Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 7;67(Pt 5):o1040. doi: 10.1107/S1600536811011639

(S)-[5-Methyl-3-(3-methyl­thio­phen-2-yl)-4,5-dihydro­isoxazol-5-yl]methanol

Young Kwan Ko a,*, Jae Wook Ryu a, Dong Wan Koo a, Jae Choon Woo b, Chong-Hyeak Kim c
PMCID: PMC3089274  PMID: 21754367

Abstract

In the title compound, C10H13NO2S, the thio­phene and isoxazoline rings are almost coplanar, the dihedral angle between their least-squares planes being 2.08 (1)°. The O—H atoms of the methyl hy­droxy group and the N atom of the isoxazole ring are orientated in the same direction to allow for the formation of inter­molecular O—H⋯N hydrogen bonds that lead to a supra­molecular chain along the a axis.

Related literature

For the synthesis, biological activity and mode of action of herbicides, see; Ryu et al. (2005); Hwang et al. (2005); Koo et al. (2007); Koo & Hwang (2008). For relevant reviews of herbicides, see; Boger et al. (2002); Bryant & Bite (2010).graphic file with name e-67-o1040-scheme1.jpg

Experimental

Crystal data

  • C10H13NO2S

  • M r = 211.27

  • Orthorhombic, Inline graphic

  • a = 7.3672 (9) Å

  • b = 8.8534 (11) Å

  • c = 16.0632 (19) Å

  • V = 1047.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.39 × 0.20 × 0.11 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.898, T max = 0.970

  • 11038 measured reflections

  • 2619 independent reflections

  • 2096 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.149

  • S = 1.08

  • 2619 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983), 1087 Friedel pairs

  • Flack parameter: 0.02 (14)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011639/tk2733sup1.cif

e-67-o1040-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011639/tk2733Isup2.hkl

e-67-o1040-Isup2.hkl (128.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯N7i 0.82 2.17 2.905 (3) 150

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the R&D Program of MKE/KEIT [10035240, Development of new herbicides for resistant weeds with mutated genes].

supplementary crystallographic information

Comment

Weed control is very important for the improvment of agricultural efficiency Boger et al., 2002; Bryant et al., 2010). A number of herbicides have been used for the purpose of weed killing. Recently a new isoxazoline herbicide MRC-01 has been developed (Ryu et al., 2005; Hwang et al., 2005; Koo et al., 2007; Koo & Hwang, 2008; Bryant & Bite, 2010). MRC-01 was synthesized by the reaction of [5-methyl-3-(3-methylthiophen -2-yl)-4,5-dihydroisoxazol-5-yl]methanol and 2,6-difluorobenzylbromide in the presence of base. The key intermediate [5-methyl-3-(3-methylthiophen-2-yl)-4,5-dihydroisoxazol-5-yl]methanol was used as racemic compound but could be separated into enantiomers by employing chiral HPLC column technology. Herein, we report the crystal structure of title compound (Fig. 1). The thiophene ring and the isoxazole ring are almost coplanar with the dihedral angle being 2.08 (1) °. The conformation of the O—H of the methyl hydroxy group and the N atom of the isoxazole ring are in the same direction to allow intermolecular hydrogen bonds to form. In the crystal structure (Fig. 2), the molecules are linked by these O—H···N hydrogen bonds into a one-dimensional chain running along the a axis.

Experimental

The title compound was obtained by a chiral separation of racemic [5-methyl-3-(3-methylthiophen-2-yl)-4,5-dihydroisoxazol-5-yl]methanol employing chiral prep-HPLC under the condition shown below. HPLC conditions: Column: (R,R) WHELK-01 (25 cm x 10.0 mm). Regis.Co.; Eluent: 25% 2-propanol + 75% n-hexane; Flow Rate 4.0 ml/min; Detection: 254 nm; Injection volume: 0.1 ml. The first eluting fraction was concentrated under reduced pressure to provide the title compound [α]D -59.95 (c = 1, dichloromethane). Single crystals suitable for X-ray diffraction were prepared by recrystallization from its ethyl acetate solution at room temperature.

Refinement

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2–1.5 Ueq(C, O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The molecular packing structure of the title compound, viewed down the c axis showing the O—H···N hydrogen bonds as dashed lines.

Crystal data

C10H13NO2S F(000) = 448
Mr = 211.27 Dx = 1.339 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4205 reflections
a = 7.3672 (9) Å θ = 2.5–26.1°
b = 8.8534 (11) Å µ = 0.28 mm1
c = 16.0632 (19) Å T = 296 K
V = 1047.7 (2) Å3 Block, silver
Z = 4 0.39 × 0.20 × 0.11 mm

Data collection

Bruker APEXII CCD diffractometer 2619 independent reflections
Radiation source: fine-focus sealed tube 2096 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −6→9
Tmin = 0.898, Tmax = 0.970 k = −11→11
11038 measured reflections l = −21→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.086P)2 + 0.1644P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
2619 reflections Δρmax = 0.47 e Å3
127 parameters Δρmin = −0.36 e Å3
0 restraints Absolute structure: Flack (1983), 1087 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.02 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.00757 (12) 0.90745 (7) 0.64150 (4) 0.0503 (2)
C2 −0.0074 (4) 0.8815 (3) 0.53306 (13) 0.0390 (4)
C3 −0.0070 (5) 0.7321 (3) 0.51314 (15) 0.0446 (5)
C4 −0.0075 (4) 0.6395 (3) 0.58618 (17) 0.0525 (6)
H4A −0.0080 0.5345 0.5841 0.063*
C5 −0.0071 (5) 0.7169 (3) 0.65749 (17) 0.0568 (6)
H5 −0.0067 0.6721 0.7099 0.068*
C6 −0.0104 (4) 1.0139 (2) 0.47984 (12) 0.0368 (4)
N7 −0.0045 (4) 1.1462 (2) 0.51234 (11) 0.0448 (4)
O8 −0.0178 (4) 1.25711 (18) 0.45051 (10) 0.0490 (5)
C9 −0.0104 (4) 1.1857 (3) 0.36792 (13) 0.0405 (5)
C10 −0.0244 (4) 1.0174 (3) 0.38670 (13) 0.0423 (6)
H10A −0.1394 0.9763 0.3679 0.051*
H10B 0.0740 0.9615 0.3610 0.051*
C11 0.1691 (4) 1.2299 (4) 0.3280 (2) 0.0630 (9)
H11A 0.1707 1.3369 0.3182 0.094*
H11B 0.1828 1.1774 0.2760 0.094*
H11C 0.2672 1.2033 0.3645 0.094*
C12 −0.1672 (4) 1.2500 (4) 0.31872 (17) 0.0452 (6)
H12A −0.1627 1.3593 0.3219 0.054*
H12B −0.1527 1.2219 0.2607 0.054*
O13 −0.3406 (2) 1.2007 (2) 0.34646 (11) 0.0489 (5)
H13 −0.3554 1.2261 0.3951 0.073*
C14 −0.0073 (5) 0.6707 (3) 0.42966 (17) 0.0507 (6)
H14A −0.0080 0.7518 0.3900 0.076*
H14B −0.1134 0.6093 0.4220 0.076*
H14C 0.0994 0.6101 0.4216 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0500 (4) 0.0629 (4) 0.0381 (3) 0.0022 (4) −0.0002 (4) 0.0035 (2)
C2 0.0289 (10) 0.0484 (11) 0.0399 (9) 0.0021 (13) −0.0002 (12) 0.0035 (8)
C3 0.0314 (11) 0.0483 (12) 0.0540 (13) 0.0039 (14) 0.0010 (14) 0.0021 (9)
C4 0.0406 (12) 0.0495 (13) 0.0673 (16) 0.0052 (15) −0.0003 (17) 0.0198 (11)
C5 0.0458 (13) 0.0715 (17) 0.0529 (13) 0.0036 (18) 0.0057 (16) 0.0222 (12)
C6 0.0320 (10) 0.0401 (10) 0.0383 (10) −0.0011 (13) −0.0029 (12) −0.0017 (8)
N7 0.0555 (12) 0.0430 (9) 0.0361 (8) 0.0010 (14) −0.0045 (13) 0.0004 (7)
O8 0.0711 (14) 0.0379 (8) 0.0380 (8) 0.0026 (11) −0.0086 (11) −0.0009 (6)
C9 0.0412 (11) 0.0465 (11) 0.0340 (9) −0.0041 (14) −0.0004 (13) 0.0005 (8)
C10 0.0525 (15) 0.0389 (10) 0.0355 (9) 0.0021 (12) −0.0024 (12) −0.0035 (8)
C11 0.0416 (15) 0.079 (2) 0.069 (2) −0.0069 (16) 0.0063 (15) 0.0075 (18)
C12 0.0408 (14) 0.0556 (15) 0.0391 (12) 0.0012 (13) 0.0003 (12) 0.0045 (11)
O13 0.0397 (9) 0.0606 (11) 0.0462 (10) −0.0008 (9) 0.0025 (8) −0.0063 (9)
C14 0.0455 (12) 0.0429 (12) 0.0637 (14) 0.0026 (15) 0.0004 (16) 0.0016 (10)

Geometric parameters (Å, °)

S1—C5 1.706 (3) C9—C11 1.522 (4)
S1—C2 1.757 (2) C9—C10 1.524 (3)
C2—C3 1.361 (3) C10—H10A 0.9700
C2—C6 1.451 (3) C10—H10B 0.9700
C3—C4 1.431 (3) C11—H11A 0.9600
C3—C14 1.447 (3) C11—H11B 0.9600
C4—C5 1.335 (4) C11—H11C 0.9600
C4—H4A 0.9300 C12—O13 1.422 (3)
C5—H5 0.9300 C12—H12A 0.9700
C6—N7 1.283 (3) C12—H12B 0.9700
C6—C10 1.500 (3) O13—H13 0.8200
N7—O8 1.400 (2) C14—H14A 0.9600
O8—C9 1.470 (3) C14—H14B 0.9600
C9—C12 1.511 (4) C14—H14C 0.9600
C5—S1—C2 91.14 (12) C6—C10—H10A 111.3
C3—C2—C6 130.3 (2) C9—C10—H10A 111.3
C3—C2—S1 111.12 (17) C6—C10—H10B 111.3
C6—C2—S1 118.57 (17) C9—C10—H10B 111.3
C2—C3—C4 111.4 (2) H10A—C10—H10B 109.2
C2—C3—C14 125.7 (2) C9—C11—H11A 109.5
C4—C3—C14 123.0 (2) C9—C11—H11B 109.5
C5—C4—C3 114.1 (2) H11A—C11—H11B 109.5
C5—C4—H4A 122.9 C9—C11—H11C 109.5
C3—C4—H4A 122.9 H11A—C11—H11C 109.5
C4—C5—S1 112.24 (19) H11B—C11—H11C 109.5
C4—C5—H5 123.9 O13—C12—C9 114.0 (2)
S1—C5—H5 123.9 O13—C12—H12A 108.7
N7—C6—C2 119.83 (19) C9—C12—H12A 108.7
N7—C6—C10 112.94 (18) O13—C12—H12B 108.7
C2—C6—C10 127.22 (19) C9—C12—H12B 108.7
C6—N7—O8 110.42 (17) H12A—C12—H12B 107.6
N7—O8—C9 109.65 (16) C12—O13—H13 109.5
O8—C9—C12 106.4 (2) C3—C14—H14A 109.5
O8—C9—C11 107.6 (2) C3—C14—H14B 109.5
C12—C9—C11 110.33 (19) H14A—C14—H14B 109.5
O8—C9—C10 103.84 (16) C3—C14—H14C 109.5
C12—C9—C10 114.8 (2) H14A—C14—H14C 109.5
C11—C9—C10 113.2 (3) H14B—C14—H14C 109.5
C6—C10—C9 102.27 (17)
C5—S1—C2—C3 0.0 (3) C2—C6—N7—O8 −177.1 (3)
C5—S1—C2—C6 179.1 (2) C10—C6—N7—O8 1.6 (4)
C6—C2—C3—C4 −178.8 (3) C6—N7—O8—C9 −7.3 (3)
S1—C2—C3—C4 0.2 (4) N7—O8—C9—C12 131.1 (2)
C6—C2—C3—C14 0.8 (6) N7—O8—C9—C11 −110.7 (3)
S1—C2—C3—C14 179.8 (3) N7—O8—C9—C10 9.5 (3)
C2—C3—C4—C5 −0.4 (4) N7—C6—C10—C9 4.4 (4)
C14—C3—C4—C5 −180.0 (3) C2—C6—C10—C9 −177.1 (3)
C3—C4—C5—S1 0.4 (4) O8—C9—C10—C6 −8.0 (3)
C2—S1—C5—C4 −0.2 (3) C12—C9—C10—C6 −123.7 (2)
C3—C2—C6—N7 −177.8 (4) C11—C9—C10—C6 108.3 (3)
S1—C2—C6—N7 3.3 (4) O8—C9—C12—O13 −70.1 (3)
C3—C2—C6—C10 3.7 (5) C11—C9—C12—O13 173.5 (3)
S1—C2—C6—C10 −175.2 (3) C10—C9—C12—O13 44.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O13—H13···N7i 0.82 2.17 2.905 (3) 150

Symmetry codes: (i) x−1/2, −y+5/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2733).

References

  1. Boger, P., Wakabayashi, K. & Hirai, K. (2002). Herbicide Classeses in Development (mode of action, targets, genetic engineering, chemistry), edited by P. Boger, K. Wakabayashi & K. Hirai. Berlin, Heidelberg: Springer-Verlag.
  2. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bryant, R. & Bite, M. (2010). Ag Chem New Compound Review, Vol 28, p. 59. Orpington: Agranova.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Hwang, I. T., Kim, H. R., Jeon, D. J., Hong, K. S., Song, J. H. & Cho, K. Y. (2005). J. Agric. Food Chem. 53, 8639–8643. [DOI] [PubMed]
  6. Koo, S. J. & Hwang, K. H. (2008). Korea Patent 0814420.
  7. Koo, S. J., Hwang, K. H., Hwang, I. T., Jeon, D. J. & Kim, H. R. (2007). Proceedings of the 21th Asian Pacific Weed Science Society Conference, pp. 591–601.
  8. Ryu, E. K., Kim, H. R., Jeon, D. J., Song, J. H., Kim, K. M., Lee, J. N., Kim, H. C. & Hong, K. S. (2005). US Patent 6838416.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811011639/tk2733sup1.cif

e-67-o1040-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811011639/tk2733Isup2.hkl

e-67-o1040-Isup2.hkl (128.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES