Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 16;67(Pt 5):m604–m605. doi: 10.1107/S1600536811013626

(OC-6-35)-(2,2′-Bipyridine-κ2 N,N′)dimeth­yl(3-sulfido­propionato-κ2 S,O)platinum(IV)

Matthew S McCready a, Richard J Puddephatt a,*
PMCID: PMC3089277  PMID: 21754323

Abstract

The title complex, [Pt(CH3)2(SCH2CH2CO2)(C10H8N2)], is formed by the unusual oxidative addition of the disulfide, R 2S2 (R = CH2CH2CO2H), to (2,2′-bipyridine)­dimethyl­platin­um(II) with elimination of RSH. The product contains an unusual six-membered thiol­ate–carboxyl­ate chelate ring. This slightly distorted octa­hedral complex exhibits cis angles ranging from 77.55 (11) to 97.30 (8)° due to the presence of the thiol­ate–carboxyl­ate chelate ring and the constrained bipyridine group. The crystal packing appears to be controlled by a combination of π-stacking [centroid–centroid distance = 3.611 (2) Å] and C—H⋯O inter­actions.

Related literature

For general background to metal complexes with thiol­ate–carboxyl­ate chelates, see: Henderson et al. (2000); McCready & Puddephatt (2011); Phillips & Burford (2008). For the utility and application of disulfides and their reactivity towards transition metals, see: Aye et al. (1993); Bonnington et al. (2008); Wei et al. (2005). For normal ranges of bond angles at platinum(IV) between cis ligands, see: Achar et al. (1993); Aye et al. (1988). For inter­planar spacing between bipyridine rings in platinum(IV) complexes of 2,2′-bipyridine, see: Au et al. (2009). For the preparation of dimeth­yl(2,2′-bipyridine)­plat­inum(II), see: Monaghan & Puddephatt (1984).graphic file with name e-67-0m604-scheme1.jpg

Experimental

Crystal data

  • [Pt(CH3)2(C3H4O2S)(C10H8N2)]

  • M r = 485.46

  • Monoclinic, Inline graphic

  • a = 14.0759 (6) Å

  • b = 7.7487 (3) Å

  • c = 14.2306 (5) Å

  • β = 98.978 (2)°

  • V = 1533.11 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.29 mm−1

  • T = 150 K

  • 0.04 × 0.04 × 0.02 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.708, T max = 0.858

  • 52534 measured reflections

  • 4672 independent reflections

  • 3735 reflections with I > 2σ(I)

  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.049

  • S = 1.04

  • 4672 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −1.42 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013626/tk2735sup1.cif

e-67-0m604-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013626/tk2735Isup2.hkl

e-67-0m604-Isup2.hkl (228.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Pt1—C15 2.046 (4)
Pt1—C14 2.048 (4)
Pt1—N1 2.107 (3)
Pt1—O2 2.143 (3)
Pt1—N2 2.149 (3)
Pt1—S1 2.2916 (9)
C15—Pt1—C14 87.88 (17)
C15—Pt1—N1 96.54 (14)
C14—Pt1—N1 90.17 (13)
C15—Pt1—O2 92.60 (15)
N1—Pt1—O2 86.39 (11)
C14—Pt1—N2 92.92 (14)
N1—Pt1—N2 77.55 (11)
O2—Pt1—N2 86.26 (11)
C15—Pt1—S1 88.64 (12)
C14—Pt1—S1 87.34 (11)
N1—Pt1—S1 174.16 (9)
O2—Pt1—S1 96.09 (7)
N2—Pt1—S1 97.30 (8)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.95 2.33 3.175 (5) 148

Symmetry code: (i) Inline graphic.

Acknowledgments

We would like to thank the NSERC (Canada) for financial support.

supplementary crystallographic information

Comment

Activation of the S—S bond of a disulfide, R2S2, has shown significant promise in the areas of medicinal chemistry and catalysis when cleaved by a transition metal complex (Wei et al., 2005). One route of interest for the activation of an S—S bond is the oxidative addition to a transition metal complex, of which there have been many studies involving platinum(II) complexes (Aye et al., 1993; Bonnington et al., 2008). Unexpectedly, the oxidative addition of 3,3'-dithiodipropionic acid led to the formation of a thiolate-carboxylate chelate ring. This type of chelate ring is not without precedent (Henderson et al., 2000; Phillips & Burford, 2008) but the title complex, (I), is the first example of a thiolate-carboxylate chelate with platinum(IV) (McCready & Puddephatt, 2011). In this context, the crystal structure of (I) is presented.

The stereochemistry at the platinum(IV) center is octahedral with two mutually cis methyl groups and chelating 2,2'-bipyridine and 3-thiolatopropionato groups (Fig. 1 and Table 1). The distance Pt—N2 = 2.149 (3) Å is significantly longer than Pt—N1 = 2.107 (3) Å, because the methyl group has a higher trans influence than the thiolato group. The angles at platinum(IV) between cis ligands range from 77.55 (11) to 97.30 (8) °, Table 1, as a result of constraints of the chelate ligands and lie in the expected ranges (Aye et al., 1988; Achar et al., 1993).

The chief intermolecular interactions arise through π-stacking between the bipyridine rings of centrosymmetrically related molecules of (I) (Fig. 2). The mean interplanar spacing between the bipyridine rings comprising the dimer unit is 3.36 Å, which is consistent with observed values of about 3.3 Å for platinum(IV) complexes of 2,2'-bipyridine (Au et al., 2009). The ring centroid(N3-pyridyl)···ring centroid(N4-pyridyl)A distance = 3.611 (2) Å for A = -x, -y, 1-z. The dimer formation through π-stacking is further stabilized by the presence of a weak C10—H···O2 interaction (Table 2).

Experimental

Dimethyl(2,2'-bipyridine)platinum(II) was prepared according to a previously published procedure by Monaghan and Puddephatt (1984). Spectroscopic Analysis, IR (ν, cm-1, KBr disk): ν(Aromatic CH) = 3107, ν(aliphatic CH) = 2847 and 2781; ν(CC) = 1601, 1465 and 1443. 1H NMR in acetone-d6: δ = 0.97 [s, 6H, 2J(PtH) = 86 Hz, MePt); 7.70 [dd, 2H, 3J(H5H6) = 6 Hz, 3J(H5H4) = 7 Hz, H5]; 8.33 [dd, 2H, 3J(H4H5) = 7 Hz, 3J(H4H3) = 8 Hz, H4]; 8.43 [d, 2H, 3J(H3H4) = 8 Hz, H3]; 9.23 [d, 2H, 3J(H6H5) = 6 Hz, H5]. A solution of PtMe2(bipy) (0.010 g, 0.026 mmol) in minimum acetone was added to a solution of dithiopropionic acid (0.0056 g, 0.026 mmol) in minimum acetone. Mixing of the two solutions led to the formation of a red-brown colour which persists while precipitation of the product is observed. After 30 h the red-orange precipitate can be isolated by decantation of the solvent and was washed with diethyl ether. PtMe2(bipy) (0.0010 g) was then dissolved in minimal chlorobenzene and added to an NMR analysis tube. To this solution, a buffer layer of chlorobenzene followed by acetone was added in order to slow the rate of diffusion of the subsequently added acetone solution of (0.0006 g) of dithiopropionic acid. The sample was placed in a cool dark place and allowed to crystallize over the course of two weeks producing crystals of (I). Yields of 68–73% were achieved. Spectroscopic Analysis, IR (ν, cm-1, Bruker Tenser 27 FTIR spectrophotometer as KBr disk): ν(Aromatic CH) = 3107; ν(aliphatic CH) = 2847 and 2781; ν(CC) = 1601, 1465 and 1443; ν(CO) = 1710. 1H NMR ( acetone-d6, p.p.m., Mercury 400 MHz NMR spectrometer): δ = 0.50 [s, 3H, 2J(PtH)=74 Hz, MePt trans to O]; 1.63 [s, 3H, 2J(PtH) = 69 Hz, MePt trans to N]; 2.73 [t, 2H, 3J(HH) = 7 Hz, CH2]; 2.96 [t, 2H, 3J(HH)=7 Hz, CH2]; 7.42 – 9.78 [8H, aromatic protons (bipy)]. MALDI-MS (CHCA): m/z = 499 (PtMe3(NN)(S(CH2)2COO)]+, m/z = 486 (Complex 1 + H+); m/z = 381([PtMe2(bipy)]+). The

Refinement

The C-bound H atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) values equal to 1.2Ueq(C) The maximum and minimum residual electron density peaks of 0.92 and -1.42 e Å-3, respectively, were located 0.64 Å and 0.74 Å from the Pt1 atom respectively.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms have been omitted.

Fig. 2.

Fig. 2.

A dimeric unit in (I) showing its orientation within the unit cell. The molecules are related by a centre of inversion and A = -x, 1 - y, -z+1.

Crystal data

[Pt(CH3)2(C3H4O2S)(C10H8N2)] F(000) = 928
Mr = 485.46 Dx = 2.103 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 7767 reflections
a = 14.0759 (6) Å θ = 2.2–23.9°
b = 7.7487 (3) Å µ = 9.29 mm1
c = 14.2306 (5) Å T = 150 K
β = 98.978 (2)° Block, orange
V = 1533.11 (10) Å3 0.04 × 0.04 × 0.02 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4672 independent reflections
Radiation source: fine-focus sealed tube 3735 reflections with I > 2σ(I)
graphite Rint = 0.074
φ and ω scans θmax = 30.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −20→20
Tmin = 0.708, Tmax = 0.858 k = −11→11
52534 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0113P)2 + 3.0575P] where P = (Fo2 + 2Fc2)/3
4672 reflections (Δ/σ)max = 0.001
192 parameters Δρmax = 0.92 e Å3
0 restraints Δρmin = −1.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.032981 (10) 0.174968 (18) 0.254103 (9) 0.01904 (4)
S1 0.12815 (8) 0.07657 (14) 0.14873 (7) 0.0283 (2)
O1 −0.1206 (2) −0.2968 (4) 0.2172 (2) 0.0406 (8)
N1 −0.0415 (2) 0.2693 (4) 0.3609 (2) 0.0195 (6)
C1 0.0013 (3) 0.2400 (5) 0.4520 (2) 0.0196 (7)
O2 −0.0384 (2) −0.0655 (3) 0.26891 (18) 0.0277 (6)
N2 0.1270 (2) 0.1055 (4) 0.3823 (2) 0.0195 (6)
C2 −0.1257 (3) 0.3538 (5) 0.3450 (3) 0.0260 (8)
H2 −0.1548 0.3754 0.2813 0.031*
C3 −0.1716 (3) 0.4105 (5) 0.4185 (3) 0.0311 (9)
H3 −0.2312 0.4701 0.4054 0.037*
C4 −0.1293 (3) 0.3790 (5) 0.5112 (3) 0.0283 (9)
H4 −0.1599 0.4159 0.5627 0.034*
C5 −0.0424 (3) 0.2938 (5) 0.5284 (3) 0.0230 (8)
H5 −0.0126 0.2718 0.5919 0.028*
C6 0.0944 (2) 0.1480 (4) 0.4640 (2) 0.0182 (7)
C7 0.2101 (3) 0.0196 (5) 0.3870 (3) 0.0257 (8)
H7 0.2328 −0.0094 0.3295 0.031*
C8 0.2641 (3) −0.0284 (5) 0.4728 (3) 0.0277 (8)
H8 0.3227 −0.0898 0.4742 0.033*
C9 0.2314 (3) 0.0143 (5) 0.5566 (3) 0.0256 (8)
H9 0.2668 −0.0188 0.6162 0.031*
C10 0.1464 (3) 0.1060 (5) 0.5524 (3) 0.0242 (8)
H10 0.1239 0.1397 0.6092 0.029*
C11 0.1008 (3) −0.1529 (5) 0.1446 (3) 0.0308 (9)
H11B 0.1342 −0.2073 0.0959 0.037*
H11A 0.1273 −0.2044 0.2069 0.037*
C12 −0.0063 (3) −0.1973 (5) 0.1222 (3) 0.0304 (9)
H12B −0.0372 −0.1179 0.0720 0.036*
H12A −0.0129 −0.3159 0.0961 0.036*
C13 −0.0603 (3) −0.1864 (5) 0.2073 (3) 0.0260 (8)
C14 0.0972 (3) 0.4106 (5) 0.2463 (3) 0.0272 (8)
H14A 0.0999 0.4385 0.1796 0.041*
H14B 0.1625 0.4071 0.2821 0.041*
H14C 0.0597 0.4990 0.2735 0.041*
C15 −0.0667 (3) 0.2486 (6) 0.1408 (3) 0.0296 (9)
H15A −0.0815 0.3714 0.1466 0.044*
H15B −0.1255 0.1806 0.1400 0.044*
H15C −0.0409 0.2291 0.0816 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.02214 (7) 0.01977 (7) 0.01574 (6) 0.00002 (7) 0.00464 (4) 0.00076 (6)
S1 0.0343 (5) 0.0298 (6) 0.0236 (5) 0.0024 (4) 0.0135 (4) 0.0001 (4)
O1 0.0444 (19) 0.0335 (18) 0.0450 (18) −0.0164 (15) 0.0105 (15) −0.0097 (14)
N1 0.0218 (15) 0.0184 (15) 0.0189 (14) −0.0009 (12) 0.0043 (12) −0.0014 (12)
C1 0.0235 (18) 0.0144 (17) 0.0219 (17) −0.0065 (14) 0.0071 (14) −0.0009 (14)
O2 0.0382 (16) 0.0254 (15) 0.0205 (13) −0.0109 (12) 0.0081 (12) −0.0025 (11)
N2 0.0202 (15) 0.0218 (16) 0.0165 (14) −0.0022 (13) 0.0029 (11) 0.0011 (12)
C2 0.0268 (19) 0.023 (2) 0.0285 (19) −0.0001 (16) 0.0050 (16) 0.0001 (16)
C3 0.026 (2) 0.028 (2) 0.041 (2) 0.0060 (17) 0.0090 (18) −0.0030 (18)
C4 0.034 (2) 0.023 (2) 0.032 (2) −0.0028 (17) 0.0162 (17) −0.0061 (16)
C5 0.031 (2) 0.019 (2) 0.0215 (17) −0.0050 (15) 0.0107 (15) −0.0021 (14)
C6 0.0217 (17) 0.0154 (18) 0.0183 (15) −0.0055 (14) 0.0054 (13) −0.0030 (13)
C7 0.0204 (18) 0.034 (2) 0.0231 (18) 0.0031 (16) 0.0038 (14) 0.0014 (16)
C8 0.0207 (18) 0.030 (2) 0.032 (2) −0.0005 (17) 0.0007 (16) 0.0047 (17)
C9 0.0265 (19) 0.026 (2) 0.0220 (17) −0.0073 (16) −0.0028 (15) 0.0045 (15)
C10 0.027 (2) 0.024 (2) 0.0215 (18) −0.0057 (16) 0.0031 (15) −0.0022 (15)
C11 0.039 (2) 0.027 (2) 0.0275 (19) 0.0063 (18) 0.0086 (17) −0.0018 (17)
C12 0.043 (2) 0.025 (2) 0.0225 (18) 0.0005 (19) 0.0037 (17) −0.0041 (16)
C13 0.0288 (19) 0.024 (2) 0.0237 (17) 0.0000 (18) −0.0001 (15) 0.0049 (16)
C14 0.032 (2) 0.023 (2) 0.029 (2) −0.0021 (17) 0.0106 (17) 0.0023 (16)
C15 0.030 (2) 0.033 (2) 0.0233 (19) 0.0091 (18) −0.0045 (16) 0.0001 (17)

Geometric parameters (Å, °)

Pt1—C15 2.046 (4) C5—H5 0.9500
Pt1—C14 2.048 (4) C6—C10 1.393 (5)
Pt1—N1 2.107 (3) C7—C8 1.385 (5)
Pt1—O2 2.143 (3) C7—H7 0.9500
Pt1—N2 2.149 (3) C8—C9 1.383 (5)
Pt1—S1 2.2916 (9) C8—H8 0.9500
S1—C11 1.818 (4) C9—C10 1.384 (5)
O1—C13 1.230 (5) C9—H9 0.9500
N1—C2 1.342 (5) C10—H10 0.9500
N1—C1 1.361 (4) C11—C12 1.531 (6)
C1—C5 1.395 (5) C11—H11B 0.9900
C1—C6 1.478 (5) C11—H11A 0.9900
O2—C13 1.287 (5) C12—C13 1.529 (5)
N2—C7 1.338 (5) C12—H12B 0.9900
N2—C6 1.355 (4) C12—H12A 0.9900
C2—C3 1.383 (5) C14—H14A 0.9800
C2—H2 0.9500 C14—H14B 0.9800
C3—C4 1.382 (6) C14—H14C 0.9800
C3—H3 0.9500 C15—H15A 0.9800
C4—C5 1.378 (5) C15—H15B 0.9800
C4—H4 0.9500 C15—H15C 0.9800
C15—Pt1—C14 87.88 (17) C10—C6—C1 123.3 (3)
C15—Pt1—N1 96.54 (14) N2—C7—C8 122.1 (3)
C14—Pt1—N1 90.17 (13) N2—C7—H7 118.9
C15—Pt1—O2 92.60 (15) C8—C7—H7 118.9
C14—Pt1—O2 176.55 (12) C9—C8—C7 119.0 (4)
N1—Pt1—O2 86.39 (11) C9—C8—H8 120.5
C15—Pt1—N2 174.03 (14) C7—C8—H8 120.5
C14—Pt1—N2 92.92 (14) C8—C9—C10 119.2 (4)
N1—Pt1—N2 77.55 (11) C8—C9—H9 120.4
O2—Pt1—N2 86.26 (11) C10—C9—H9 120.4
C15—Pt1—S1 88.64 (12) C9—C10—C6 119.2 (3)
C14—Pt1—S1 87.34 (11) C9—C10—H10 120.4
N1—Pt1—S1 174.16 (9) C6—C10—H10 120.4
O2—Pt1—S1 96.09 (7) C12—C11—S1 115.0 (3)
N2—Pt1—S1 97.30 (8) C12—C11—H11B 108.5
C11—S1—Pt1 101.78 (13) S1—C11—H11B 108.5
C2—N1—C1 119.3 (3) C12—C11—H11A 108.5
C2—N1—Pt1 125.0 (2) S1—C11—H11A 108.5
C1—N1—Pt1 115.6 (2) H11B—C11—H11A 107.5
N1—C1—C5 120.6 (3) C13—C12—C11 114.7 (3)
N1—C1—C6 116.3 (3) C13—C12—H12B 108.6
C5—C1—C6 123.0 (3) C11—C12—H12B 108.6
C13—O2—Pt1 129.2 (2) C13—C12—H12A 108.6
C7—N2—C6 119.3 (3) C11—C12—H12A 108.6
C7—N2—Pt1 125.7 (2) H12B—C12—H12A 107.6
C6—N2—Pt1 114.9 (2) O1—C13—O2 121.6 (4)
N1—C2—C3 122.2 (4) O1—C13—C12 119.4 (4)
N1—C2—H2 118.9 O2—C13—C12 119.0 (3)
C3—C2—H2 118.9 Pt1—C14—H14A 109.5
C4—C3—C2 118.9 (4) Pt1—C14—H14B 109.5
C4—C3—H3 120.6 H14A—C14—H14B 109.5
C2—C3—H3 120.6 Pt1—C14—H14C 109.5
C5—C4—C3 119.5 (3) H14A—C14—H14C 109.5
C5—C4—H4 120.2 H14B—C14—H14C 109.5
C3—C4—H4 120.2 Pt1—C15—H15A 109.5
C4—C5—C1 119.5 (4) Pt1—C15—H15B 109.5
C4—C5—H5 120.3 H15A—C15—H15B 109.5
C1—C5—H5 120.3 Pt1—C15—H15C 109.5
N2—C6—C10 121.1 (3) H15A—C15—H15C 109.5
N2—C6—C1 115.5 (3) H15B—C15—H15C 109.5
C15—Pt1—S1—C11 −98.02 (19) N1—Pt1—N2—C6 1.7 (2)
C14—Pt1—S1—C11 174.04 (18) O2—Pt1—N2—C6 −85.4 (2)
N1—Pt1—S1—C11 109.3 (8) S1—Pt1—N2—C6 178.9 (2)
O2—Pt1—S1—C11 −5.56 (16) C1—N1—C2—C3 −0.9 (6)
N2—Pt1—S1—C11 81.44 (16) Pt1—N1—C2—C3 179.1 (3)
C15—Pt1—N1—C2 −2.1 (3) N1—C2—C3—C4 0.0 (6)
C14—Pt1—N1—C2 85.8 (3) C2—C3—C4—C5 0.6 (6)
O2—Pt1—N1—C2 −94.3 (3) C3—C4—C5—C1 −0.2 (6)
N2—Pt1—N1—C2 178.7 (3) N1—C1—C5—C4 −0.7 (5)
S1—Pt1—N1—C2 150.4 (7) C6—C1—C5—C4 179.9 (3)
C15—Pt1—N1—C1 177.9 (3) C7—N2—C6—C10 0.8 (5)
C14—Pt1—N1—C1 −94.2 (3) Pt1—N2—C6—C10 178.0 (3)
O2—Pt1—N1—C1 85.7 (3) C7—N2—C6—C1 −179.0 (3)
N2—Pt1—N1—C1 −1.2 (2) Pt1—N2—C6—C1 −1.9 (4)
S1—Pt1—N1—C1 −29.5 (10) N1—C1—C6—N2 0.8 (5)
C2—N1—C1—C5 1.3 (5) C5—C1—C6—N2 −179.8 (3)
Pt1—N1—C1—C5 −178.8 (3) N1—C1—C6—C10 −179.0 (3)
C2—N1—C1—C6 −179.3 (3) C5—C1—C6—C10 0.4 (5)
Pt1—N1—C1—C6 0.7 (4) C6—N2—C7—C8 0.3 (6)
C15—Pt1—O2—C13 56.8 (3) Pt1—N2—C7—C8 −176.4 (3)
C14—Pt1—O2—C13 155 (2) N2—C7—C8—C9 −0.3 (6)
N1—Pt1—O2—C13 153.2 (3) C7—C8—C9—C10 −0.9 (6)
N2—Pt1—O2—C13 −129.1 (3) C8—C9—C10—C6 2.0 (6)
S1—Pt1—O2—C13 −32.1 (3) N2—C6—C10—C9 −2.0 (5)
C15—Pt1—N2—C7 170.6 (13) C1—C6—C10—C9 177.8 (3)
C14—Pt1—N2—C7 −91.9 (3) Pt1—S1—C11—C12 53.1 (3)
N1—Pt1—N2—C7 178.6 (3) S1—C11—C12—C13 −81.1 (4)
O2—Pt1—N2—C7 91.5 (3) Pt1—O2—C13—O1 −162.2 (3)
S1—Pt1—N2—C7 −4.2 (3) Pt1—O2—C13—C12 20.8 (5)
C15—Pt1—N2—C6 −6.3 (15) C11—C12—C13—O1 −139.6 (4)
C14—Pt1—N2—C6 91.2 (3) C11—C12—C13—O2 37.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10···O2i 0.95 2.33 3.175 (5) 148

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2735).

References

  1. Achar, S., Scott, J. D., Vittal, J. J. & Puddephatt, R. J. (1993). Organometallics, 12, 4592–4598.
  2. Au, R. H. W., Jennings, M. C. & Puddephatt, R. J. (2009). Organometallics, 28, 3754–3762.
  3. Aye, K.-T., Colpitts, D., Ferguson, G. & Puddephatt, R. J. (1988). Organometallics, 7, 1454–1456.
  4. Aye, K.-T., Vittal, J. J. & Puddephatt, R. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1835–1839.
  5. Bonnington, K. J., Jennings, M. C. & Puddephatt, R. J. (2008). Organomet­allics, 27, 6521–6530.
  6. Bruker (2006). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Henderson, W., McCaffrey, L. J. & Nicholson, B. K. (2000). J. Chem. Soc. Dalton Trans. pp. 2753–2760.
  9. McCready, M. S. & Puddephatt, R. J. (2011). Inorg. Chem. Commun. 14, 210–212.
  10. Monaghan, P. K. & Puddephatt, R. J. (1984). Organometallics, 3, 444–449.
  11. Phillips, H. A. & Burford, N. (2008). Inorg. Chem. 47, 2428–2441. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Wei, H., Wang, X., Liu, Q., Lu, Y. & Guo, Z. (2005). Inorg. Chem. 44, 6077–6081. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811013626/tk2735sup1.cif

e-67-0m604-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811013626/tk2735Isup2.hkl

e-67-0m604-Isup2.hkl (228.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES