Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Apr 29;67(Pt 5):o1218. doi: 10.1107/S1600536811014711

2-Bromo-N-(dibenzyl­carbamothioyl)benzamide

Mohd Faizal Md Nasir a, Ibrahim N Hassan a,*, Wan Ramli Wan Daud b,a, Bohari M Yamin c, Mohammad B Kassim c,a
PMCID: PMC3089282  PMID: 21754516

Abstract

The 2-bromo­benzoyl group in the title compound, C22H19BrN2OS, adopts an E conformation with respect to the thiono S atom across the N—C bond. In the crystal structure, the mol­ecule is stablized by N—H⋯O inter­molecular hydrogen bonds, forming a one-dimensional chain along the b axis.

Related literature

For related structures, see: Yamin & Hassan (2004); Hassan et al. (2008a ,b ,c , 2009). For the synthesis, see: Hassan et al. (2008a ). For reference bond distances, see: Allen et al. (2004).graphic file with name e-67-o1218-scheme1.jpg

Experimental

Crystal data

  • C22H19BrN2OS

  • M r = 439.36

  • Tetragonal, Inline graphic

  • a = 12.2833 (16) Å

  • c = 14.002 (4) Å

  • V = 2112.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 273 K

  • 0.35 × 0.31 × 0.23 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.533, T max = 0.649

  • 15683 measured reflections

  • 5217 independent reflections

  • 2506 reflections with I > 2σ(I)

  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.118

  • S = 0.93

  • 5217 reflections

  • 244 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983), with 2474 Friedel pairs

  • Flack parameter: −0.001 (11)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014711/dn2677sup1.cif

e-67-o1218-sup1.cif (25.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014711/dn2677Isup2.hkl

e-67-o1218-Isup2.hkl (255.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1 0.86 2.79 3.220 (3) 113
N1—H1A⋯O1i 0.86 2.20 2.903 (4) 139

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Universiti Kebangsaan Malaysia for providing facilities and grants (postdoctoral for INH, grant Nos. UKM-GUP-BTT-07-30-190 and UKM-OUP-TK-16-73/2010), and the Kementerian Pengajian Tinggi, Malaysia, for research fund No. UKM-AP-TK-05-2009.

supplementary crystallographic information

Comment

The title compound, I, is a thiourea derivative of dibenzylamine analogous to our previous reported, ethyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008a), propyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008b), butyl-2-(3-benzoylthioureido)acetate (Hassan et al., 2008c) and 1-(2-morpholinoethyl)-3-(3-phenylacryloyl)thiourea (Yamin & Hassan, 2004). The molecule has the 2-bromobenzoyl group adopting an E conformation, with respect to the thiono S atom across the N1—C8 bond, whereas both the phenyl ring of the dibenzylamine group adopt E and Z conformation relative to the S atom across the N2—C8 bond (Fig. 1). The phenyl ring, (C1–C6), and the thiourea fragment, (S1/N1/N2/C8), are essentially planar and the dihedral angle between them is 72.9 (2)°. The bond lengths and angles in the molecules are in normal ranges (Allen et al., 1987).

Both phenyl rings, [C10/C11/C12/C13/C14/C15] and [C17/C18/C19/C20/C21/C22] are essentially planar and they are twisted to each other by a dihedral angle of 22.4 (4)°. There is weak intramolecular hydrogen bond, N1—H1A···Br1 (Table 1). As a result, one pseudo-six-membered ring (N1/H1A/Br1/C1/C6/C7) is formed. The intermolecular N1—H1A···O1 hydrogen bonds (Table 1,) links the molecules into a chain parallel to the b axis (Fig. 2).

Experimental

The title compound was synthesized according to a previously reported compound (Hassan et al., 2008a). A colourless crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from methanolic solution at room temperature (yield 83%).

Refinement

H atoms of both C and N atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso = 1.2Ueq(C) for aromatic 0.93 Å, Uiso = 1.2Ueq (C) for CH2 0.97 Å, Uiso = 1.2Ueq (N) for N—H 0.86 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atoms labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing view of (I) showing the formation of the chain through N—H···O hydrogen bondings. H bonds are shown as dashed lines. [Symmetry code: (i) -y + 1, x, z - 1/4]

Crystal data

C22H19BrN2OS Dx = 1.381 Mg m3
Mr = 439.36 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43 Cell parameters from 2531 reflections
Hall symbol: P 4cw θ = 1.7–28.4°
a = 12.2833 (16) Å µ = 2.06 mm1
c = 14.002 (4) Å T = 273 K
V = 2112.6 (7) Å3 Block, colourless
Z = 4 0.35 × 0.31 × 0.23 mm
F(000) = 896

Data collection

Bruker SMART APEX CCD area-detector diffractometer 5217 independent reflections
Radiation source: fine-focus sealed tube 2506 reflections with I > 2σ(I)
graphite Rint = 0.064
ω scans θmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) h = −12→16
Tmin = 0.533, Tmax = 0.649 k = −14→16
15683 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0418P)2] where P = (Fo2 + 2Fc2)/3
S = 0.93 (Δ/σ)max < 0.001
5217 reflections Δρmax = 0.57 e Å3
244 parameters Δρmin = −0.20 e Å3
1 restraint Absolute structure: Flack (1983), with 2474 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.001 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.20156 (4) 0.59332 (4) 0.23207 (5) 0.0975 (2)
S1 0.48743 (15) 0.81061 (10) −0.01270 (10) 0.1136 (5)
O1 0.5373 (2) 0.6765 (2) 0.2480 (2) 0.0656 (7)
N1 0.4138 (2) 0.6950 (2) 0.1306 (2) 0.0552 (8)
H1A 0.3584 0.6663 0.1027 0.066*
N2 0.4512 (3) 0.8761 (3) 0.1662 (2) 0.0642 (9)
C1 0.3189 (3) 0.4915 (3) 0.2306 (3) 0.0685 (11)
C2 0.2938 (5) 0.3838 (5) 0.2467 (4) 0.0973 (16)
H2A 0.2218 0.3628 0.2562 0.117*
C3 0.3751 (6) 0.3079 (4) 0.2485 (4) 0.1067 (18)
H3A 0.3579 0.2349 0.2578 0.128*
C4 0.4787 (5) 0.3375 (4) 0.2371 (5) 0.0959 (15)
H4A 0.5333 0.2851 0.2400 0.115*
C5 0.5061 (4) 0.4451 (3) 0.2210 (3) 0.0684 (11)
H5A 0.5786 0.4647 0.2126 0.082*
C6 0.4249 (3) 0.5240 (3) 0.2174 (3) 0.0567 (10)
C7 0.4632 (3) 0.6395 (3) 0.2022 (3) 0.0517 (10)
C8 0.4501 (4) 0.7972 (3) 0.1011 (3) 0.0638 (11)
C9 0.3979 (4) 0.8690 (3) 0.2597 (3) 0.0694 (12)
H9A 0.4523 0.8763 0.3095 0.083*
H9B 0.3645 0.7979 0.2663 0.083*
C10 0.3114 (4) 0.9563 (4) 0.2731 (4) 0.0733 (13)
C11 0.2355 (5) 0.9757 (5) 0.2031 (5) 0.120 (2)
H11A 0.2383 0.9383 0.1454 0.144*
C12 0.1542 (6) 1.0525 (7) 0.2202 (8) 0.156 (3)
H12A 0.1035 1.0672 0.1726 0.187*
C13 0.1477 (6) 1.1055 (6) 0.3037 (9) 0.137 (3)
H13A 0.0923 1.1556 0.3145 0.164*
C14 0.2215 (7) 1.0855 (5) 0.3709 (6) 0.116 (2)
H14A 0.2171 1.1222 0.4289 0.139*
C15 0.3049 (5) 1.0111 (4) 0.3565 (4) 0.0841 (14)
H15A 0.3562 0.9991 0.4041 0.101*
C16 0.5113 (4) 0.9773 (3) 0.1497 (4) 0.0799 (13)
H16A 0.4655 1.0387 0.1664 0.096*
H16B 0.5292 0.9831 0.0824 0.096*
C17 0.6145 (4) 0.9818 (3) 0.2075 (4) 0.0722 (13)
C18 0.6297 (6) 1.0599 (5) 0.2746 (5) 0.117 (2)
H18A 0.5758 1.1119 0.2839 0.140*
C19 0.7213 (7) 1.0642 (6) 0.3286 (7) 0.161 (4)
H19A 0.7279 1.1164 0.3763 0.193*
C20 0.8018 (6) 0.9934 (7) 0.3131 (6) 0.134 (3)
H20A 0.8672 1.0007 0.3459 0.160*
C21 0.7890 (5) 0.9132 (6) 0.2515 (7) 0.132 (3)
H21A 0.8432 0.8609 0.2443 0.158*
C22 0.6946 (5) 0.9072 (5) 0.1976 (4) 0.1103 (19)
H22A 0.6861 0.8508 0.1539 0.132*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0739 (3) 0.1215 (4) 0.0970 (4) −0.0048 (3) 0.0148 (3) 0.0028 (4)
S1 0.1990 (16) 0.0888 (8) 0.0531 (7) −0.0186 (9) 0.0167 (10) 0.0149 (8)
O1 0.0769 (17) 0.0579 (16) 0.0620 (19) −0.0059 (14) −0.0219 (16) 0.0042 (14)
N1 0.064 (2) 0.056 (2) 0.0457 (18) −0.0031 (16) −0.0102 (15) 0.0076 (14)
N2 0.082 (2) 0.050 (2) 0.061 (2) 0.0049 (18) −0.0021 (18) 0.0128 (18)
C1 0.083 (3) 0.072 (3) 0.051 (2) −0.016 (2) 0.003 (3) 0.007 (2)
C2 0.108 (4) 0.097 (4) 0.087 (4) −0.042 (4) 0.011 (3) 0.011 (3)
C3 0.156 (6) 0.066 (3) 0.098 (4) −0.026 (4) −0.007 (4) 0.014 (3)
C4 0.134 (5) 0.063 (3) 0.090 (4) 0.012 (3) −0.004 (4) 0.019 (3)
C5 0.092 (3) 0.057 (2) 0.056 (3) 0.000 (2) −0.005 (2) 0.013 (2)
C6 0.075 (3) 0.055 (2) 0.041 (2) −0.009 (2) −0.0036 (19) 0.0091 (18)
C7 0.060 (2) 0.056 (2) 0.039 (2) 0.007 (2) −0.0019 (18) 0.0025 (17)
C8 0.079 (3) 0.054 (3) 0.058 (3) 0.001 (2) −0.009 (2) 0.013 (2)
C9 0.076 (3) 0.065 (3) 0.067 (3) 0.006 (2) −0.003 (2) 0.004 (2)
C10 0.070 (3) 0.056 (3) 0.094 (4) 0.001 (2) −0.003 (3) −0.004 (2)
C11 0.110 (4) 0.113 (4) 0.135 (6) 0.034 (4) −0.056 (4) −0.034 (4)
C12 0.117 (5) 0.139 (6) 0.212 (10) 0.046 (5) −0.072 (6) −0.031 (7)
C13 0.082 (5) 0.090 (5) 0.237 (10) 0.007 (4) 0.039 (6) −0.006 (6)
C14 0.143 (6) 0.065 (4) 0.140 (6) −0.003 (4) 0.042 (5) −0.017 (4)
C15 0.099 (4) 0.058 (3) 0.095 (4) −0.002 (3) 0.009 (3) −0.009 (3)
C16 0.109 (4) 0.049 (3) 0.082 (3) −0.004 (3) 0.005 (3) 0.013 (2)
C17 0.080 (3) 0.048 (2) 0.089 (4) 0.000 (2) 0.011 (3) −0.002 (2)
C18 0.129 (5) 0.079 (4) 0.143 (5) 0.021 (4) −0.033 (4) −0.041 (4)
C19 0.125 (6) 0.128 (5) 0.229 (10) 0.021 (5) −0.057 (6) −0.094 (6)
C20 0.095 (5) 0.148 (6) 0.159 (7) −0.013 (5) −0.022 (4) −0.042 (5)
C21 0.087 (4) 0.143 (6) 0.166 (7) 0.027 (4) 0.004 (5) −0.039 (6)
C22 0.105 (4) 0.110 (4) 0.116 (5) 0.013 (4) 0.007 (4) −0.041 (3)

Geometric parameters (Å, °)

Br1—C1 1.909 (4) C10—C11 1.372 (7)
S1—C8 1.666 (4) C11—C12 1.394 (10)
O1—C7 1.203 (4) C11—H11A 0.9300
N1—C7 1.356 (5) C12—C13 1.341 (11)
N1—C8 1.396 (5) C12—H12A 0.9300
N1—H1A 0.8602 C13—C14 1.329 (11)
N2—C8 1.330 (5) C13—H13A 0.9300
N2—C16 1.464 (6) C14—C15 1.388 (8)
N2—C9 1.467 (5) C14—H14A 0.9300
C1—C6 1.375 (5) C15—H15A 0.9300
C1—C2 1.376 (6) C16—C17 1.505 (7)
C2—C3 1.367 (8) C16—H16A 0.9700
C2—H2A 0.9300 C16—H16B 0.9700
C3—C4 1.334 (8) C17—C22 1.352 (7)
C3—H3A 0.9300 C17—C18 1.355 (7)
C4—C5 1.382 (6) C18—C19 1.356 (9)
C4—H4A 0.9300 C18—H18A 0.9300
C5—C6 1.392 (5) C19—C20 1.334 (9)
C5—H5A 0.9300 C19—H19A 0.9300
C6—C7 1.509 (5) C20—C21 1.319 (10)
C9—C10 1.521 (6) C20—H20A 0.9300
C9—H9A 0.9700 C21—C22 1.386 (9)
C9—H9B 0.9700 C21—H21A 0.9300
C10—C15 1.350 (7) C22—H22A 0.9300
C7—N1—C8 121.9 (3) C10—C11—C12 118.7 (6)
C7—N1—H1A 119.0 C10—C11—H11A 120.6
C8—N1—H1A 119.2 C12—C11—H11A 120.6
C8—N2—C16 121.0 (4) C13—C12—C11 121.4 (7)
C8—N2—C9 124.3 (3) C13—C12—H12A 119.3
C16—N2—C9 114.6 (4) C11—C12—H12A 119.3
C6—C1—C2 120.9 (4) C14—C13—C12 119.1 (7)
C6—C1—Br1 121.7 (3) C14—C13—H13A 120.4
C2—C1—Br1 117.3 (4) C12—C13—H13A 120.4
C3—C2—C1 119.7 (5) C13—C14—C15 121.4 (7)
C3—C2—H2A 120.2 C13—C14—H14A 119.3
C1—C2—H2A 120.2 C15—C14—H14A 119.3
C4—C3—C2 120.6 (5) C10—C15—C14 119.9 (6)
C4—C3—H3A 119.7 C10—C15—H15A 120.1
C2—C3—H3A 119.7 C14—C15—H15A 120.1
C3—C4—C5 120.8 (5) N2—C16—C17 111.8 (4)
C3—C4—H4A 119.6 N2—C16—H16A 109.3
C5—C4—H4A 119.6 C17—C16—H16A 109.3
C4—C5—C6 119.9 (5) N2—C16—H16B 109.3
C4—C5—H5A 120.1 C17—C16—H16B 109.3
C6—C5—H5A 120.1 H16A—C16—H16B 107.9
C1—C6—C5 118.1 (4) C22—C17—C18 116.8 (5)
C1—C6—C7 126.0 (4) C22—C17—C16 122.2 (5)
C5—C6—C7 115.9 (4) C18—C17—C16 121.0 (5)
O1—C7—N1 122.9 (3) C17—C18—C19 121.9 (6)
O1—C7—C6 121.1 (3) C17—C18—H18A 119.1
N1—C7—C6 115.9 (3) C19—C18—H18A 119.1
N2—C8—N1 117.1 (3) C20—C19—C18 119.9 (7)
N2—C8—S1 125.5 (3) C20—C19—H19A 120.0
N1—C8—S1 117.4 (3) C18—C19—H19A 120.0
N2—C9—C10 112.3 (4) C21—C20—C19 120.3 (7)
N2—C9—H9A 109.1 C21—C20—H20A 119.8
C10—C9—H9A 109.1 C19—C20—H20A 119.8
N2—C9—H9B 109.1 C20—C21—C22 119.7 (6)
C10—C9—H9B 109.1 C20—C21—H21A 120.2
H9A—C9—H9B 107.9 C22—C21—H21A 120.2
C15—C10—C11 119.4 (5) C17—C22—C21 121.1 (5)
C15—C10—C9 119.9 (5) C17—C22—H22A 119.4
C11—C10—C9 120.6 (5) C21—C22—H22A 119.4

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Br1 0.86 2.79 3.220 (3) 113.
N1—H1A···O1i 0.86 2.20 2.903 (4) 139.

Symmetry codes: (i) −y+1, x, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2677).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727. [DOI] [PMC free article] [PubMed]
  7. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083. [DOI] [PMC free article] [PubMed]
  8. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008c). Acta Cryst. E64, o2167. [DOI] [PMC free article] [PubMed]
  9. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078. [DOI] [PMC free article] [PubMed]
  10. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536811014711/dn2677sup1.cif

e-67-o1218-sup1.cif (25.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536811014711/dn2677Isup2.hkl

e-67-o1218-Isup2.hkl (255.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES