 0.10588 (14) 0.0635 (5)
O2 −0.0899 (2) 0.43654 (18) 0.14956 (15) 0.0668 (5)
C1 0.1250 (3) 0.3114 (2) 0.32340 (19) 0.0453 (5)
H1 0.0678 0.3793 0.3774 0.054*
C2 0.2236 (3) 0.1626 (2) 0.36487 (19) 0.0429 (5)
H2 0.2819 0.1011 0.3073 0.051*
C3 0.2521 (2) 0.0828 (2) 0.49086 (18) 0.0386 (5)
C4 0.2567 (3) −0.0897 (2) 0.52656 (19) 0.0418 (5)
C5 0.2828 (3) −0.1734 (3) 0.6421 (2) 0.0534 (6)
H5 0.2842 −0.2878 0.6616 0.064*
C6 0.3067 (3) −0.0875 (3) 0.7290 (2) 0.0628 (7)
H6 0.3230 −0.1430 0.8082 0.075*
C7 0.3066 (3) 0.0818 (3) 0.6987 (2) 0.0601 (7)
H7 0.3249 0.1400 0.7572 0.072*
C8 0.2794 (3) 0.1645 (2) 0.5823 (2) 0.0489 (6)
C9 0.1980 (3) 0.5626 (2) 0.14040 (18) 0.0420 (5)
C10 0.0892 (3) 0.7191 (2) 0.1258 (2) 0.0552 (6)
H10 −0.0358 0.7315 0.1295 0.066*
C11 0.1671 (4) 0.8583 (3) 0.1055 (2) 0.0666 (7)
H11 0.0944 0.9651 0.0967 0.080*
C12 0.3499 (4) 0.8396 (3) 0.0984 (2) 0.0646 (7)
H12 0.4015 0.9338 0.0847 0.077*
C13 0.4585 (3) 0.6833 (3) 0.1112 (2) 0.0684 (7)
H13 0.5834 0.6716 0.1048 0.082*
C14 0.3827 (3) 0.5431 (3) 0.1335 (2) 0.0574 (6)
H14 0.4558 0.4364 0.1438 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0624 (4) 0.0385 (3) 0.0468 (4) −0.0171 (3) −0.0074 (3) 0.0017 (2)
Cl1 0.0899 (5) 0.0429 (3) 0.1012 (6) −0.0076 (3) −0.0297 (4) −0.0227 (3)
Cl2 0.0746 (4) 0.0417 (3) 0.0626 (4) −0.0171 (3) −0.0078 (3) −0.0088 (3)
O1 0.1015 (13) 0.0397 (8) 0.0520 (10) −0.0200 (8) 0.0019 (9) −0.0110 (7)
O2 0.0585 (10) 0.0693 (10) 0.0709 (12) −0.0269 (8) −0.0199 (9) 0.0141 (8)
C1 0.0487 (13) 0.0397 (11) 0.0445 (14) −0.0069 (10) 0.0002 (10) −0.0040 (10)
C2 0.0411 (12) 0.0379 (11) 0.0488 (14) −0.0107 (9) 0.0018 (10) −0.0047 (10)
C3 0.0321 (11) 0.0369 (10) 0.0441 (13) −0.0055 (8) −0.0011 (9) −0.0031 (9)
C4 0.0359 (12) 0.0397 (11) 0.0488 (14) −0.0095 (9) −0.0015 (10) −0.0042 (10)
C5 0.0530 (14) 0.0442 (12) 0.0578 (16) −0.0106 (10) −0.0052 (11) 0.0051 (11)
C6 0.0648 (17) 0.0724 (17) 0.0435 (16) −0.0043 (13) −0.0111 (12) 0.0009 (12)
C7 0.0566 (16) 0.0715 (16) 0.0539 (17) −0.0025 (13) −0.0132 (12) −0.0226 (13)
C8 0.0426 (13) 0.0448 (12) 0.0593 (16) −0.0020 (10) −0.0073 (11) −0.0147 (11)
C9 0.0524 (14) 0.0362 (11) 0.0372 (13) −0.0095 (10) −0.0051 (10) −0.0043 (9)
C10 0.0523 (14) 0.0432 (12) 0.0685 (17) −0.0047 (11) −0.0138 (12) −0.0070 (11)
C11 0.091 (2) 0.0358 (12) 0.0729 (19) −0.0110 (13) −0.0263 (16) −0.0023 (11)
C12 0.096 (2) 0.0589 (16) 0.0488 (16) −0.0414 (15) −0.0048 (14) −0.0056 (12)
C13 0.0584 (16) 0.0802 (18) 0.079 (2) −0.0298 (14) 0.0101 (14) −0.0331 (15)
C14 0.0552 (15) 0.0480 (12) 0.0706 (18) −0.0073 (11) −0.0029 (12) −0.0187 (12)

Geometric parameters (Å, °)

S1—O2 1.4353 (16) C6—C7 1.380 (3)
S1—O1 1.4364 (15) C6—H6 0.9300
S1—C1 1.748 (2) C7—C8 1.373 (3)
S1—C9 1.7683 (19) C7—H7 0.9300
Cl1—C8 1.738 (2) C9—C10 1.369 (3)
Cl2—C4 1.736 (2) C9—C14 1.373 (3)
C1—C2 1.320 (3) C10—C11 1.381 (3)
C1—H1 0.9300 C10—H10 0.9300
C2—C3 1.464 (3) C11—C12 1.360 (3)
C2—H2 0.9300 C11—H11 0.9300
C3—C8 1.398 (3) C12—C13 1.367 (3)
C3—C4 1.404 (3) C12—H12 0.9300
C4—C5 1.365 (3) C13—C14 1.378 (3)
C5—C6 1.371 (3) C13—H13 0.9300
C5—H5 0.9300 C14—H14 0.9300
O2—S1—O1 119.35 (10) C8—C7—C6 120.1 (2)
O2—S1—C1 107.76 (10) C8—C7—H7 119.9
O1—S1—C1 108.27 (9) C6—C7—H7 119.9
O2—S1—C9 108.45 (9) C7—C8—C3 122.2 (2)
O1—S1—C9 108.92 (9) C7—C8—Cl1 117.54 (16)
C1—S1—C9 102.84 (9) C3—C8—Cl1 120.25 (17)
C2—C1—S1 121.25 (17) C10—C9—C14 120.77 (19)
C2—C1—H1 119.4 C10—C9—S1 119.66 (16)
S1—C1—H1 119.4 C14—C9—S1 119.57 (15)
C1—C2—C3 127.63 (19) C9—C10—C11 119.2 (2)
C1—C2—H2 116.2 C9—C10—H10 120.4
C3—C2—H2 116.2 C11—C10—H10 120.4
C8—C3—C4 115.12 (19) C12—C11—C10 120.2 (2)
C8—C3—C2 125.15 (17) C12—C11—H11 119.9
C4—C3—C2 119.72 (17) C10—C11—H11 119.9
C5—C4—C3 123.29 (18) C11—C12—C13 120.5 (2)
C5—C4—Cl2 118.16 (15) C11—C12—H12 119.7
C3—C4—Cl2 118.52 (16) C13—C12—H12 119.7
C4—C5—C6 119.5 (2) C12—C13—C14 120.0 (2)
C4—C5—H5 120.3 C12—C13—H13 120.0
C6—C5—H5 120.3 C14—C13—H13 120.0
C5—C6—C7 119.8 (2) C9—C14—C13 119.3 (2)
C5—C6—H6 120.1 C9—C14—H14 120.3
C7—C6—H6 120.1 C13—C14—H14 120.3
O2—S1—C1—C2 128.08 (17) C2—C3—C8—C7 −179.5 (2)
O1—S1—C1—C2 −2.3 (2) C4—C3—C8—Cl1 177.68 (14)
C9—S1—C1—C2 −117.47 (18) C2—C3—C8—Cl1 −1.1 (3)
S1—C1—C2—C3 −177.57 (14) O2—S1—C9—C10 10.8 (2)
C1—C2—C3—C8 −40.8 (3) O1—S1—C9—C10 142.12 (18)
C1—C2—C3—C4 140.4 (2) C1—S1—C9—C10 −103.16 (19)
C8—C3—C4—C5 1.1 (3) O2—S1—C9—C14 −169.41 (17)
C2—C3—C4—C5 179.93 (18) O1—S1—C9—C14 −38.06 (19)
C8—C3—C4—Cl2 179.04 (14) C1—S1—C9—C14 76.65 (18)
C2—C3—C4—Cl2 −2.1 (3) C14—C9—C10—C11 −0.9 (3)
C3—C4—C5—C6 −0.3 (3) S1—C9—C10—C11 178.95 (17)
Cl2—C4—C5—C6 −178.28 (17) C9—C10—C11—C12 1.0 (3)
C4—C5—C6—C7 −0.8 (3) C10—C11—C12—C13 0.0 (4)
C5—C6—C7—C8 1.1 (4) C11—C12—C13—C14 −1.1 (4)
C6—C7—C8—C3 −0.3 (3) C10—C9—C14—C13 −0.2 (3)
C6—C7—C8—Cl1 −178.79 (18) S1—C9—C14—C13 179.95 (18)
C4—C3—C8—C7 −0.8 (3) C12—C13—C14—C9 1.2 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5134).

References

  1. Baliah, V. & Seshapathirao, M. (1959). J. Org. Chem. 24, 867.
  2. Briggs, A. D., Clegg, W., Elsegood, M. R. J., Frampton, C. S. & Jackson, R. F. W. (1998). Acta Cryst. C54, 1335–1341.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Jones, G. (1967). Org. React. 15, 204–599.
  5. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction, Abingdon, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Simpkins, N. S. (1990). Tetrahedron, 46, 6951–6984.
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536811011901/ng5134sup1.cif

e-67-o1055-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011901/ng5134Isup2.hkl

e-67-o1055-Isup2.hkl (122.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES